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1. Introduction
Let E be a real Banach space with the dual space E*. We write 〈x, x* 〉 for the value of a

functional x*Î E* at x Î E. The normalized duality mapping is the mapping J : E ® 2E*

given by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2} (x ∈ E).

In this paper, we assume that E is smooth, that is, limt→0
||x+tx||−||x||

t exists for all x, y

Î E with ||x|| = ||y|| = 1. This implies that J is single-valued and we do consider the

singleton Jx as an element in E*. For a closed convex subset C of a (smooth) Banach

space E, the variational inequality problem for a mapping A : C ® E is the problem of

finding an element u Î C such that

〈Au, J(v − u)〉 ≥ 0 for all v ∈ C.

The set of solutions of the problem above is denoted by S(C, A). It is noted that if

C = E, then S(C, A) = A-10 := {x Î E : Ax = 0}. This problem was studied by Stampac-

chia (see, for example, [1,2]). The applicability of the theory has been expanded to var-

ious problems from economics, finance, optimization and game theory.

Gol’shteĭn and Tret’yakov [3] proved the following result in the finite dimensional

space ℝN.

Theorem 1.1. Let a > 0, and let A : ℝN ® ℝN be an a-inverse strongly monotone

mapping, that is, 〈Ax - Ay, × - y〉 ≥ a||Ax - Ay||2 for all x, y Î ℝN. Suppose that {xn} is

a sequence in ℝN defined iteratively by x1 Î ℝN and

xn+1 = xn − λnAxn,

where {ln}⊂ [a, b] ⊂ (0, 2a). If A-1 0 ≠ ∅, then {xn} converges to some element of A-10.

The result above was generalized to the framework of Hilbert spaces by Iiduka et al. [4].

Note that every Hilbert space is uniformly convex and 2-uniformly smooth (the related
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definitions will be given in the next section). Aoyama et al. [[5], Theorem 3.1] proved the

following result.

Theorem 1.2. Let E be a uniformly convex and 2-uniformly smooth Banach space

with the uniform smoothness constant K, and let C be a nonempty closed convex subset

of E. Let QC be a sunny nonexpansive retraction from E onto C, let a > 0 and let A :

C ® E be an a-inverse strongly accretive mapping with S(C, A) ≠ ∅. Suppose that {xn}

is iteratively defined by{
x1 ∈ C arbitrarily chosen,
xn+1 = αnxn + (1 − αn)QC(xn − λnAxn) (n ≥ 1),

where {an} ⊂ [b, c] ⊂ (0, 1) and {ln} ⊂ [a, a/K2] ⊂ (0, a/K2]. Then, {xn} converges

weakly to some element of S(C, A).

Motivated by the result of Aoyama et al., we prove two more convergence theorems

for a-inverse strongly accretive mappings in a Banach space, which are supplements to

Theorem 1.2 above. The first one is proved without the presence of the uniform con-

vexity, while the last one is proved in uniformly convex space with some different con-

trol conditions on the parameters.

The paper is organized as follows: In Section 2, we collect some related definitions

and known fact, which are referred in this paper. The main results are presented in

Section 3. We start with some common tools in proving the main results in Section

3.1. In Section 3.2, we prove the first weak convergence theorem without the presence

of uniform convexity. The second theorem is proved in uniformly convex Banach

spaces in Section 3.3.

2. Definitions and related known fact
Let E be a real Banach space. If {xn} is a sequence in E, we denote strong convergence

of {xn} to x Î E by xn ® x and weak convergence by xn ⇀ x. Denote by ωw ({xn}) the

set of weakly sequential limits of the sequence {xn}, that is, ωw ({xn}) = {p : there exists

a subsequence {xnk} of {xn} such that xnk ⇀ p}. It is known that if {xn} is a bounded

sequence in a reflexive space, then ωw ({xn}) = ∅.

The space E is said to be uniformly convex if for each ε Î (0, 2) there exists δ > 0

such that for any x, y Î U := {z Î E : ||z|| = 1}

||x − y|| ≥ ε implies ||x + y||/2 ≤ 1 − δ.

