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1. Introduction

Let H be a real Hilbert space whose inner product and norm are denoted by (-) and ||
- ||, respectively, and let C be a nonempty closed convex subset of H. Corresponding to
an operator A : C — H and set C, the variational inequality problem VIP(A, C) is
defined as follows:

Find x € Csuch that (Ax,y —x) >0, VyeC. (1.1)

The set of solutions of VIP(A, C) is denoted by Q. It is well known that if A is a
strongly monotone and Lipschitz-continuous mapping on C, then the VIP(A4, C) has a
unique solution. Not only the existence and uniqueness of a solution are important
topics in the study of the VIP(A, C) but also how to compute a solution of the VIP(4,
C) is important. For applications and further details on VIP(A, C), we refer to [1-4]
and the references therein.

The set of fixed points of a mapping S is denoted by Fix(S), that is, Fix(S) = {x € H :
Sx = x}.

For finding an element of F(S) N Q under the assumption that a set C € H is none-
mpty, closed and convex, a mapping S : C — C is nonexpansive and a mapping A : C
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— H is B-inverse-strongly monotone, Takahashi and Toyoda [5] proposed an iterative
scheme and proved that the sequence generated by the proposed scheme converges
weakly to a point ze F(S)n Qif F(S)n Q = <.

Recently, motivated by the idea of Korpelevich’s extragradient method [6], Nadezh-
kina and Takahashi [7] introduced an iterative scheme, called extragradient method,
for finding an element of F(S) N Q and established the weak convergence result. Very
recently, inspired by the work in [7], Zeng and Yao [8] introduced an iterative scheme
for finding an element of F(S) N Q and obtained the weak convergence result. The
viscosity approximation method for finding a fixed point of a given nonexpansive map-
ping was proposed by Moudafi [9]. He proved the strong convergence of the sequence
generated by the proposed method to a unique solution of some variational inequality.
Xu [10] extended the results of [9] to the more general version. Later on, Ceng and
Yao [11] also introduced an extragradient-like approximation method, which is based
on the above extragradient method and viscosity approximation method, and proved
the strong convergence result under certain conditions.

An iterative method for the approximation of fixed points of asymptotically nonex-
pansive mappings was developed by Schu [12]. Iterative methods for the approximation
of fixed points of asymptotically nonexpansive mappings have been further studied in
[13,14] and the references therein. The class of asymptotically nonexpansive mappings
in the intermediate sense was introduced by Bruck et al. [15]. The iterative methods
for the approximation of fixed points of such types of non-Lipschitzian mappings have
been further studied in [16-18]. On the other hand, Kim and Xu [19] introduced the
concept of asymptotically x-strict pseudocontractive mappings in a Hilbert space and
studied the weak and strong convergence theorems for this class of mappings. Sahu et
al. [20] considered the concept of asymptotically k-strict pseudocontractive mappings
in the intermediate sense, which are not necessarily Lipschitzian. They proposed modi-
fied Mann iteration process and proved its weak convergence for an asymptotically
k-strict pseudocontractive mapping in the intermediate sense.

Very recently, Ceng et al. [21] established the strong convergence of viscosity
approximation method for a modified Mann iteration process for asymptotically strict
pseudocontractive mappings in intermediate sense and then proved the strong conver-
gence of general CQ algorithm for asymptotically strict pseudocontractive mappings in
intermediate sense. They extended the concept of asymptotically strict pseudocontrac-
tive mappings in intermediate sense to Banach space setting, called nearly asymptoti-
cally k-strict pseudocontractive mapping in intermediate sense.

They also established the weak convergence theorems for a fixed point of a nearly
asymptotically -strict pseudocontractive mapping in intermediate sense which is not
necessarily Lipschitzian.

In this paper, we propose and study an extragradient-like iterative algorithm that is
based on the extragradient-like approximation method in [11] and the modified Mann
iteration process in [20]. We apply the extragradient-like iterative algorithm to design-
ing an iterative scheme for finding a common fixed point of two nonlinear mappings.
Here, we remind the reader of the following facts: (i) the modified Mann iteration pro-
cess in [[20], Theorem 3.4] is extended to develop the extragradient-like iterative algo-
rithm for finding an element of F(S) n Q; (ii) the extragradient-like iterative algorithm
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is very different from the extragradient-like iterative scheme in [11] since the class of
mappings S in our scheme is more general than the class of nonexpansive mappings.

2. Preliminaries

Throughout the paper, unless otherwise specified, we assume that H is a real Hilbert
space whose inner product and norm are denoted by (. and || - ||, respectively, and C
is a nonempty closed convex subset of H. The set of fixed points of a mapping S is
denoted by Fix(S), that is, Fix(S) = {x € H : Sx = x}. We write x,, ~ x to indicate that
the sequence {x,} converges weakly to x. The sequence {x,} converges strongly to x is
denoted by x,, — x.

