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Abstract

Let H be a Hilbert space, C be a closed convex subset of H such that C ± C ⊂ C, and
T : C ® H be a k-strictly pseudo-contractive mapping with F(T) ≠ ∅ for some 0 ≤ k
<1. Let F : C ® C be a �-Lipschitzian and h-strongly monotone operator with � >0
and h >0 and f : C ® C be a contraction with the contractive constant a Î (0, 1).

Let 0 < μ <
2η

κ2 , 0 < γ <
μ(η−μκ2

2 )

α
= τ

α
and τ <1. Let {an} and {bn} be sequences in

(0, 1). It is proved that under appropriate control conditions on {an} and {bn}, the
sequence {xn} generated by the iterative scheme xn+1 = angf(xn) + bnxn + ((1 - bn)I -
anμF)PCSxn, where S : C ® H is a mapping defined by Sx = kx + (1 - k)Tx and PC is
the metric projection of H onto C, converges strongly to q Î F(T), which solves the
variational inequality 〈μFq - gf(q), q - p〉 ≤ 0 for p Î F(T).
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1 Introduction
Let H be a real Hilbert space and C be a nonempty closed convex subset of H. Recall

that a mapping f : C ® C is a contraction on C if there exists a constant a Î (0, 1)

such that ||f(x) - f(y)|| ≤ a||x - y||, x, y Î C. A mapping T : C ® H is said to be

k-strictly pseudo-contractive if there exists a constant k Î [0, 1) such that

||Tx − Ty||2 ≤ ||x − y||2 + k||(I − T)x − (I − T)y||2, x, y ∈ C,

and F(T) denote the set of fixed points of the mapping T; that is, F(T) = {x Î C :

Tx = x}.

Note that the class of k-strictly pseudo-contractions includes the class of non-expan-

sive mappings T on C (that is, ||Tx - Ty|| ≤ ||x - y||, x, y Î C) as a subclass. That is, T

is nonexpansive if and only if T is 0-strictly pseudo-contractive. The mapping T is also

said to be pseudo-contractive if k = 1 and T is said to be strongly pseudo-contractive if

there exists a constant l Î (0, 1) such that T - lI is pseudo-contractive. Clearly, the
class of k-strictly pseudo-contractive mappings falls into the one between classes of

nonexpansive mappings and pseudo-contractive mappings. Also we remark that the

class of strongly pseudo-contractive mappings is independent of the class of k-strictly

pseudo-contractive mappings (see [1-3]). The class of pseudo-contraction is one of the
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most important classes of mappings among nonlinear mappings. Recently, many

authors have been devoting the studies on the problems of finding fixed points for

pseudo-contractions, see, for example, [4-7] and references therein.

For nonexpansive mappings, one recent way to study them is to construct the iterative

scheme, the so-called viscosity iteration method: more precisely, for a nonexpansive

mapping T, a contraction f with the contractive constant a Î (0, 1), and an Î (0, 1),

xn+1 = αnf (xn) + (1 − αn)Txn, n ≥ 0. (1:1)

This iterative scheme was first introduced by Moudafi [8].

In particular, under the control conditions on {an}

(C1) limn®∞ an = 0;

(C2) �∞
n=0αn = ∞;

(C3) �∞
n=0|αn+1 − αn| < ∞; or,

(C4) limn→∞ αn+1
αn

= 1,

Xu [9] proved that the sequence {xn} generated by (1.1) converges strongly to a fixed

point q of T, which is the unique solution of the following variational inequality:

〈q − f (q), q − p〉 ≤ 0, p ∈ F(T).

Recall that an operator A is strongly positive on H if there exists a constant γ̄ > 0

with the property:

〈Ax, x〉 ≥ γ̄ ||x||2, x ∈ H.

In 2006, as the viscosity approximation method, Marino and Xu [10] considered the

following iterative method: for a strongly positive bounded linear operator A on H

with constant γ̄ > 0, a nonexpansive mapping T on H, a contraction f : H ® H with

the contractive constant a Î (0, 1), {an} ⊂ (0, 1) and g >0,

xn+1 = (I − αnA)Txn + αnγ f (xn), n ≥ 0. (1:2)

They proved that if the sequence {an} satisfies the conditions (C1), (C2), and (C3) (or

(C1), (C2), and (C4)), then the sequence {xn} generated by (1.2) converges strongly to

the unique solution of the variational inequality

〈(A − γ f )x∗, x − x∗〉 ≥ 0, x ∈ F(T),

which is the optimality condition for the minimization problem

min
x∈F(T)

1
2

〈Ax, x〉 − h(x),

where h is a potential function for gf.
In 2010, in order to improve the corresponding results of Cho et al. [5] as well as

Marino and Xu [10] by removing the condition (C3), Jung [6] studied the following

composite iterative scheme for the class of k-strictly pseudo-contractive mappings.