The following result was proved by Xu.

Lemma 2.1 ([6]). Let E be a uniformly convex Banach space, and let r >0. Then,

there exists a strictly increasing, continuous and convex function g : [0, 2r] ® [0, ∞)

such that g(0) = 0 and

||αx + (1 − α)y||2 ≤ α||x||2 + (1 − α)||y||2 − α(1 − α)g(||x − y||)

for all a Î [0, 1] and x, y Î Br := {z Î E : ||z|| ≤ r}.

The space E is said to be smooth if the limit

lim
t→0

||x + ty|| − ||x||
t

(2:1)

exists for all x, y Î U. The norm of E is said to be Fréchet differentiable if for each x

Î U, the limit (2.1) is attained uniformly for y Î U.
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Let C be a nonempty subset of a smooth Banach space E and a > 0. A mapping A :

C ® E is said to be a-inverse strongly accretive if

〈Ax − Ay, J(x − y)〉 ≥ α||Ax − Ay||2 (2:2)

for all x, y Î C. It follows from (2.2) that A is 1
α
-Lipschitzian, that is,

||Ax − Ay|| ≤ 1
α

||x − y|| for all x, y ∈ C.

A Banach space E is 2-uniformly smooth if there is a constant c > 0 such that 〉E (τ) ≤

cτ2 for all τ > 0 where

�E(τ ) = sup
{
1
2
(||x + τ y|| + ||x − τ y||) − 1 : x, y ∈ U

}
.

In this case, we say that a real number K > 0 is a 2-uniform smoothness constant of E

if the following inequality holds for all x, y Î E:

||x + y||2 ≤ ||x||2 + 2〈y, Jx〉 + 2||Ky||2.

Note that every 2-uniformly smooth Banach space has the Fréchet differentiable

norm and hence it is reflexive.

The following observation extracted from Lemma 2.8 of [5] plays an important role

in this paper.

Lemma 2.2. Let C be a nonempty closed convex subset of a 2-uniformly smooth

Banach space E with a 2-uniform smoothness constant K. Suppose that A : C ® E is

an a-inverse strongly accretive mapping. Then, the following inequality holds for all x, y

Î C and l Î ℝ:

||(I − λA)x − (I − λA)y||2 ≤ ||x − y||2 + 2λ(K2λ − α)||Ax − Ay||2,

where I is the identity mapping. In particular, if λ ∈ [0, α
K2 ], then I - lA is nonex pan-

sive, that is, ||(I - lA)x - (I - lA)y|| ≤ ||x - y|| for all x, y Î C.

Let C be a subset of a Banach space E. A mapping Q : E ® C is said to be:

(i) sunny if Q(Qx + t(x - Qx)) = Qx for all t ≥ 0;

(ii) a retraction if Q2 = Q.

It is known that a retraction Q from a smooth Banach space E onto a nonempty

closed convex subset C of E is sunny and nonexpansive if and only if 〈x-Qx, J(Qx-y)〉 ≥

0 for all x Î E and y Î C. In this case, Q is uniquely determined. Using this result,

Aoyama et al. obtained the following result. Recall that, for a mapping T : C ® E, the

set of fixed points of T is denoted by F (T), that is, F (T) = {x Î C : x = Tx}.

Lemma 2.3 ([5]). Let C be a nonempty closed convex subset of a smooth Banach

space

E. Let QC be a sunny nonexpansive retraction from E onto C, and let A : C ® E be a

mapping. Then, for each l > 0,

S(C,A) = F(QC(I − λA)).
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The space E is said to satisfy Opial’s condition if

lim sup
n→∞

||xn − x|| < lim sup
n→∞

||xn − y||

whenever xn ⇀ x Î E and y Î E satisfy x ≠ y. The following results are known from

theory of nonexpansive mappings. It should be noted that Oplial’s condition and the

Fréchet differentiability of the norm are independent in uniformly convex space

setting.

