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Abstract

In this paper, the existing theorems and methods for finding solutions of systems of
general nonlinear set-valued mixed variational inequalities problems in Hilbert spaces
are studied. To overcome the difficulties, due to the presence of a proper convex
lower semi-continuous function, � and a mapping g, which appeared in the
considered problem, we have used some applications of the resolvent operator
technique. We would like to point out that although many authors have proved
results for finding solutions of the systems of nonlinear set-valued (mixed) variational
inequalities problems, it is clear that it cannot be directly applied to the problems
that we have considered in this paper because of � and g.
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1. Introduction and preliminaries
Let H be a real Hilbert space, whose inner product and norm are denoted by 〈·, ·〉, and

||·||, respectively. Let CB(H) be the family of all nonempty, closed, and bounded sets in

H. Let A, B : H ® CB(H) be nonlinear set-valued mappings, g : H ® H be a single-

valued mapping, and � : H ® (-∞, +∞] be a proper convex lower semi-continuous

function on H. For each fixed positive real numbers, r and h, we consider the follow-

ing so-called system of general nonlinear set-valued mixed variational inequalities

problems:

Find x*, y*Î H, u* Î Ay*, v* Î Bx*, such that
{ 〈ρu∗ + x∗ − g(y∗), g(x) − x∗〉 + ϕ(g(x)) − ϕ(x∗) ≥ 0, ∀x ∈ H, g(x) ∈ H,

〈ηv∗ + y∗ − g(x∗), g(x) − y∗〉 + ϕ(g(x)) − ϕ(y∗) ≥ 0, ∀x ∈ H, g(x) ∈ H.
(1:1)

We denote by SGNSM(A, B, g, �, r, h), the set of all solutions (x*, y*, u*, v*) of the

problem (1.1).

We shall now discuss several special cases of the problem (1.1).

Special cases of the problem (1.1) are as follows:

(I) If g = I (: the identity operator), then, from the problem (1.1), we have the follow-

ing system of nonlinear set-valued mixed variational inequalities problems:
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Find x*, y* Î H, u* Î Ay*, v* Î Bx*, such that

{ 〈ρu∗ + x∗ − y∗, x − x∗〉 + ϕ(x) − ϕ(x∗) ≥ 0, ∀x ∈ H,
〈ηv∗ + y∗ − x∗, x − y∗〉 + ϕ(x) − ϕ(y∗) ≥ 0, ∀x ∈ H.

(1:2)

We denote by SNSM(A, B, �, r, h), the set of all solutions (x*, y*, u*, v*) of the pro-

blem (1.2).

(II) If K is a closed convex subset of H and � (x) = δK(x) for all x Î K, where δK is

the indicator function of K defined by

δK =
{
0, if x ∈ K,
+∞, otherwise,

then, from the problem (1.1), we have the following system of general nonlinear set-

valued variational inequalities problems:

Find x*, y* Î K, u* Î Ay*, v* Î Bx*, such that

{ 〈ρu∗ + x∗ − g(y∗), g(x) − x∗〉 ≥ 0, ∀x ∈ H, g(x) ∈ K,
〈ηv∗ + y∗ − g(x∗), g(x) − y∗〉 ≥ 0, ∀x ∈ H, g(x) ∈ K.

(1:3)

We denote by SGNS(A, B, g, K, r, h), the set of all solutions (x*, y*, u*, v*) of the

problem (1.3).

The problem (1.3) was recently introduced and studied by Noor [1], when A and B

are single-valued mappings. Consequently, it was pointed out that such a problem

includes a wide class of the system of variational inequalities problems and related

optimization problems as special cases, and hence the results announced in [1] is very

interesting.

(III) If A, B : H ® H are single-valued mappings, then, from the problem (1.1), we

have the following system of general nonlinear mixed variational inequalities problems:

Find x*, y* Î H, such that

{ 〈ρAy∗ + x∗ − y∗, x − x∗〉 + ϕ(g(x)) − ϕ(x∗) ≥ 0, ∀x ∈ H, g(x) ∈ H,
〈ηBx∗ + y∗ − x∗, x − y∗〉 + ϕ(g(x)) − ϕ(y∗) ≥ 0, ∀x ∈ H, g(x) ∈ H.

(1:4)

We denote by SGNM(A, B, g, �, r, h), the set of all solutions (x*, y*) of the problem

(1.4).