Recall that a mapping S : C — C is said to be L-Lipschitzian if there exists a constant
L = 0 such that ||Sx - Sy|| < L||x - y||, V%, y € C. In particular, if L € [0, 1), then S is
called a contraction on C; if L = 1, then S is called a nonexpansive mapping on C. The
mapping S : C — C is called pseudocontractive if

18% — SyIP < [l =yl + 1I(1 = S)x — (I -S>, VayeC.

A mapping A : C — H is called

(i) monotone if
(Ax —Ay,x—y) >0, Vx,yeC

(ii) B-inverse-strongly monotone [22,23] if there exists a positive constant § such
that

(Ax — Ay, x —y) > BllAx — Ay||>, Vx,y € C.

It is obvious that if A is B-inverse-strongly monotone, then A is monotone and
Lipschitz continuous.

It is easy to see that if a mapping S : C — C is nonexpansive, then the mapping A =
I - S is 1/2-inverse-strongly monotone; moreover, F(S) = Q (see, e.g., [5]). At the same
time, if a mapping S : C — C is pseudocontractive and L-Lipschitz continuous, then
the mapping A = (I - S) is monotone and L + 1-Lipschitz continuous; moreover, F(S) =
Q (see, e.g., [[24], proof of Theorem 4.5]).

Definition 2.1. Let C be a nonempty subset of a normed space X. A mapping S: C
— C is said to be

(a) asymptotically nonexpansive [25] if there exists a sequence {k,} of positive num-
bers such that lim,_,.. K,, = 1 and

[1S"x — S"YI| < knllx —yll, Vn=>1, Vx,yeC

(b) asymptotically nonexpansive in the intermediate sense [15] provided S is uni-

formly continuous and

lim sup sup ([|S"x — S"y|| — |lx —yI|) < 0;

n—o00 x,yeC
(c) uniformly Lipschitzian if there exists a constant L > 0 such that

[IS" — S"y|| < L|lx—vy||, VYn>1, Vx,y e C.



Ceng et al. Fixed Point Theory and Applications 2011, 2011:22 Page 4 of 18
http://www fixedpointtheoryandapplications.com/content/2011/1/22

It is clear that every nonexpansive mapping is asymptotically nonexpansive and every
asymptotically nonexpansive mapping is uniformly Lipschitzian.

The class of asymptotically nonexpansive mappings was introduced by Goebel and
Kirk [25] as an important generalization of the class of nonexpansive mappings. The
existence of fixed points of asymptotically nonexpansive mappings was proved by Goe-
bel and Kirk [25] as below:

Theorem 2.1. [[25], Theorem 1] If C is a nonempty closed convex bounded subset of
a uniformly convex Banach space, then every asymptotically nonexpansive mapping S :
C — C has a fixed point in C.

Definition 2.2. [19] A mapping S : C — C is said to be an asymptotically x-strict
pseudocontractive mapping with sequence {y,} if there exist a constant x € [0, 1) and

a sequence {¥,} in [0, «) with lim,,,.. %, = 0 such that
118" = S"YII> < (1 + ya)llx = yII> +kllx = S"x = (y = S"Y)II>, Vn=1, Vx,yeC. (2.1)

It is important to note that every asymptotically x-strict pseudocontractive mapping

with  sequence {y,} is a uniformly L-Lipschitzian mapping with

L =sup {H‘/h(lk)y” n> 1}.

1+k

Definition 2.3. [20] A mapping S : C — C is said to be an asymptotically x-strict
pseudocontractive mapping in the intermediate sense with sequence {,} if there exist
a constant k € [0, 1) and a sequence {y,} in [0, ) with lim,,_,.. 7, = 0 such that

lim sup sup (|8"x — $"yI1> — (1 + yu)llx = ¥II” = kllx = $"x — (y = S"Y)II*) < 0. (2.9)

n—o00 xyeC

Put

Cn 1= rnaX{O, suré(lls"x— SYIP = (L +yu)llx—yII? — kllx—S"x — (y = S"V)II*) ¢ -
xye

Then, ¢, >0 (Vn > 1), ¢, > 0 (n — o) and (2.2) reduces to the relation
18"x = S"YII* < (1+y)llx—yII* +cllx = S"x = (y = ") +¢ca,  Vn= 1, Vx,y € C. (2.3)

Whenever ¢, = 0 for all #n > 1 in (2.3), then S is an asymptotically x-strict pseudo-
contractive mapping with sequence {y,,}.