Lemma 2.4 ([7], [8]). Let C be a nonempty closed convex subset of a Banach space. E.

Suppose that E is uniformly convex or satisfies Opial’s condition. Suppose that T is a

nonexpansive mapping of C into itself. Then, I - T is demiclosed at zero, that is, if {xn}

is a sequence in C such that xn ⇀ p and xn - Txn ® 0, then p = Tp.

Lemma 2.5 ([9]). Let C be a nonempty closed convex subset of a uniformly convex

Banach space with a Fréchet differentiable norm. Suppose that {Tn}∞n=1is a sequence of

nonexpansive mappings of C into itself with ∩∞
n=1F(Tn) �= ∅. Let x Î C and Sn = TnTn-1 ·

· · T1 for all n ≥ 1. Then, the set

∞⋂
n=1

co{Smx : m ≥ n} ∩
∞⋂
n=1

F(Tn)

consists of at most one element, where coD is the closed convex hull of D.

The following two lemmas are proved in the absence of uniform convexity, and they

are needed in Section 3.2.

Lemma 2.6 ([10]). Let {xn} and {yn} be bounded sequences in a Banach space and

{an} be a real sequence in [0, 1] such that 0 < lim infn®∞ an ≤ lim sup n®∞ an < 1.

Suppose that xn+1 = anxn + (1 - an)yn for all n ≥ 1. If lim supn®∞(||yn+1 - yn|| - ||xn+1
- xn||) ≤ 0, then xn - yn ® 0.

Lemma 2.7 ([11]). Let {zn} and {wn} be sequences in a Banach space and {an} be a

real sequence in [0, 1]. Suppose that zn+1 = anzn + (1 - an)wn for all n ≥ 1. If the follow-

ing properties are satisfied:

(i)
∑∞

n=1
(1 − αn) = ∞and lim infn®∞ an > 0;

(ii) limn®∞ ||zn|| = d and lim supn®∞||wn|| ≤ d;

(iii) the sequence
{∑n

i=1 (1 − αi)wi
}
is bounded;

then d = 0.

We also need the following simple but interesting results.

Lemma 2.8 ([12]). Let {an} and {bn} be two sequences of nonnegative real numbers.

If
∑∞

n=1
bn < ∞and an+1 ≤ an + bn for all n ≥ 1, then limn®∞ an exists.

Lemma 2.9 ([13]). Let {an} and {bn} be two sequences of nonnegative real numbers. If∑∞
n=1

anbn < ∞and
∑∞

n=1
anbn < ∞, then lim infn®∞ bn = 0.

3. Main results
From now on, we assume that

• E is 2-uniformly smooth Banach space with a 2-uniform smoothness constant K;
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• C is a nonempty closed convex subset of E;

• QC is a sunny nonexpansive retraction from E onto C;

• A : C ® E is an a-inverse strongly accretive mapping with S(C, A) ≠ ∅ and a >

0.

Suppose that {xn} is iteratively defined by{
x1 ∈ C arbitrarily chosen,

xn+1 = αnxn + (1 − αn)QC(xn − λnAxn) (n ≥ 1),

where {an}⊂ [0, 1] and {λn} ⊂ (0, α
K2 ]. For convenience, we write yn ≡ QC (xn - ln

Axn).

3.1. Some properties of the sequence {xn} for weak convergence theorems

We start with some propositions, which are the common tools for proving the main

results in the next two subsections.

Proposition 3.1. If p Î S(C, A), then limn®∞ ||xn - p|| exists, and hence, the

sequences {xn} and {Axn} are both bounded.

Proof. Let p Î S(C, A). By the nonexpansiveness of QC (I - ln A) for all n ≥ 1 and

Lemma 2.3, we have

||yn − p|| = ||QC(I − λnA)xn − (QC(I − λnA)p|| ≤ ||xn − p||

for all n ≥ 1. This implies that

||xn+1 − p|| = ||αn(xn − p) + (1 − αn)(yn − p)||
≤ αn||xn − p|| + (1 − αn)||yn − p||
≤ αn||xn − p|| + (1 − αn)||xn − p|| = ||xn − p||

for all n ≥ 1. Therefore, limn®∞ ||xn - p|| exists, and hence, the sequence {xn} is

bounded. Since A is 1
α
-Lipschitzian, we have {Axn} is bounded. The proof is finished.