This means, generally speaking, the class of system general nonlinear set-valued var-

iational inequalities problems is more general and has had a great impact and influence

in the development of several branches of pure, applied, and engineering sciences. For

more information and results on the general variational inequalities problems, one may

consult [2-18].

Inspired and motivated by the recent research going on in this area, in this paper, we

consider the existence theorem and a method for finding solutions for the systems of

nonlinear general set-valued mixed variational inequalities problems (1.1). Our results

extend the results announced by Noor [1], from single-valued mappings to set-valued

mappings, and hence include several related problems as spacial cases.

We need the following basic concepts and well-known results:

Definition 1.1. A mapping g : H ® H is said to be:
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(1) monotone if

〈g(x) − g(y), x − y〉 ≥ 0, ∀x, y ∈ H;

(2) ν-strongly monotone if there exists a constant ν >0, such that

〈g(x) − g(y), x − y〉 ≥ ν||x − y||2, ∀x, y ∈ H.

Definition 1.2. A set-valued mapping A : H ® 2H is said to be ν-strongly monotone

if there exists a constant ν >0, such that,

〈w1 − w2, u1 − u2〉 ≥ ν||u1 − u2||2, ∀u1, u2 ∈ H, w1 ∈ Au1, w2 ∈ Au2.

Definition 1.3. A set-valued mapping A : H ® CB(H) is said to be τ-Lipschitzian

continuous if there exists a constant τ >0, such that,

H(Au1,Au2) ≤ τ ||u1 − u2||, ∀u1, u2 ∈ H,

where H(·,·) is the Hausdorff metric on CB(H).

Definition 1.4. A single-valued mapping T : H ® H is said to be a �-Lipschitzian

continuous mapping if there exists a positive constant �, such that,

||Tx − Ty|| ≤ κ||x − y||, ∀x, y ∈ H.

In the case of � = 1, the mapping T is known as a nonexpansive mapping.

Definition 1.5. [19] If M is a maximal monotone operator on H, then, for any l >0,

the resolvent operator associated with M is defined as

JM(u) = (I + λM)−1(u), ∀u ∈ H.

It is well-known that a monotone operator is maximal if and only if its resolvent

operator is defined everywhere. Furthermore, the resolvent operator is single-valued

and nonexpansive. In particular, it is well-known that the subdifferential ∂� of a proper

convex lower semi-continuous function � : H ® (-∞, +∞] is a maximal monotone

operator.

Moreover, we have the following interesting characterization:

Lemma 1.6. [19]The points u, z Î H satisfy the inequality

〈u − z, x − u〉 + λϕ(x) − λϕ(u) ≥ 0, ∀x ∈ H,

if and only if u = J�(z), where J� (I + l∂�)-1 is the resolvent operator and l >0 is a

constant.

The property of the resolvent operator J� presented in Lemma 1.6 plays an important

role in developing the numerical methods for solving the system of general nonlinear

set-valued mixed variational inequalities problems. In fact, assuming that g : H ® H is

a surjective mapping and by applying Lemma 1.6, one can easily prove the following

result:

Lemma 1.7. If g : H ® H is a surjective mapping, then the problem (1.1) is equiva-

lent to the following problem:

Find x*, y* Î H, u* Î Ay*, v* Î Bx*, such that,
{
x∗ = Jϕ[g(y∗) − ρu∗],
y∗ = Jϕ[g(x∗) − ηv∗], (1:5)
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where J� = (I + ∂�)-1.

The equivalent formulation (1.5) enables us to suggest an explicit iterative method

for solving the system of general nonlinear set-valued mixed variational inequalities

problem (1.1), as we show in the next section. Of course, we hope to use the Lemma

1.7 to obtain our results in this paper, and hence, from now on, we assume that the

mapping g : H ® H is a surjection.

In order to prove our main results, the next lemma is very important.

Lemma 1.8. [20]Let B1, B2 Î CB(H) and r >1 be any real number. Then, for all b1 Î
B1, there exists b2 Î B2, such that ||b1 - b2|| ≤ rH(B1, B2).

2. Main results
We begin with some observations that are guidelines to a method for proving the main

results in this paper.