Theorem J. Let H be a Hilbert space, C be a closed convex subset of H such that C ±

C ⊂ C, T : C ® H be a k-strictly pseudo-contractive mapping with F(T) ≠ ∅, for some

0 ≤ k <1. Let A be a strongly positive bounded linear operator on C with constant

γ̄ ∈ (0, 1)and f : C ® C be a contraction with the contractive constant a Î (0, 1) such

that 0 < γ <
γ̄

α
. Let {an} and {bn} be sequences in (0, 1) satisfying the conditions (C1),
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(C2) and the condition 0 <lim infn®∞ bn ≤ lim supn®∞ bn < 1. Let {xn} be a sequence

in C generated by⎧⎨
⎩
x0 ∈ C
yn = βnxn + (1 − βn)PCSxn,
xn+1 = αnγ f (xn) + (I − αnA)yn, n ≥ 0,

where S : C ® H is a mapping defined by Sx = kx + (1 - k)Tx and PC is the metric

projection of H onto C. Then {xn} converges strongly to a fixed point q of T, which is the

unique solution of the following variational inequality related to the linear operator A:

〈γ f (q) − Aq, p − q〉 ≤ 0, p ∈ F(T).

On the other hand, a mapping F : H ® H is called �-Lipschitzian if there exists a

positive constant � such that

||Fx − Fy|| ≤ κ||x − y||, x, y ∈ H. (1:3)

F is said to be h-strongly monotone if there exists a positive constant h such that

〈Fx − Fy, x − y〉 ≥ η||x − y||2, x, y ∈ H. (1:4)

From the definitions, we note that a strongly positive bounded linear operator A is a

||A||-Lipschitzian and γ̄-strongly monotone operator.

In 2001, Yamada [11] introduced the following hybrid iterative method for solving

the variational inequality

xn+1 = (I − μλnF)Sxn, n ≥ 1, (1:5)

where F : H ® H is a �-Lipschitzian and h-strongly monotone operator with � >0,

h >0, 0 < μ <
2η

κ2 and S : H ® H is a nonexpansive mapping, and proved that if {ln}

satisfies appropriate conditions, then the sequence {xn} generated by (1.5) converges

strongly to the unique solution of the variational inequality

〈Fx̃, x − x̃〉 ≥ 0, x ∈ F(S).

In 2010, by combining the iterative method (1.2) with the Yamada’s method (1.5),

Tian [12] considered the following general iterative method.

Theorem T1. Let H be a Hilbert space, F : H ® H be a �-Lipschitzian and

h-strongly monotone operator with � >0 and h >0, and S : H ® H be a nonexpansive

mapping with F(S) ≠ ∅. Let f : H ® H be a contraction with the contractive constant a

Î (0, 1). Let 0 < μ <
2η

κ2and 0 < γ <
μ(η−μκ2

2 )

α
= τ

α
. Let {an} be a sequence in (0, 1)

satisfying the conditions (C1), (C2) and (C3) (or (C1), (C2) and (C4)). Let {xn} be a

sequence in H generated by
{
x0 ∈ H,
xn+1 = αnγ f (xn) + (I − αnμF)Sxn, n ≥ 0.

Then {xn} converges strongly to a fixed point x̃of S, which is the unique solution of the

following variational inequality related to the operator F:

〈μFx̃ − γ f (x̃), x̃ − z〉 ≤ 0, z ∈ F(S). (1:6)

In this paper, motivated by the above-mentioned results, we consider the following

general iterative scheme for strictly pseudo-contractive mapping: for C a closed convex
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subset of H such that C ± C ⊂ C, k-strictly pseudo-contractive mapping T : C ® H

with F(T) ≠ ∅, a contraction f : C ® C with the contractive constant a Î (0, 1), μ > 0

and {an}, {bn} ⊂ (0, 1),
{
x0 ∈ C,
xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnμF)PCSxn, n ≥ 0,