For every point x € H, there exists a unique nearest point in C, denoted by Pcx, such
that

llx — Pex|| < llx —yll, VyeC.
Pc is called the metric projection of H onto C. Recall that the inequality holds

(x —Pcx,Pcx—y) >0, VxeH,yeC (2.4)
Moreover, it is equivalent to

IPcx — Peyl* < (Pex — Py, x—y),  Vx,y € H;
it is also equivalent to

llx — 11> > ||x — Pcx||® + |ly — Pexl?,  Vxe H,y e C. (2.5)



Ceng et al. Fixed Point Theory and Applications 2011, 2011:22 Page 5 of 18
http://www fixedpointtheoryandapplications.com/content/2011/1/22

It is easy to see that Pc is a nonexpansive mapping from H onto C; see, e.g., [26] for
further detail.
Lemma 2.1. Let A : C — H be a monotone mapping. Then,

ueQ <& u=Pc(u—2rAu), Vi >D0.
Lemma 2.2. Let H be a real Hilbert space. Then, the following hold:
llx = yl1* = lIxl1® = [lylI> = 2(x = y,9),  Vx,y € H.

Lemma 2.3. [[20], Lemma 2.6] Let S : C — C be an asymptotically k-strict pseudo-
contractive mapping in the intermediate sense with sequence {y,}. Then,

1
[1S"x — S™y|| < 1« (Kllx—y||+\/(1+(1—K)yn)||x—y||2+(1 —K)Cn)

forallx,ye Candn > 1.

Lemma 2.4. [[20], Lemma 2.7] Let S : C — C be a uniformly continuous asymptoti-
cally k-strict pseudocontractive mapping in the intermediate sense with sequence {},}.
Let {x,} be a sequence in C such that ||x, - x,,1|| = 0 and ||x, - S"x,|| > 0 as n —
oo, Then, ||x, - Sx,|| = 0 as n —> oo.

Proposition 2.1 (Demiclosedness Principle). [[20], Proposition 3.1] Let S : C — C be
a continuous asymptotically k-strict pseudocontractive mapping in the intermediate
sense with sequence {Y,}. Then, I - S is demiclosed at zero in the sense that if {x,} is a
sequence in C such that x,, ~ x € C and lim sup,,_, . lim sup,_, . ||%, S”x,|| = 0,
then (I - S)x = 0.

Proposition 2.2. [[20], Proposition 3.2] Let S : C — C be a continuous asymptotically
K-strict pseudocontractive mapping in the intermediate sense with sequence {y,} such
that F (S) # &. Then, F(S) is closed and convex.

Remark 2.1. Propositions 2.1 and 2.2 give some basic properties of an asymptotically
k-strict pseudocontractive mapping in the intermediate sense with sequence {y,}.
Moreover, Proposition 2.1 extends the demiclosedness principles studied for certain
classes of nonlinear mappings in [19,27-29].

Lemma 2.5. [30]Let (X, (--)) be an inner product space. Then, for all x, y, z€ X and
all o, B, ye [0, 1] with o + B + y = 1, we have

llox+ By + yzl|> = allx]|* + BIIYII* + v ll2l|> — aBllx —yII> —ay|lx—zl* — By |ly —zI*.
Lemma 2.6. [[31], Lemma 2.5] Let {s,} be a sequence of nonnegative real numbers
satisfying

Snel = (1 - &n)Sn + &nﬁ_n + Y Yn=>1,

where {&,}, {Bn), and {Vu)satisfy the conditions:

(i) {@n} c [0,1], ZZI &y = 00, or equivalently, [T52) (1 — ) = 0;
(i) lim sup,,_, .. fn < 0;
(iii) 7o = 0 (n = 1), Y02 ¥n < 0C.

Then, lim,,_,.. s,, = 0.
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Lemma 2.7. [32]Let {x,} and {z,} be bounded sequences in a Banach space X and let
{0,.} be a sequence in [0, 1] with 0 < lim inf,_,.. p,, < lim sup,_,.. 0, < 1. Suppose that
Xpi1 = Oy + (1 - 0,,)z, for all integers n > 1 and lim sup,_e.(||20s1 - Zal| - ||%0s1 -
x,|]) < 0. Then, lim,,_,.. ||z, - x,|| = 0.

The following lemma can be easily proved, and therefore, we omit the proof.

Lemma 2.8. [n a real Hilbert space H, there holds the inequality

llx+yl1* < |Ixl]* +2(y,x+y), Vx,y€H.