Proposition 3.2. The following inequality holds:

||yn+1 − yn|| ≤ ||xn+1 − xn|| + |λn+1 − λn| ||Axn||

for all n ≥ 1.

Proof. Since QC (I - ln+1A) and QC are nonexpansive, we have

||yn+1 − yn|| = ||QC(I − λn+1A)xn+1 − QC(I − λnA)xn||
≤ ||QC(I − λn+1A)xn+1 − QC(I − λn+1A)xn||
+ ||QC(I − λn+1A)xn − QC(I − λnA)xn||

≤ ||xn+1 − xn|| + ||(I − λn+1A)xn − (I − λnA)xn||
= ||xn+1 − xn|| + |λn+1 − λn| ||Axn||.

□
Proposition 3.3. Suppose that E is a reflexive Banach space such that either it is uni-

formly convex or it satisfies Opial’s condition. Suppose that {xn} is a bounded sequence

of C satisfying xn - QC (I - lnA)xn ® 0 and {λn} ⊂ [a,
α

K2
] ⊂ (0,

α

K2
].

Then, {xn} converges weakly to some element of S(C, A).
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Proof. Suppose that E is a uniformly convex Banach space or a reflexive Banach space

satisfying Opial’s condition. Then, ωw ({xn}) ≠ ∅. We first prove that ωw({xn}) ⊂ S(C,

A). To see this, let z Î ωw({xn}). Passing to a subsequence, if necessary, we assume that

there exists a subsequence {nk} of {n} such that xnk ⇀ z and λnk → λ ∈ [a, α
K2 ]. We

observe that

||xnk − QC(I − λA)xnk || ≤ ||xnk − ynk || + ||ynk − QC(I − λA)xnk ||
≤ ||xnk − ynk || + ||(I − λnkA)xnk − (I − λA)xnk ||
= ||xnk − ynk || + |λnk − λ| ||Axnk ||.

This implies that xnk − QC (I − λA) xnk → 0. By the nonexpansiveness of QC (I - lA),
Lemmas 2.3 and 2.4, we obtain that z Î F (QC (I - lA)) = S(C, A). Hence ωw({xn}) ⊂ S

(C, A).

We next prove that ωw({xn}) is exactly a singleton in the following cases.

Case 1: E is uniformly convex. We follow the idea of Aoyama et al. [5] in this case.

For any n ≥ 1, we define a nonexpansive mapping Tn : C ® C by

Tn = αnI + (1 − αn)QC(I − λnA).

We get that xn+1 = TnTn-1 · · · T1x1 for all n ≥ 1. It follows from Lemma 2.3 that

S(C,A) =
⋂∞

n=1 F(QC(I − λnA)) ⊂ ⋂∞
n=1 F(Tn). Applying Lemma 2.5, since every 2-uni-

formly smooth Banach space has Fréchet differentiable norm, gives

∞⋂
n=1

co{xm : m ≥ n} ∩
∞⋂
n=1

F(Tn)

consists of at most one element. But we know that

∅ �= ωw({xn}) ⊂
∞⋂
n=1

co {xm : m ≥ n} ∩ S(C,A) ⊂
∞⋂
n=1

co {xm : m ≥ n} ∩
∞⋂
n=1

F(Tn).

Therefore, ωw({xn}) is a singleton.

Case 2: E satisfies Opial’s condition. Suppose that p and q are two different elements

of ωw({xn}). There are subsequences {xnk} and {xmj} of {xn} such that

xnk ⇀ p and xmj ⇀ q.

Since p and q also belong to S(C, A), both limits limn®∞ ||xn -p|| and limn®∞ ||xn
-q|| exist. Consequently, by Opial’s condition,

lim
k→∞

||xnk − p|| < lim
k→∞

||xnk − q|| = lim
j→∞

||xmj − q||

< lim
j→∞

||xmj − p|| = lim
k→∞

||xnk − p||.