(IS)

where S : C ® H is a mapping defined by Sx = kx+(1 - k)Tx, PC is the metric projec-

tion of H onto C, and F : C ® C is a �-Lipschitzian and h-strongly monotone operator

with � >0 and h >0. Under certain different control conditions on {an}, we establish

the strong convergence of the sequence {xn} generated by (IS) to a fixed point of T,

which is a solution of the variational inequality (1.6) related to the operator F. By

removing the condition (C3)
∑∞

n=0 |αn+1 − αn| < ∞ on {an}, the main results improve,

develop and complement the corresponding results of Tian [12] as well as Cho et al.

[5], Jung [6] and Marino and Xu [10]. Our results also improve the corresponding

results of Halpern [13], Moudafi [8], Wittmann [14] and Xu [9].

2 Preliminaries and lemmas
Throughout this paper, when {xn} is a sequence in E, then xn ® x (resp., xn ⇀ x) will

denote strong (resp., weak) convergence of the sequence {xn} to x.

For every point x Î H, there exists a unique nearest point in C, denoted by PC(x),

such that

||x − PC(x)|| ≤ ||x − y||

for all y Î C. PC is called the metric projection of H onto C. It is well known that PC
is nonexpansive.

In a Hilbert space H, we have

||x − y||2 = ||x||2 + ||y||2 − 2〈x, y〉 for x, y ∈ H. (2:1)

It is also well known that H satisfies the Opial condition, that is, for any sequence

{xn} with xn ⇀ x, the inequality

lim inf
n→∞ ||xn − x|| < lim inf

n→∞ ||xn − y||

holds for every y Î H with y ≠ x.

We need the following lemmas for the proof of our main results.

Lemma 2.1 [15]. Let H be a Hilbert space and C be a closed convex subset of H. If T

is a k-strictly pseudo-contractive mapping on C, then the fixed point set F(T) is closed

convex, so that the projection PF(T) is well defined.

Lemma 2.2 [15]. Let H be a Hilbert space and C be a closed convex subset of H.

Let T : C ® H be a k-strictly pseudo-contractive mapping with F(T) ≠ ∅. Then F

(PCT) = F (T ).

Lemma 2.3 [15]. Let H be a Hilbert space, C be a closed convex subset of H, and T :

C ® H be a k-strictly pseudo-contractive mapping. Define a mapping S : C ® H by

Sx = lx + (1 - l) Tx for all x Î C. Then, as l Î [k, 1), S is a nonexpansive mapping

such that F(S) = F(T).

The following Lemmas 2.4 and 2.5 can be obtained from the Proposition 2.6 of

Acedo and Xu [4].
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Lemma 2.4. Let H be a Hilbert space and C be a closed convex subset of H. For any

N ≥ 1, assume that for each 1 ≤ i ≤ N, Ti : C ® H is a ki-strictly pseudo-contractive

mapping for some 0 ≤ ki <1. Assume that {ηi}Ni=1is a positive sequence such that∑N
i=1 ηi = 1. Then

∑N
i=1 ηiTi is a nonself-k-strictly pseudo-contractive mapping with k =

max{ki : 1 ≤ i ≤ N}.

Lemma 2.5. Let {Ti}Ni=1and {ηi}Ni=1be given as in Lemma 2.4. Suppose that {Ti}Ni=1has a
common fixed point in C. Then F(

∑N
i=1 ηiTi) =

⋂N
i=1 F(Ti).

Lemma 2.6 [16,17]. Let {sn} be a sequence of non-negative real numbers satisfying

sn+1 ≤ (1 − λn)sn + λnδn + rn, n ≥ 0,

where {ln}, {δn} and {rn} satisfy the following conditions:

(i) {ln} ⊂ [0, 1] and
∑∞

n=0 λn = ∞,

(ii)lim supn®∞ δn ≤ 0 or
∑∞

n=0 λnδn < ∞,

(iii) rn ≥ 0 (n ≥ 0),
∑∞

n=0 rn = ∞.

Then limn®∞ sn = 0.

Lemma 2.7 [18]. Let {xn} and {zn} be bounded sequences in a Banach space E and

{gn} be a sequence in [0, 1] which satisfies the following condition:

0 < lim inf
n→∞ γn ≤ lim sup

n→∞
γn < 1.