Remark 2.1. If (x*, y*, u*, v*) Î SGNSM(A, B, g, �, r, h), then it follows from (1.5) that
{
x∗ = (1 − t)x∗ + tJϕ[g(y∗) − ρu∗], ∀t ∈ [0, 1],
y∗ = Jϕ[g(x∗) − ηv∗],

From Remark 2.1, we suggest a method for finding a solution for the problem (2.1),

as following iterative procedures:

Let {εn} be a sequence of positive real numbers with εn ® 0 as n ® ∞ and t Î (0, 1]

be fixed. For any x0, y0 Î H, pick u0 Î Ay0 and let

x1 = (1 − t)x0 + tJϕ[g(y0) − ρu0].

Then take v1 Î Bx1 and let

y1 = Jϕ[g(x1) − ηv1].

Now, by Lemma 1.8, there exists u1 ÎAy1, such that

||u0 − u1|| ≤ (1 + ε1)H(Ay0,Ay1).

Take

x2 = (1 − t)x1 + tJϕ[g(y1) − ρu1].

Similarly, by Lemma 1.8, there exists v2 Î Bx2, such that

||v1 − v2|| ≤ (1 + ε2)H(Bx1,Bx2).

Take

y2 = Jϕ[g(x2) − ηv2].

Inductively, we have the following algorithm:

Algorithm 1. Let {εn} be a sequence of nonnegative real numbers with εn ® 0 as n ®
∞ and t Î (0, 1] be a fixed constant. For any x0, y0 Î H, compute the sequences {xn}, {yn}

⊂ H, {un} ⊂ ⋃∞
n=0 Ayn and {vn} ⊂ ⋃∞

n=1 Bxn generated by the iterative processes:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 = (1 − t)xn + tJϕ[g(yn) − ρun],
yn+1 = Jϕ[g(xn+1) − ηvn+1],
where un ∈ Ayn and vn ∈ Bxn satisfying
||un−1 − un|| ≤ (1 + εn)H(Ayn−1,Ayn),
||vn − vn+1|| ≤ (1 + εn+1)H(Bxn,Bxn+1).

(2:1)
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We now state and prove the existence theorem of a solution for the problem (1.1).

Theorem 2.2. Let H be a real Hilbert space. Let A : H ® CB(H) be νA-strongly

monotone and Lipschitz continuous mapping with a constant τA and B : H ® CB(H)

be νB-strongly monotone and Lipschitz continuous mapping with a constant τB. Let g :

H ® H be νg-strongly monotone and Lipschitz continuous mapping with a constant

τg. Put

p =
√
1 − 2νg + τ 2

g .

If the following conditions are satisfied:

(i) p Î [0, δ ), where δ = min
{

ν2A
τ2
A
, ν2B

τ2
B

}
,

(ii)
∣∣∣ρ − νA

τ2
A

∣∣∣ <

√
ν2A−pτ2

A

τ2
A

and
∣∣∣η − νB

τ2
B

∣∣∣ <

√
ν2B−pτ2

B

τ2
B

,

then SGNSM(A, B, g, �, r, h) ≠ ∅. Moreover, the sequence {xn}, {yn}, {un}, and {vn}

defined by (2.1) converge strongly to x*, y*, u*, and v*, respectively, where (x*, y*, u*, v*)

Î SGNSM(A, B, g, �, r, h).
Proof. Firstly, by (2.1), we have

||xn+1 − xn||
= ||(1 − t)xn + tJϕ[g(yn) − ρun] − (1 − t)xn−1 − tJϕ[g(yn−1) − ρun−1]||
≤ (1 − t)||xn − xn−1|| + t||g(yn) − ρun − g(yn−1) + ρun−1||
≤ (1 − t)||xn − xn−1||

+t
[||yn − yn−1 − [g(yn) − g(yn−1)]|| + ||yn − yn−1 − (ρun − ρun−1)||

]
.