This is a contradiction. Hence, ωw({xn}) is a singleton, and the proof is finished. □
Remark 3.4. There exists a reflexive Banach space such that it satisfies Opial’s condi-

tion but it is not uniformly convex. In fact, we consider E = ℝ2 with the norm ||(x, y)||

= |x| + |y| for all (x, y) Î ℝ2 . Note that E is finite dimensional, and hence it is reflex-

ive and satisfies Opial’s condition. To see that E is not uniformly convex, let x = (1, 0)

and y = (0, 1), it follows that ||x - y|| = ||(1, -1)|| = 2 and ||x + y||/2 = ||(1/2, 1/2)|| =

1 ≰ 1 - δ for all δ > 0.
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3.2. Convergence results without uniform convexity

In this subsection, we make use of Lemmas 2.6 and 2.7 to show that xn - yn ® 0 under

the additional restrictions on the sequences {an} and {ln}.
Proposition 3.5. Suppose that {an}⊂ [c, d] ⊂ (0, 1) and ln+1 - ln ® 0. Then, xn - yn

® 0.

Proof. We will apply Lemma 2.6. Let us rewritten the iteration as

xn+1 = αnxn + (1 − αn)yn.

It follows from Proposition 3.1 that {xn} and {Axn} are bounded. Then, {yn} = {(I -

lnA) xn} is bounded. Since ln+1 - ln ® 0, it is a consequence of Proposition 3.2 that

lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ lim sup
n→∞

|λn+1 − λn| ||Axn|| = 0.

Since all the requirements of Lemma 2.6 are satisfied, xn - yn ® 0. □
Proposition 3.6. Suppose that {an} and {ln} satisfy the following properties:

(i) {an} ⊂ [c, 1) ⊂ (0, 1) and
∑∞

n=1
(1 − αn) = ∞;

(ii)
λn+1 − λn

1 − αn
→ 0and

∑∞
n=1

|λn+1 − λn| < ∞.

Then, xn - yn ® 0.

Proof. We will apply Lemma 2.7. From the iteration, we have

zn+1 = αnzn + (1 − αn)wn,

where zn ≡ xn - yn and wn ≡ yn − yn+1
1 − αn

. Using Proposition 3.2, we obtain

||zn+1|| ≤ αn||zn|| + ||yn − yn+1||
≤ αn||zn|| + ||xn+1 − xn|| + |λn+1 − λn| ||Axn||
= αn||zn|| + (1 − αn)||zn|| + |λn+1 − λn| ||Axn||
= ||zn|| + |λn+1 − λn| ||Axn||.

It follows from
∑∞

n=1
|λn+1 − λn| ||Axn|| < ∞ and Lemma 2.8 that d := limn®∞ ||zn||

exists. We next prove that lim supn®∞ ||wn|| ≤ d. Again, by Proposition 3.2, we get

lim sup
n→∞

||wn|| = lim sup
n→∞

||yn − yn+1||
1 − αn

≤ lim
n→∞ ||zn|| + lim sup

n→∞
|λn+1 − λn|
1 − αn

||Axn|| = d.

Finally, for all n ≥ 1, we have

n∑
i=1

(1 − αi)wi =
n∑
i=1

(yi − yi+1) = y1 − yn+1.

Hence, the sequence
{∑n

i=1(1 − αi)wi
}
is bounded. It follows then that d = 0. □

We now have the following weak convergence theorems without uniform convexity.