Suppose that xn+1 = gnxn + (1 - gn)zn for all n ≥ 0 and

lim sup
n→∞

(||zn+1 − zn|| − ||xn+1 − xn||) ≤ 0.

Then limn®∞ ||zn - xn|| = 0.

Lemma 2.8. In a Hilbert space H, the following inequality holds:

||x + y||2 ≤ ||x||2 + 2〈y, x + y〉, x, y ∈ H.

Lemma 2.9. Let C be a nonempty closed convex subset of a Hilbert space H such that

C ± C ⊂ C. Let F : C ® C be a �-Lipschitzian and h-strongly monotone operator with

� >0 and h >0. Let 0 < μ <
2η

κ2and 0 < t < r <1. Then S := rI - tμF : C ® C is a con-

traction with contractive constant r - tτ, where τ = 1
2μ(2η − μκ2) < 1with t < 1

τ
.

Proof. From (1.3), (1.4) and (2.1), we have∥∥Sx − Sy
∥∥2 = ||ρ(x − y) − tμ(Fx − Fy)||2

= ρ2||x − y||2 + t2μ2||Fx − Fy||2 − 2tρμ〈Fx − Fy, x − y〉
≤ ρ2||x − y||2 + t2μ2κ2||x − y|| − 2tρμη||x − y||2
< ρ2||x − y||2 + tρμ2κ2||x − y|| − 2tρμη||x − y||2
= (ρ2 − tρμ(2η − μκ2))||x − y||2
< (ρ − tτ )2||x − y||2,

where τ = 1
2μ(2η − μκ2) < 1, and so

||Sx − Sy|| < (ρ − tτ )||x − y||.
Hence S is a contraction with contractive constant r - tτ. □

3 Main results
We need the following result for the existence of solutions of a certain variational

inequality, which is slightly an improvement of Theorem 3.1 of Tian [12].
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Theorem T2. Let H be a Hilbert space, C be a closed convex subset of H such that C ±

C ⊂ C, and T : C ® C be a nonexpansive mapping with F(T) ≠ ∅. Let F : C ® C be a

�-Lipschitzian and h-strongly monotone operator with � >0 and h >0. Let f : C ® C be a

contraction with the contractive constant a Î (0, 1). Let 0 < μ <
2η

κ2,

0 < γ <
μ(η−μκ2

2 )

α
= τ

α
and τ <1. Let xt be a fixed point of a contraction St ∋ x a tgf (x) +

(I - tμF )Tx for t Î (0, 1) and t < 1
τ
. Then {xt} converges strongly to a fixed point x̃of T as

t ® 0, which solves the following variational inequality:

〈μFx̃ − γ f (x̃), x̃ − p〉 ≤ 0, p ∈ F(T).

Equivalently, we have PF(T)(I − μF + γ f )x̃ = x̃.

Now, we study the strong convergence result for a general iterative scheme (IS).

Theorem 3.1. Let H be a Hilbert space, C be a closed convex subset of H such that C ±

C ⊂ C, and T : C ® H be a k-strictly pseudo-contractive mapping with F(T) ≠ ∅ for

some 0 ≤ k <1. Let F : C ® C be a �-Lipschitzian and h-strongly monotone operator with

� >0 and h >0. Let f : C ® C be a contraction with the contractive constant a Î (0, 1).

Let 0 < μ <
2η

κ2, 0 < γ <
μ(η−μκ2

2 )

α
= τ

α
and τ <1. Let f{an} and {bn} be sequences in (0, 1)

which satisfy the conditions:

(C1) limn®∞ an = 0;

(C2) �∞
n=0αn = ∞;

(B) 0 <lim infn®∞ bn ≤ lim supn®∞ bn < 1.

Let {xn} be a sequence in C generated by{
x0 ∈ C,
xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnμF)PCSxn, n ≥ 0,

where S : C ® H is a mapping defined by Sx = kx + (1 - k)Tx and PC is the metric

projection of H onto C. Then {xn} converges strongly to q Î F(T), which solves the fol-

lowing variational inequality:

〈μFq − γ f (q), q − p〉 ≤ 0, p ∈ F(T).

Proof. First, from the condition (C1), without loss of generality, we assume that anτ

<1, 2αn(τ−γα)
1−αnαγ

< 1 and an <(1 - bn) for n ≥ 0.