A set-valued mapping T : H — 2/ is called monotone if for all x, y € H, fe Tx and
ge Ty imply (x - y, f- g) > 0. A monotone mapping T : H — 2 is maximal if its
graph G(T) is not properly contained in the graph of any other monotone mapping. It
is known that a monotone mapping 7 is maximal if and only if for (x, f) € H x H, {x -
v, f-g =20 for all (y, g) € G(T) implies fe Tx. Let A: C — H be a monotone, L-
Lipschitz continuous mapping and let Ncv be the normal cone to C at ve C, ie, Ncv
={we H: (v -u, w) >0, Vu e C}. Define

_JAv+ Nevifv e C,
T"‘{@ ifv ¢ C.

It is known that in this case 7" is maximal monotone, and 0 € Tv if and only if v €
Q; see [33].

3. Extragradient-like approximation method and strong convergence results

Let A : C —> H be a monotone and L-Lipschitz continuous mapping, f: C — C be a
contraction with contractive constant & € (0, 1) and S : C — C be an asymptotically
k-strict pseudocontractive mapping in the intermediate sense with sequence {y,}. In
this paper, we introduce an extragradient-like iterative algorithm that is based on the
extragradient-like approximation method in [11] and the modified Mann iteration pro-

cess in [20]:

x1 = x € C chosen arbitrary,

Yu = (1 — wn)xn + nPc(xn — AnAxy), (3.1)
by = PC(xn - )\nAYn)/
Xne1 = (1 — otn — Bn — vn)Xn + &tuf (Yn) + Buln + vaS"tn, Yn >1,

where {4,} is a sequence in (0, 1) with Y 72 A, < 00, and {o,}, {B,}, {#,,} and {v,,} are

sequences in [0, 1] satisfying the following conditions:

(Al) a, + B, +v,<1foralln>1;

(A2) lim,, ,.. @, = 0, Y 02| ap = 00;

(A3) k < lim inf,_,., B, < lim sup,._,.. B, < 1;
(A4) Y02 vy = 00.

The following result shows the strong convergence of the sequences {x,}, {y,} gener-
ated by the scheme (3.1) to the same point g = Pgs)na f (¢) if and only if {Ax,} is
bounded, ||({ - §")x,|| = 0 and lim inf, ,.. (Ax,, y - x,) = 0 for all ye C.

Theorem 3.1. Let A : C — H be a monotone and L-Lipschitz continuous mapping, f
C — C be a contraction with contractive constant oo € (0, 1) and S : C — C be a uni-
formly continuous asymptotically k-strict pseudocontractive mapping in the
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intermediate sense with sequence {},} such that F(S) N Q # @ and Y po; yn < 0o. Let
{x,.}, 0.} be the sequences generated by (3.1), where {1,} is a sequence in (0, 1) with
o An < 00, and {a}, B}, {pn} andly,} are sequences in [0, 1] satisfying the condi-
tions (A1)-(A4). Then, the sequences {x,}, {y,} converge strongly to the same point q =
Prsynaf (@) if and only if {Ax,} is bounded, ||(I - S")x,|| — 0 and lim inf,_,.. (Ax,, y -
%,y >0forallye C.

Proof. “Necessity”. Suppose that the sequences {x,}, {y,} converge strongly to the
same point ¢ = Pr)naf (¢). Then from the L-Lipschitz continuity of A, it follows that
{Ax,} is bounded, and for each y € C:

[(Axn, y — xn) — (Aq,y — q)]
< [{AXn, Y — Xn) — (Axn, Yy — @) + [{Axn, ¥ — q) — (Aq, Y — q)]
= [(Axn, 4 — xn)| + [{Axn — Aq,y — q)]

< |Axul[l1g — xull + [|Axn — Aqlllly — 4|

< ||Axu|lllg — xull + Ll|xn — 4qlllly — ql| = O,

A

which implies that

lim (A%, y —%n) = (Aq,y —4) = 0, VyeC
due to g € Q. Furthermore, utilizing Lemma 2.3, we have
" 1
[18"%, — gl < 1—x (Kllxn —4ll +\/(1 + (1= )yn)llxn — qlI* + (1 _K)Cn) -0

due to x, = ¢, ¥, = 0 and ¢, — 0. Consequently, we conclude that for each y e C
18" — 2nll < 11S™xn — ql| + |lxn — gl — 0.

That is, ||( - S")x,|| — 0.

“Sufficiency”. Suppose that {Ax,} is bounded, ||(I - S")x,|| — 0 and lim inf,_,.. (Ax,,
y - x,) =20 for all y e C. Note that lim inf, ... B, >x. Hence, we may assume, without
loss of generality, that f3,, >« for all n > 1.

Next, we divide the proof of the sufficiency into several steps.