Theorem 3.7. Let E be a 2-uniformly smooth Banach space satisfying Opial’s condi-

tion. Let C be a nonempty closed convex subset of E. Let QC be a sunny nonexpansive

retraction from E onto C and A : C ® E be an a-inverse strongly accretive mapping

with S(C, A) ≠ ∅ and a > 0. Suppose that {xn} is iteratively defined by
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{
x1 ∈ Carbitrarily chosen,

xn+1 = αnxn + (1 − αn)QC(xn − λnAxn) (n ≥ 1),

where {an} ⊂ [0, 1] and {λn} ⊂ [a,
α

K2
] ⊂ (0,

α

K2
]satisfy one of the following condi-

tions:

(i) {an} ⊂ [c, d] ⊂ (0, 1) and ln+1 - ln ® 0;

(ii) {an} ⊂ [c, 1) ⊂ (0, 1),
∑∞

n=1
(1 − αn) = ∞,

∑∞
n=1

|λn+1 − λn| < ∞, and

λn+1 − λn

1 − αn
→ 0.

Then, {xn} converges weakly to an element in S(C, A).

Proof. Note that every 2-uniformly smooth Banach space is reflexive. The result fol-

lows from Propositions 3.3, 3.5 and 3.6. □
Remark 3.8. Conditions (i) and (ii) in Theorem 3.7 are not comparable.

(1) If αn ≡ 1
2 and {ln} is a sequence in (0, α

K2 ] such that ln - ln+1 ® 0 and 0 < lim

infn®∞ ln < lim supn®∞ ln < 1, then {an} and {ln} satisfy condition (i) but fail con-

dition (ii).

(2) If αn ≡ n
n+1 and λn ≡ λ ∈ (0, α

K2 ], then {an} and {ln} satisfy condition (ii) but fail

condition (i).

Remark 3.9. Note that the Opial property and uniform convexity are independent.

Theorem 3.7 is a supplementary to Theorem 3.1 of Aoyama et al. [5].

3.3. Convergence results in uniformly convex spaces

In this subsection, we prove two more convergence theorems in uniformly convex

spaces, which are also a supplementary to Theorem 3.1 of Aoyama et al. [5]. Let us

start with some propositions.

Proposition 3.10. Assume that E is a uniformly convex Banach space. Suppose that

{an} and {ln} satisfy the following properties:

(i) {ln} ⊂ [a, a/K2] ⊂ (0, a/K2];

(ii)
∑∞

n=1
αn(1 − αn) = ∞and

∑∞
n=1 |λn+1 − λn| < ∞.

Then, xn - yn ® 0.

Proof. Let p Î S(C, A). Note that limn®∞ ||xn - p|| exists and hence both {xn} and

{yn} are bounded. By the uniform convexity of E and Lemma 2.1, there exists a contin-

uous and strictly increasing function g such that

||xn+1 − p||2 = ||αn(xn − p) + (1 − αn)(yn − p)||2
≤ αn||xn − p||2 + (1 − αn)||yn − p||2 − αn(1 − αn)g(||xn − yn||)
≤ αn||xn − p||2 + (1 − αn)||xn − p||2 − αn(1 − αn)g(||xn − yn||)
= ||xn − p||2 − αn(1 − αn)g(||xn − yn||)
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for all n ≥ 1. Hence, for each m ≥ 1, we have

m∑
n=1

αn(1 − αn)g(||xn − yn||) ≤ ||x1 − p||2 − ||xm+1 − p||2.

In particular,
∑∞

n=1
αn(1 − αn)g(||xn − yn||) < ∞. It follows from∑∞

n=1
αn(1 − αn) = ∞ and Lemma 2.9 that lim infn®∞ g(||xn - yn||) = 0. By the prop-

erties of the function g, we get that lim infn®∞ ||xn - yn|| = 0. Finally, we show that

limn®∞ ||xn - yn|| actually exists. To see this, we consider the following estimate

obtained directly from Proposition 3.2:

||xn+1 − yn+1|| ≤ ||xn+1 − yn|| + ||yn − yn+1||
≤ αn||xn − yn|| + ||xn+1 − xn|| + |λn+1 − λn| ||Axn||
= αn||xn − yn|| + (1 − αn)||xn − yn|| + |λn+1 − λn| ||Axn||
= ||xn − yn|| + |λn+1 − λn| ||Axn||.