We divide the proof several steps:

Step 1. We show that ||xn − p|| ≤ max
{
||x0 − p||, ||γ f (p)−μFp||

τ−γα

}
for all n ≥ 0 and all p

Î F(T) = F(S). Indeed, let p Î F(T). Then from Lemma 2.9, we have

||xn+1 − p|| = ||αn(γ f (xn) − μFp) + βn(xn − p)

+ ((1 − βn)I − αnμF)PCSxn − ((1 − βn)I − αnμF)PCSp||
≤ (1 − βn − αnτ )||xn − p|| + βn||xn − p|| + αn||γ f (xn) − μFp||
≤ (1 − αnτ )||xn − p|| + αn(||γ f (xn) − γ f (p)|| + ||γ f (p) − μFp||)

≤ (1 − (τ − γ α)αn)||xn − p|| + (τ − γ α)αn
||γ f (p) − μFp||

τ − γ α

≤ max
{
||xn − p||, ||γ f (p) − μFp||

τ − γ α

}
.
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Using an induction, we have ||xn − p|| ≤ max
{
||x0 − p||, ||γ f (p)−μFp||

τ−γα

}
. Hence, {xn} is

bounded, and so are {f(xn)}, {PCSxn} and {FPCSxn}.

Step 2. We show that limn®∞||xn+1 - xn|| = 0. To this show, define

xn+1 = βnxn + (1 − βn)zn, for all n ≥ 0.

Observe that from the definition of zn,

zn+1 − zn

=
xn+2 − βn+1xn+1

1 − βn+1
− xn+1 − βnxn

1 − βn

=
αn+1γ f (xn+1) + ((1 − βn+1)I − αn+1μF)PCSxn+1

1 − βn+1

−αnγ f (xn) + ((1 − βn)I − αnμF)PCSxn
1 − βn

=
αn+1

1 − βn+1
γ f (xn+1) − αn

1 − βn
γ f (xn)

+ PCSxn+1 − PCSxn +
αn

1 − βn
μFPCSxn − αn+1

1 − βn+1
μFPCSxn+1

=
αn+1

1 − βn+1
(γ f (xn+1) − μFPCSxn+1)

+
αn

1 − βn
(μFPCSxn − γ f (xn)) + PCSxn+1 − PCSxn.

Thus, it follows that

||zn+1 − zn|| − ||xn+1 − xn|| ≤ αn+1

1 − βn+1
(γ ||f (xn+1)|| + μ||FPCSxn+1||)

+
αn

1 − βn
(μ||FPCSxn|| + γ ||f (xn)||).

From the condition (C1) and (B), it follows that

lim sup
n→∞

(||zn+1 − zn|| − ||xn+1 − xn||) ≤ 0.

Hence, by Lemma 2.7, we have

lim
n→∞ ||zn − xn|| = 0.

Consequently,

lim
n→∞ ||xn+1 − xn|| = lim

n→∞(1 − βn)||zn − xn|| = 0.

Step 3. We show that limn®∞||xn - PCSxn|| = 0. Indeed, since

xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnμF)PCSxn,

we have

||xn − PCSxn|| ≤ ||xn − xn+1|| + ||xn+1 − PCSxn||
≤ ||xn − xn+1|| + αn||γ f (xn) − μFPCSxn||
+ βn||xn − PCSxn||,

that is,

||xn − PCSxn|| ≤ 1
1 − βn

||xn − xn+1|| + αn

1 − βn
||γ f (xn) − μFPCSxn||.
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So, from the conditions (C1) and (B) and Step 2, it follows that

lim
n→∞ ||xn − PCSxn|| = 0.

Step 4. We show that

lim sup
n→∞

〈γ f (q) − μFq, xn − q〉 ≤ 0,

where q = limt®0 xt being xt = tgf(xt) + (I - tμF )PCSxt for 0 < t <1 and t < 1
τ
. We

note that from Lemmas 2.2 and 2.3 and Theorem T2, q Î F(T) = F(S) and q is a solu-

tion of a variational inequality

〈μFq − γ f (q), q − p〉 ≤ 0, p ∈ F(T). (3:1)

To show this, we can choose a subsequence {xnj} of {xn} such that

lim
j→∞

〈γ f (q) − μFq, xnj − q〉 = lim sup
n→∞

〈γ f (q) − μFq, xn − q〉.