(2:2)

Now, we compute

||yn − yn−1 − [g(yn) − g(yn−1)]||2
= ||yn − yn−1||2 − 2〈g(yn) − g(yn−1), yn − yn−1〉 + ||g(yn) − g(yn−1)||2
≤ ||yn − yn−1||2 − 2νg||yn − yn−1||2 + ||g(yn) − g(yn−1)||2
≤ ||yn − yn−1||2 − 2νg||yn − yn−1||2 + τ 2

g ||yn − yn−1||2
= p2||yn − yn−1||2

(2:3)

and

||yn − yn−1 − (ρun − ρun−1)||2
= ||yn − yn−1||2 − 2ρ〈un − un−1, yn − yn−1〉 + ρ2||un − un−1||2
≤ ||yn − yn−1||2 − 2ρνA||yn − yn−1||2 + ρ2||un − un−1||2
≤ (1 − 2ρνA)||yn − yn−1||2 + ρ2[(1 + εn)H(Aun,Aun−1)]2

≤ (1 − 2ρνA)||un − un−1||2 + ρ2(1 + εn)2τ 2
A ||yn − yn−1||2

= q2n||yn − yn−1||2,

(2:4)

where qn =
√
1 − 2ρνA + ρ2(1 + εn)

2
τ 2
A
. Substituting (2.3) and (2.4) into (2.2), we

have

||xn+1 − xn|| ≤ (1 − t)||xn − xn−1|| + t(p + qn)||yn − yn−1||, ∀n ≥ 1. (2:5)
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Now, since yn+1 = J�[g(xn+1) - hvn+1] and the resolvent operator J� is nonexpansive,

we have

||yn − yn−1||
≤ ||[g(xn) − ηvn] − [g(xn−1) − ηvn−1]||
≤ ||xn − xn−1 − [g(xn) − g(xn−1)]|| + ||xn − xn−1 − (ηvn − ηvn−1)||, ∀n ≥ 1.

Using the same lines as in (2.3) and (2.4), we know that

||yn − yn−1|| ≤ (p + rn)||xn − xn−1||, ∀n ≥ 1, (2:6)

where rn =
√
1 − 2ηνB + η2(1 + εn)

2τ 2
B
. Substituting (2.6) into (2.5), we have

||xn+1 − xn|| ≤ (1 − t)||xn − xn−1|| + t(p + qn)(p + rn)||xn − xn−1||
=

[
1 − t

(
1 − (p + qn)(p + rn)

)] ||xn − xn−1||, ∀n ≥ 1.
(2:7)

Observe that

lim
n→∞ qn =

√
1 − 2ρνA + ρ2τ 2

A =: q (2:8)

and

lim
n→∞ rn =

√
1 − 2ηνB + η2τ 2

B =: r. (2:9)

Consequently, by the conditions (i) and (ii), we have Δ =: (p + q)(p + r) <1.

Now, let s Î (Δ, 1) be a fixed real number. Then, by (2.8) and (2.9), there exists a

positive integer, N, such that (p + qn)(p + rn) < s for all n ≥ N. Then, by (2.7), we have

||xn+1 − xn|| ≤ κ||xn − xn−1||, ∀n ≥ N, (2:10)

where � : = 1 - t(1 - s). Then it follows from (2.10) that

||xn+1 − xn|| ≤ κn−N||xN+1 − xN||, ∀n ≥ N.

Hence it follows that

||xm − xn|| ≤
m−1∑
i=n

||xi+1 − xi|| ≤
m−1∑
i=n

κ i−N||xN+1 − xN||, ∀m ≥ n > N. (2:11)

Since � <1, it follows from (2.11) that ||xm - xn|| ® 0 as n ® ∞, which implies that

{xn} is a Cauchy sequence in H. Consequently, by (2.6), it follows that {yn} is a Cauchy

sequence in H. Moreover, since A is a τA- Lipschitz continuous mapping, and B is a

τB-Lipschitz continuous mapping, we also know that {un} and {vn} are Cauchy

sequences, respectively. Thus there exist x*, y*, u*, v* Î H, such that xn ® x*, yn ® y*,

un ® u*, and vn ® v* as n ® ∞. Moreover, by applying the continuity of the mappings

A, B, g, and J� to (2.1), we have
{
x∗ = Jϕ[g(y∗) − ρu∗],
y∗ = Jϕ[g(x∗) − ηv∗].

Hence, from Lemma 1.7, it follows that (x*, y*, u*, v*) Î SGNSM(A, B, g, �, r, h).

Agarwal et al. Fixed Point Theory and Applications 2011, 2011:31
http://www.fixedpointtheoryandapplications.com/content/2011/1/31

Page 6 of 10



Finally, we prove that u* Î Ay* and v* Î Bx*. Indeed, we have

d(u∗,Ay∗) = inf{||u∗ − z|| : z ∈ Ay∗}
≤ ||u∗ − un|| + d(un,Ay∗)
≤ ||u∗ − un|| +H(Ayn,Ay∗)
≤ ||u∗ − un|| + τA||yn − y∗|| → 0 (n → ∞).