STEP 1. We claim that {x,} is bounded. Indeed, put ¢, = Pc(x, - 1,Ay,,) for all n > 1.
Let x* € F(S) n Q. Then, x* = Pc(x* - A,,Ax*). Putting x = x,, - 4,4y, and y = x* in
(2.5), we obtain

2 2 2
[ty = x*|1° < [1xn — AnAyn — X*[|7 = [1xn — AnAyn — tal|

= ||xn — x*||2 — 2X 0 (Ayn, Xn — x*) + )NﬁHA)’n”z

— 1120 — tal 1> + 2Xn (Ayn, X0 — ta) — A21|Apall?

2 (3.2)

= |10 — %[ + 2A0 (Ayn, X* — ) — [0 — 1
= ||xp _x*”z — ||y — tn”2 — 2 {Ayn _Ax*/)’n —x")
— 2An (Ax*r Vn — x*> + 2y <Ayn/ Yn — fn).
Since A is monotone and x* is a solution of VIP(4, C), we have

(Ayn — AX*,y, —x*) >0 and (Ax",y, —x) > 0.
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It follows from (3.2) that

[tn — X*|17 < [1xn — x| = %0 — talI* + 220 (AYns Y — tn)
= ||xn _x*Hz — 1w —yn) + (yn — tn)Hz + 200 {AVn, Yn — tn)
= |l — 1> = %0 = ul” = 2% = Vo Vu — tn) — llyn — tall? (3.3)
+ 2hn{AYn, Yn — tn)
= [lxn = 211> = [1xn = yul1* = llyn — tall* + 2060 — AnAYn = Y tn — V).

Note that x,, € C for all # > 1 and that y,, = (1 - y,.)x,, + p,Pclx, - 1,Ax,). Hence, we
have

2(xn = AnAVn — Vs bn — V)

< 2[1xn = Ay = Yalllltn = Yull < %0 = 2nAyn — all” + 1tn — yul?
12+ 1tn — yal?
= 1% = yall? + 1ta = yall> + 2Anttn(Ayn, Pe(Xn — AnAxy) — Pcxn) + A || Ayal®
1 = Yull* + 116w — yull> + 2Anttnl |AYal[|IPc(Xn — 2nAXn) — Poxall + A2 1| Ayal|?
< %0 = ¥al® + ltn = yall® + 227 sl IAYn 1A% ]| + A5 1| Ayal .

= 1% — Yull® = 22 {Ayn, Xn — Yn) + A2 Ayn
4 Y Vi n 1AV, (3.4)

A

Since {Ax,} is bounded and A is L-Lipschitz continuous, we have
[|Ayn — Axn|| < Lllyn — %nll = Litn||Pc(%n — AnAxn) — Poxall < LI|Axy4l,
and hence ||Ay,|| < (1+ L)||Ax,||, which implies that {Ay,} is bounded. Hence, we

may assume that there exists a constant M > sup{||Ax,|| + [|Ay.|| + ||Ax*||: n > 1}.
Then, it follows from (3.4) that

2(xn - )VnAYn — Vns tn _Yn) = ||xn _Ynllz + ||tn - y"||2 +A«%(||Axn|| + ||Ayn||)2
< 1w = yull? + 1w — yall? + A2M2.

This together with (3.3) implies that

[tw — x*[17 < 116 — 212 = (160 — Yul1> = 1lyn — tall® + 240 — 2nAYn — Y tn — ¥n)
< xn = 2|12 = 1xn — ¥all? = 11yn — tal® + [xn — yall® + |1t — yul|* + 22M? (3.5)

2, 42542
[1%0 — x*||° + A M=

Observe that

1 (yn) = %117
< () = FEO+ 1IF (=) — x*11)?
< (allyn — x| + 11f (") — x*11)?
F() = 211\
y ey )

[0

= (a\l}’n -+ (1-«a

) — <112
<l — w2+ 1)
l-—«o
HY Ak (]2
= a0~ ) — ) (Peln — ) — Pels” gy o VO
Y Ak [[2
< al(1 = sl — 11 + sl Pl — Raen) — Pl — 2y 2]+ V6D = (3.6)
K)o 12
< al(1 — )l — 21 + ) = Ry — Avy ]+ T
= Ol[(l - ,u'n)Hxn _x*”z + (| lxn _x*”z — 2hp (X — Xx*, Axy — Ax™)
) — 212
+Aﬁ|\Axn7Ax*H2]+”f( )=l
l—«o
) — 212
< al(1 = )bty — 51+ el — €1 + 2311, — ] VD =

() — =11
1 .