Since {xn} is bounded, there exists a subsequence {xnji } of {xnj} which converges weakly

to w. Without loss of generality, we can assume that xnj ⇀ w. Since ||xn - PCSxn|| ® 0

by Step 3, we obtain w = PCSw. In fact, if w ≠ PCSw, then, by Opial condition,

lim inf
j→∞

||xnj − w|| < lim inf
j→∞

||xnj − PCSw||

≤ lim inf
j→∞

(||xnj − PCSxnj || + ||PCSxnj − PCSw||)

≤ lim inf
j→∞

||xnj − w||,

which is a contradiction. Hence w = PCSw. Since F(PCS) = F(S), from Lemma 2.3, we

have w Î F(T). Therefore, from (3.1), we conclude that

lim sup
n→∞

〈γ f (q)− μFq, xn − q〉 = lim
j→∞

〈γ f (q) − μFq, xnj − q〉

= 〈γ f (q)− μFq, w − q〉
≤ 0.

Step 5. We show that limn®∞||xn - q|| = 0, where q = limt®0 xt being xt = tgf (xt) +
(I - tμF)PCSxt for 0 < t <1 and t < 1

τ
, and q is a solution of a variational inequality

〈μFq − γ f (q), q − p〉 ≤ 0, p ∈ F(T).

Indeed, from (IS), we have

xn+1 − q = αn(γ f (xn) − μFq) + βn(xn − q)

+ ((1 − βn)I − αnμF)PCSxn − ((1 − βn)I − αnμF)q.

Applying Lemmas 2.8 and 2.9, we have

||xn+1 − q||2
≤ ||βn(xn − q) + ((1 − βn)I − αnμF)PCSxn − ((1 − βn)I − αnμF)PCSq||2

+ 2αn〈γ f (xn) − μFq, xn+1 − q〉
≤ ((1 − βn − αnτ )||xn − q|| + βn||xn − q||)2

+ 2αnγ 〈f (xn) − f (q), xn+1 − q〉 + 2αn〈γ f (q) − μFq, xn+1 − q〉
≤ (1 − ταn)2||xn − q||2 + 2αnγ α||xn − q|| ||xn+1 − q||

+ 2αn〈γ f (q)− μFq, xn+1 − q〉
≤ (1 − ταn)2||xn − q||2 + αnγ α(||xn − q||2 + ||xn+1 − q||2)

+ 2αn〈γ f (q)− μFq, xn+1 − q〉,
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that is,

||xn+1 − q||2 ≤ 1 − 2ταn + τ 2α2
n + αnγ α

1 − αnγ α
||xn − q||2

+
2αn

1 − αnγ α
〈γ f (q)− μFq, xn+1 − q〉

=
(
1 − 2(τ − γ α)αn

1 − αnγ α

)
||xn − q||2 + τ 2α2

n

1 − αnγ α
||xn − q||2

+
2αn

1 − αnγ α
〈γ f (q)− μFq, xn+1 − q〉

≤
(
1 − 2(τ − γ α)

1 − αnγ α
αn

)
||xn − q||2 + 2(τ − γ α)αn

1 − αnγ α
×

(
τ 2αn

2(τ − γ α)
M +

1
τ − γ α

〈γ f (q) − μFq, xn+1 − q〉
)

= (1 − λn)||xn − q||2 + λnδn,

where M = sup{||xn - q||2 : n ≥ 0}, λn = 2(τ−γα)
1−αnγα

αn and

δn =
τ 2αn

2(τ − γ α)
M +

1
τ − γ α

〈γ f (q)− μFq, xn+1 − q〉.

From the conditions (C1) and (C2) and Step 4, it is easy to see that ln ® 0,∑∞
n=0 λn = ∞, and lim supn®∞ δn ≤ 0. Hence, by Lemma 2.7, we conclude xn ® q as

n ® ∞. This completes the proof. □
Remark 3.1. (1) Theorem 3.1 extends and develops Theorem 3.2 of Tian [12] from a

nonexpansive mapping to a strictly pseudo-contractive mapping together with remov-

ing the condition (C3) �∞
n=0|αn+1 − αn| < ∞.

(2) Theorem 3.1 also generalizes Theorem 2.1 of Jung [6] as well as Theorem 2.1 of

Cho et al. [5] and Theorem 3.4 of Marino and Xu [10] from a strongly positive

bounded linear operator A to a �-Lipschitzian and h-strongly monotone operator F.