That is, d(u*, Ay*) = 0. Hence, since Ay* Î CB(H), we must have u* Î Ay*.

Similarly, we can show that v* Î Bx*. This completes the proof.

Remark 2.3. Theorem 2.2 not only gives the conditions for the existence of a solu-

tion for the problem (1.1) but also provides an iterative algorithm to find such a solu-

tion for any initial points x0, y0 Î H.

Using Theorem 2.2, we can obtain the following results:

(I) If g = I (: the identity mapping), then from Algorithm 1, we have the following:

Algorithm 2. Let {εn} be a sequence of nonnegative real numbers with εn ® 0. Let t

Î (0, 1] be a fixed constant. For any x0, y0 Î H, compute the sequences {xn}, {yn} ⊂ H,

{un} ⊂ ⋃∞
n=0 Ayn and {vn} ⊂ ⋃∞

n=1 Bxn generated by the iterative processes:
{
xn+1 = (1 − t)xn + tJϕ[yn − ρun],
yn+1 = Jϕ[xn+1 − ηvn+1],

(2:12)

where un Î Ayn and vn Î Bxn satisfy the following:

||un−1 − un|| ≤ (1 + εn)H(Ayn−1,Ayn),

||vn − vn+1|| ≤ (1 + εn+1)H(Bxn,Bxn+1).

Corollary 2.4. Let H be a real Hilbert space. Let A : H ® CB(H) be νA
-strongly

monotone and Lipschitz continuous mapping with a constant τA, and B : H ® CB(H)

be νB-strongly monotone and Lipschitz continuous mapping with a constant τB. If

ρ ∈
(
0,

2νA

τ 2
A

)
, η ∈

(
0,

2νB

τ 2
B

)
,

then SNSM(A, B, �, r, h) ≠ ∅. Moreover, the sequences {xn}, {yn}, {un}, and {vn}

defined by (2.12) converge strongly to x*, y*, u* and v*, respectively, where (x*, y*, u*, v*)

Î SNSM(A, B, �, r, h).
Proof. If g = I (: the identity operator), we know that the constant p defined in Theo-

rem 2.2 is vanished. Thus the result follows immediately.

(II) If the function �(·) is the indicator function of a closed convex set K in H, then it

is well-known that J� = PK, the projection operator of H onto the closed convex set K

(see [2]). Then, from Algorithm 1, we have the following:

Algorithm 3. Let {εn} be a sequence of nonnegative real numbers with εn ® 0 as n

® ∞. Let t Î (0, 1] be a fixed constant. For any x0, y0 Î K, compute the sequences

{xn}, {yn} ⊂ K, {un} ⊂ ⋃∞
n=0 Ayn, and {vn} ⊂ ⋃∞

n=1 Bxn generated by the iterative pro-

cesses:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xn+1 = (1 − t)xn + tPK[g(yn) − ρun],
yn+1 = PK[g(xn+1) − ηvn+1],
where un ∈ Ayn and vn ∈ Bxn satisfying
||un−1 − un|| ≤ (1 + εn)H(Ayn−1,Ayn),
||vn − vn+1|| ≤ (1 + εn+1)H(Bxn,Bxn+1).

(2:13)
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Corollary 2.5. Let K be a closed convex subset of a real Hilbert space H. Let A : K ®
CB(H) be νA-strongly monotone and Lipschitz continuous mapping with a constant τA ,

and B : K ® CB(H) be νB-strongly monotone and Lipschitz continuous mapping with a

constant τB. Let g : K ® K be a νg-strongly monotone and Lipschitz continuous mapping

with a constant τg and satisfying K ⊂ g(H).

Put

p =
√
1 − 2νg + τ 2

g .