< aflxy — 2|2+ A2M? +
o
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Putting 7, = o, + B, + v, and utilizing Lemma 2.5, we obtain from (3.5) and (3.6)

||xn+1 - x*H2

= I(1 —on — B — vn)(tn — %) + an(f(yn) — x%) + Bultn — %) + vn(S"tn — X*)H2

B v,
S(lfrn)llxnfx*llzwnl\ (f()’n)*x*)"' "( fx*)+r"(8"tnfx*)\|2
n n
*112 Oy *112 /37! *112 Vn n *112
< (1 = z)llen — &7 + 70 Nf Q) — %117 + th 7+ IS e — x|
Tn Tn
_ By
"t — Sl
Tl
— 2 *112 *112 n k112
—(1 7Tn)‘|xn7x [l +an||f()’n)7x 17+ Bulltn — x¥[|7 + valS" tn — X7
V,
P — s

n
=< (1 - Tn)llxn *X*HZ +an||f()’n) *X*HZ + Bulltn *X*HZ
,Bn n

+Vn[(l+Vn)||tn_x*||2+’(||tn_sntn”2+cn] [tn — SnthZ

=(1—rn)uxn—x*w+an||f(yn)—x*||2+(ﬂn+vn+vnyn)||tn—x*||2
Bn 0 (3.7)
'H)ﬂ(’( - )th_s tall” + v
T
< (1= w)llxn — X7 + anllf (7n) = 2117 + (Ba + vn + va) 1w — K[> + v
x* _x* 2
< (1 = )llxn — &*|12 + an [a||xn—x*||2+A§M2+ IF( 1) I ]
—
+(Bn + vn + vn)(l1xn — x*||2 + AﬁMz) + VnCn

=(1—(1—a)ay+ yn)llxn —x*|? + (an + Bn+ vy + yn))\%Mz

KY a2
+(1 —Ol)anllf((ﬁ )_a;C2I| + VnCp
S(1—(1—Oé)an+yn)max{||xn—x*||2, Hf((yi*) X ||2} (1+)/y,))¥2M2
(1 —a)anrnax{\lxn 2112, ”f((’;*) _;C ||2}+v,,cn
2 If () — a2

< (1+y,,)max{||x -2, }+2M2A,§+uncn.

(1-a)
Now, let us show that for all » > 1

n

n *Y _ 4k]]2
[xpe1 —x*| 2 < l_[(l+y]-) (Z (2M2Xf+vici)+max{||x1 —x*|%, IF() x2|| }) (3.8)

j=1 i=1 (1-a)

As a matter of fact, whenever n = 1, from (3.7), we have

) — x* 2
||x2—x*||2§(1+y1)max{||x1—x*||2,Hf((l) )2” }+2M2A%+v1c1
—
x*) — x* 2
s(1+m)(max{||x1—x*||2,”f((l) )2” }+2M2A%+vm)
—

1 1 * #1012
L—l[(lﬂfj (Z (2M?27 + vic; +max{||xl x*)?, Hf((yi)_a;c I })

Assume that (3.8) holds for some # > 1. Consider the case of # + 1. From (3.7), we
obtain



Ceng et al. Fixed Point Theory and Applications 2011, 2011:22 Page 10 of 18
http://www.fixedpointtheoryandapplications.com/content/2011/1/22

2
[[Xns2 — x|

x*) — x* 2
s(1+yn+1)max{||xn+1fx*uz,”f( )=l }+2M2Aﬁ+1+vn+1cm
(1-a)
[1f (x*) = x*117
5(1+yn+1)<ma><{llxn+1—x*\lz, USe S 2MIA2 L v G
(1-0a)
n n k) 4¥ 12
< (1+¥u1) (max[(l_[(l +yj)) (Z (2M2Af+vic,-)+max{||x1 — x|, Hf((’;) ;c2|| })
’ - -
j=1 i=1
I1f (x*) — 1
Lf((l )70[)2 + 2M?02, 1 + Vpe1Cne1)
n n * (12
w2 W) = x5
< (1+¥na1) ((n(l +yj)) (Z (2M2A1?+vici)+max{\|x1 —x*)?, f((l) - })
. - — o
j=1 i=1

+2M2A2, 1 + Vni1Cner)
n+l n kY Ak []2
= l_[ (1+%) <Z (2/\/12)Li2 +vici) + max{llxl — %2, 7 lel })
j=1 i-1 (1-a)
+(1 + Vn+1)(2M2)L721+1 + Vn+lcn+1)

n+1 n . .
= (H(l +VJ‘)) (Z (2M?A7 + vicy) +max{\|x1 —x|1?, ) =1 })
j=1

= 1- oz)2

n+1
+ (1_[ (1+ y])) (2M222,1 + Vue1Cner)
j=1

n+l

n+l y .
= (1_[ (1+ V;‘)) (Z (2M%F +vici) + max{||X1 —x*|1%, ) = }) .
j=1

= (1 —a)?