(3) Theorem 3.1 also improves the corresponding results of Halpern [13], Moudafi

[8], Wittmann [14] and Xu [9] as some special cases.

Theorem 3.2. Let H be a Hilbert space, C be a closed convex subset of H such that

C ± C ⊂ C, and Ti : C ® H be a ki-strictly pseudo-contractive mapping for some 0 ≤ ki

<1 and
⋂N

i=1 F(Ti) 
= ∅. Let F : C ® C be a �-Lipschitzian and h-strongly monotone

operator with � >0 and h >0. Let f : C ® C be a contraction with the contractive con-

stant a Î (0, 1). Let 0 < μ <
2η

κ2, 0 < γ <
μ(η−μκ2

2 )

α
= τ

α
and τ < 1. Let {an} and {bn} be

sequences in (0, 1) which satisfy the conditions.

(C1) limn®∞ an = 0;

(C2) �∞
n=0αn = ∞;

(B) 0 < lim infn®∞ bn ≤ lim supn®∞ bn < 1.

Let {xn} be a sequence in C generated by
{
x0 ∈ C,
xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnμF)PCSxn, n ≥ 0,

where S : C ® H is a mapping defined by Sx = kx + (1 − k)
∑N

i=1 ηiTixwith k = max{ki

: 1 ≤ i ≤ N} and {hi} is a positive sequence such that
∑N

i=1 ηi = 1and PC is the metric
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projection of H onto C. Then {xn} converges strongly to q Î F(T), which solves the

following variational inequality:

〈μFq − γ f (q), q − p〉 ≤ 0, p ∈
⋂N

i=1
F(Ti).

Proof. Define a mapping T : C ® H by Tx =
∑N

i=1 ηiTix. By Lemmas 2.4 and 2.5, we

conclude that T : C ® H is a k-strictly pseudo-contractive mapping with k = max{ki :

1 ≤ i ≤ N} and F(T) = F(
∑N

i=1 ηiTi) =
⋂N

i=1 F(Ti). Then the result follows from Theorem

3.1 immediately. □
As a direct consequence of Theorem 3.2, we have the following result for nonexpan-

sive mappings (that is, 0-strictly pseudo-contractive mappings).

Theorem 3.3. Let H be a Hilbert space, C be a closed convex subset of H such that

C ± C ⊂ C, {Ti}Ni=1 : C → Hbe a finite family of nonexpansive mappings with⋂N
i=1 F(Ti) 
= ∅. Let F : C ® C be a �-Lipschitzian and h-strongly monotone operator

with � >0 and h >0. Let f : C ® C be a contraction with the contractive constant a Î

(0, 1). Let 0 < μ <
2η

κ2, 0 < γ <
μ(η−μκ2

2 )

α
= τ

α
and τ <1. Let {an} and {bn} be sequences

in (0, 1) which satisfy the conditions.

(C1) limn®∞ an = 0;

(C2) �∞
n=0αn = ∞;

(B) 0 < lim infn®∞ bn ≤ lim supn®∞ bn < 1.

Let {xn} be a sequence in C generated by
{
x0 ∈ C,
xn+1 = αnγ f (xn) + βnxn + ((1 − βn)I − αnμF)PC

∑N
i=1 ηiTixn, n ≥ 0,

where {ηi}Ni=1is a positive sequence such that
∑N

i=1 ηi = 1and PC is the metric projection

of H onto C. Then {xn} converges strongly to a common fixed point q of {Ti}Ni=1, which
solves the following variational inequality:

〈μFq − γ f (q), q − p〉 ≤ 0, p ∈
⋂N

i=1
F(Ti).

Remark 3.2. (1) Theorems 3.2 and 3.3 also generalize Theorems 2.2 and 2.4 of Jung

[6] from a strongly positive bounded linear operator A to a �-Lipschitzian and h-
strongly monotone operator F.

(2) Theorems 3.2 and 3.3 also improve and complement the corresponding results of

Cho et al. [5] by removing the condition (C3) �∞
n=0|αn+1 − αn| < ∞ together with

using a �-Lipschitzian and h-strongly monotone operator F.

(3) As in [19], we also can establish the result for a countable family {Ti} of ki-strict

pseudo-contractive mappings with 0 ≤ ki <1.
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