If the following conditions are satisfied:

(i) p Î [0, δ), where δ = min
{

ν2A
τ2
A
, ν2B

τ2
B

}
,

(ii)
∣∣∣ρ − νA

τ2
A

∣∣∣ <

√
ν2A−pτ2

A

τ2
A

, and
∣∣∣η − νB

τ2
B

∣∣∣ <

√
ν2B−pτ2

B

τ2
B

,

then SGNS(A, B, g, K, r, h) ≠ ∅. Moreover, the sequence {xn}, {yn}, {un}, and {vn}

defined by (2.13) converge strongly to x*, y*, u* and v*, respectively, where (x*, y*, u*, v*)

Î SGNS(A, B, g, K, r, h).
Remark 2.6. Corollary 2.5 is an extension of the results announced by Noor [1] from

single-valued mappings to set-valued mappings.

(III) If A, B : H ® H are single-valued mappings, then, from Algorithm 1, we have

the following:

Algorithm 4. Let t Î (0, 1] be a fixed constant. For any x0, y0 Î H, compute the

sequences {xn}, {yn} ⊂ H by the iterative processes:
{
xn+1 = (1 − t)xn + tJϕ[g(yn) − ρAyn],
yn+1 = Jϕ[g(xn+1) − ηBxn+1].

(2:14)

Corollary 2.7. Let H be a real Hilbert space. Let A : H ® H be νA-strongly monotone

and Lipschitz continuous mapping with a constant τA, and B : H ® H be νB-strongly

monotone and Lipschitz continuous mapping with a constant τB. Let g : H ® H be νg-

strongly monotone and Lipschitz continuous mapping with a constant τg. Put

p =
√
1 − 2νg + τ 2

g .

If the following conditions are satisfied:

(i) p Î [0, δ), where δ = min
{

ν2A
τ2
A
, ν2B

τ2
B

}
,

(ii)
∣∣∣ρ − νA

τ2
A

∣∣∣ <

√
ν2A−pτ2

A

τ2
A

, and
∣∣∣η − νB

τ2
B

∣∣∣ <

√
ν2B−pτ2

B

τ2
B

,

then SGNM(A, B, g, �, r, h) ≠ ∅. Moreover, the sequences {xn} and {yn} defined by

(2.14) converge strongly to x* and y*, respectively, where (x*, y*) Î SGNM(A, B, g, �,

r, h).
Remark 2.8. Under the assumption of Corollary 2.7, the solution of SGNM(A, B, g,

�, r, h) is unique, that is, there is a unique (x*, y*) Î H×H such that (x*, y*) Î SGNM

(A, B, g, �, r, h). Indeed, if (x*, y*) and (x’, y’) are elements of SGNM(A, B, g, �, r, h).
Put
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q =
√
1 − 2ρνA + ρ2τ 2

A , r =
√
1 − 2ηνB + η2τ 2

B .

Replacing xn+1 by x*, xn by x’, yn by y*, and yn-1 by y’, then, following the lines proof

given in Theorem 2.2, we know that

||y∗ − y′|| ≤ (p + r)||x∗ − x′|| (2:15)

and

||x∗ − x′|| ≤ [
1 − t

(
1 − (p + q)(p + r)

)] ||x∗ − x′||. (2:16)

By the conditions (i), (ii), and (2.16), we must have x* = x’. Consequently, by (2.15),

we also have y* = y’.

Remark 2.9. Recall that a mapping A : H ® H is said to be:

(1) μ-cocoercive if there exists a constant μ >0 such that

〈Ax − Ay, x − y〉 ≥ μ||Ax − Ay||2, ∀x, y ∈ H,

(2) relaxed μ-cocoercive if there exists a constant μ >0 such that

〈Ax − Ay, x − y〉 ≥ (−μ)||Ax − Ay||2, ∀x, y ∈ H,

(3) relaxed (μ, ν)-cocoercive if there exist constants μ, ν >0 such that

〈Ax − Ay, x − y〉 ≥ (−μ)||Ax − Ay||2 + ν||x − y||2, ∀x, y ∈ H.

It is easy to see that the class of the relaxed (μ, ν)- cocoercive mappings is the most

general one. However, it is worth noting that if the mapping A is relaxed (μ, ν)-cocoer-

cive, and τ-Lipschitz continuous mapping satisfying ν - μτ2 >0, then A is a (ν - μτ2)-

strongly monotone. Hence, the result appeared in Corollary 2.7 can be also applied to

the class of the relaxed cocoercive mappings. In the conclusion, for a suitable and

appropriate choice of the mappings A, B, g, and �, Theorem 2.2 includes many impor-

tant known results given by some authors as special cases.
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