This shows that (3.8) holds for the case of n + 1. By induction, we know that (3.8)

holds for all 7 > 1. Since Y oo) Y < 00, Y vey A2 < oc and Y o2 Vncy < 00, from (3.8)
we deduce that for all n > 1

||x"+1 _x*||2 < (11[(1 +V])) (2":(2M2Af+vici)+max{|lx1 —x*||2, ||f(x*) _x*||2 })

j=1 i=1 (1-a)’

n n *Y 4k (|2
<exp (]lem) (le (2M?F + vici) +max{||x1 —xI1%, ”f((’; )_a;” })
< exp iyj (i (ZMQAI-2 +vici) + max{llxl —x")?, IF() = XZHZ }) .

j=1 i=1 (1-a)

This implies that {x,} is bounded.
STEP 2. We claim that lim,,_,., ||x,.1 - %,|| = 0. Indeed, observe that

ltne1 = tall = [IPc(Xne1 — Ane1AVni1) — Pe(xn — AnAya)l|
< (%1 = Ane1AYne1) — (%0 — AnAyn)||
< xne1 — Xnll + Ane1 [|AVne || + Anl|Apnl|
< X1 — Xnll + (A + Ape1 )M

(3.9)



Ceng et al. Fixed Point Theory and Applications 2011, 2011:22
http://www.fixedpointtheoryandapplications.com/content/2011/1/22

and

Yne1 = ¥ull = (1 = i1 )X + 1 Pe(Xner — Ape1A%ne1)
— (1 = pn)xn — pnPc(xn — AnAxy)||

= [1(1 = tns1) Kne1 — %) — (K1 — Un)Xn
+ ne1 (Po(®ne1 — A1 Axne1) — Pe(xn — AnAxy))
+ (Mne1 — tn)Pe(Xn — AnAxy,)||
N1 = pner) (o1 — %) + (Uner — ) (Pe(n — AnAxn) — xn)  (3.10)
+ ne1 (Po(®ne1 — A1 Axne1) — Pe(xn — AnAxy))|
(1 — pne1)[Xne1 — Xnll + [ns1 — Ml Anl|Axn]|
+ Wnst [[Xne1 — Xnl| + Ans1 [|AXne1 [ + An|[A%n ][]
< 1%ne1 — Xl + Anl [AXn || + Ans1 [[AXns1 [| + Anl|Axn]|
< 1%ne1 — Xl + (240 + Ans1)M.

IA

Define a sequence {z,} by
Xns1 = OnXn + (1 —0n)zn, VYn=>1,

where 0, =1 - o, - B, - v, Vi > 1. Then we have

Xn+2 — On+1Xn+1 Xn+1 — OnXn
Znel — Zp = -

1—0nn 1—on
_ an+1f(}’n+l) + ,Bn+1tn+1 + Vn+lsn+1tn+l _ anf(}’n) + lgntn + v Sty
1- On+1 1- On
o2 o Bns1
= " fyn1) — ! fm) + " (tns1 — tn)
1_Qn+] 1_Qn I_Qn-ﬂ (3 11)
+ (an + Vp _ Onaa Vn+1> b+ Vn+1 S"+ltn+l _ Vn S, ’
1_911 1_Qn+1 l_Qn+1 1_Qn
Unil Ol Qp Bret
- ()~ Fn) + - Vi (trer = 1)
1- On+1 1- On+1 1- On 1— n+1
oy + V) Opp1 + V) v, v,
" ( n no_ n+1 n+1) f + n+1 S"+ltn+1 _ n Sntn.
1—o0n 1 —on1 1—0ona 1—o0n
From (3.9)-(3.11), we get
78] Ayl Qp Bni1
—zll < - - ths1 — ¢
e =l = 50 ) =l 5 = G Pl gl
I e T s e NS
—Qn 1- On+1 1- On+1 1- On
(e 707708} Opy1 + Vnyl Oy + V
=, 7“Q* e =7all + ( i 0 e Q") ()l + 11eall)
N+ n+ n
B V) v
. ": lltwer = tall + ";1 IS el + ) " 1"
— En+l — En+l1 — &n
B (R A [ e W ey 1¥) B (e N ([ VS T[T ||)(3'12)
=1_ Ons1 n+1 n n n+1 1— Ons1 1— on Vn n
B v, v,
. _”;1”” [nes =l + G+ Aps)MI+ | 0 (1S™ ]+ ', ISl
Opyl + Vpy1  Qp + V)
< ||%n+1 _an"'(?—)“n +)Ln+1)M+( ;H " + § n)(llf(%l)”"’l”n”)
— On+1 1- On
S 1S
1- On+1 1- On