The assertion follows since
∑∞

n=1
|λn − λn+1| ||Axn|| < ∞ and Lemma 2.8. □

Let us recall the concept of strongly nonexpansive sequences introduced by Aoyama

et al. (see [14]). A sequence of nonexpansive mappings {Tn} of C is called a strongly

nonexpansive sequence if xn - yn - (Tnxn - Tnyn) ® 0 whenever {xn} and {yn} are

sequences in C such that {xn -yn} is bounded and ||xn -yn||-||Tnxn -Tnyn|| ® 0. It is

noted that if {Tn} is a constant sequence, then this property reduces to the concept of

strongly nonexpansive mappings studied by Bruck and Reich [15].

Proposition 3.11. Assume that E is a uniformly convex Banach space and {ln}⊂ (0,

b] ⊂ (0, a/K2). Then, {QC (I - lnA)} is a strongly nonexpansive sequence.

Proof. Notice first that QC is a strongly nonexpansive mapping (see [16,17]). Next, we

prove that {I - lnA} is a strongly nonexpansive sequence and then the assertion fol-

lows. Let {xn} and {yn} be sequences in C such that {xn - yn} is bounded and ||xn - yn||-

||(I - lnA)xn - (I - lnA)yn|| ® 0. It follows from Lemma 2.2 that

2(α − K2b)
b

||λnAxn − λnAyn||2

≤ 2(α − K2λn)
λn

||λnAxn − λnAyn||2

= 2λn(α − K2λn)||Axn − Ayn||2
≤ ||xn − yn||2 − ||(I − λnA)xn − (I − λnA)yn||2 → 0.

In particular, lnAxn - lnAyn ® 0 and hence

xn − yn − ((I − λnA)xn − (I − λnA)yn) = λnAxn − λnAyn → 0.

Proposition 3.12. Assume that E is a uniformly convex Banach space. Suppose that

an ≡ 0 and {ln} ⊂ (0, b] ⊂ (0, a/K2). Then, xn - yn ® 0.

Proof. Let us rewritten the iteration as follows:

xn+1 = QC(I − λnA)xn (n ≥ 1).

Let p Î S(C, A). Notice that p = QC (I -lnA)p for all n ≥ 1. Then, limn®∞ ||xn -p||

exists, and hence,
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||xn − p|| − ||QC(I − λnA)xn − p|| = ||xn − p|| − ||xn+1 − p|| → 0.

It follows from the preceding proposition that

xn − QC(I − λnA)xn = (xn − p) − (QC(I − λnA)xn − p) → 0.

□
We now obtain the following weak convergence theorems in uniformly convex

spaces.

Theorem 3.13. Let E be a uniformly convex and 2-uniformly smooth Banach space.

Let C be a nonempty closed convex subset of E. Let QC be a sunny nonexpansive retrac-

tion from E onto C and A : C ® E be an a-inverse strongly accretive mapping with S

(C, A) ≠ ∅ and a > 0. Suppose that {xn} is iteratively defined by{
x1 ∈ Carbitrarily chosen,

xn+1 = αnxn + (1 − αn)QC(xn − λnAxn) (n ≥ 1),

where {an} ⊂ [0, 1] and {λn} ⊂ [a,
α

K2
] ⊂ (0,

α

K2
]satisfy one of the following condi-

tions:

(i)
∑∞

n=1
αn(1 − αn) = ∞and

∑∞
n=1 |λn+1 − λn| < ∞;

(ii) an ≡ 0 and {ln}⊂ [a, b] ⊂ (0, a/K2).

Then, {xn} converges weakly to an element in S (C, A).

Proof. The result follows from Propositions 3.3, 3.10 and 3.12. □
Remark 3.14. It is easy to see that conditions (i) and (ii) in Theorem 3.13 are not

comparable.

Remark 3.15. Compare Theorem 3.13 to Theorem 1.2 of Aoyama et al., our result is

a supplementary to their result. It is noted that, for example, our iteration scheme with

an ≡ 0 and ln ≡ a/(a/K2) is simpler than the one in Theorem 1.2.
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