Page 11 of 18



Ceng et al. Fixed Point Theory and Applications 2011, 2011:22
http://www.fixedpointtheoryandapplications.com/content/2011/1/22

which implies that

Qpe1 + Vnsd + Op +Vy
1- On+1 1- On
D
1 n
18" tnsa Il + 118" tall.
1_Qn

zne1 = Znll = [1Xne1 — 2nl| 5(2)‘11 +}hn+1)A’1 + (

) (1f )11+ 118l

Vn+l
1- On+1

Note that the boundedness of {x,} implies that {f (x,)} is also bounded. Since
||le — Xnll = ,U«n”PC(xn - )\nAxn) — Pexpl| < AnllAxp|| < AnM — 0, (3.13)
we know that {y,} is bounded and so is {f (y,)}. Moreover, {t,} is bounded by (3.5).
Now, utilizing Lemma 2.3, we obtain that

1
[18"tn — x"|| < 1 _K(Klltn — x| +\/(1 + (1 =1 )yn)lltn — x*[12 + (1 — k)cn).

Thus, from the boundedness of {¢,}, it follows that {§"¢,} is bounded. Also, note that
conditions

(i), (iii) imply

limsup " = limsup o <limsup " =0,

n—00 On n—soco On+ B+ vy n—00 n

and conditions (iii), (iv) lead to

. Vn . Vn . Vn
lim sup = lim sup <limsup = =0.
n—oo — On n—oo Op+ /Sn + Vn n— 00 n
Thus, we deduce from (3.12) that
limSUP(Hzml — Zn|| — [|%ne1 _xn“) <0.

n—o0
Since p,, = 1 - @, - B,, - v, we know from conditions (ii), (iii), (iv) that

0 < liminfp, < limsup o, < 1.
n—oo

n—o00

Thus, in terms of Lemma 2.7, we get lim,, ,.. ||z, - x,,|| = 0. Consequently,
lim |[xy41 — xn|| = lim (1 — 04)llzn — xul| = 0. (3.14)
n—-oo n—oo

STEP 3. We claim that lim,, ,.. ||Sx,, - x,|| = lim,_,.. ||St, - t,|| = 0. Indeed, observe

that
[lyn — tull = ||(1 - H«n)(Pan - PC(xn - )"HAyH)) + /Jvn(PC(xn - )‘nAxn) - PC(xn - )“VIAYVI))H
= (1 - Mn)HPan - PC(xn - )LnAYn)H +MnHPC(xn - )LnAxn) - PC(xn - )\nA}’n)H
< AnllAynll + Anl|Axy — Aynll — O,
and hence

[1tn — xnll < [lta — Ynll + lyn — Xall = 0.
Note that the following condition holds:

lim ||S"x, — x,|| = 0. (3.15)
n—oo

Page 12 of 18
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Also, observe that
||Sntn — |l < ||Sntn - Snxn” + ||Snxn — Xull + [lxn — tall. (3.16)

Utilizing Lemma 2.3 and ¢, - x,, > 0, we have
n n 1 2
(18"t —S"xn|| < 1—« €1ty = xull + /(1 + (1 = 1) yn)lltn — %12 + (1 — & )cn | = 0(3.17)

Thus from (3.15)-(3.17), we obtain
lim [[S"t, — tal| = 0. (3.18)
n—oo

In addition, from (3.9) and %, - x,, _, o, it follows that %, - £, _, ¢. Therefore, uti-
lizing the uniform continuity of S and Lemma 2.4, we know that lim,, ,.. ||Sx, - x,,|| =
0 and lim,,_,.. ||St, - t,|| = 0.

STEP 4. We claim that lim sup, ,. {f (q) - ¢, x, - @) < 0. Indeed, we pick a subse-
quence {x,,} of {x,} so that

lim sup{f(q) — g, x» — q) = lim (f(q) — g, %n, — ). (3.19)

Without loss of generality, let x,, — % € C. Then, (3.19) reduces to

liﬁgp(f(q) —q,%—q) = (f(9) —4.X — q).

In order to show (f(q) — ¢, % — q) < 0, it suffices to show that X € F(S) N . Since S
is uniformly continuous and [|x,, - Sx,|| — 0, we see that ||x, - $”x,|| — O for all m >
1. By Proposition 2.1, we obtain X € F(S). Now let us show that x € £. Let

_JAv+ Nevifve G,
T“‘{@ ifv g C.

Then, T is maximal monotone and 0 € Tv if and only if v € Q; see [33]. Let (v, w) €
G(T). Then, we have w € Tv = Av + N¢v and hence w - Av € Ncv. Therefore, we have
(v-u,w-Av) >0 for all u € C. In particular, taking ¥ = Xn, we get

(v =% w) = liminf(v — x,,, w) > lim inf(v — x,,,, Av)

i—00 i—00
= liminf[(v — x,,, Av — Axp,) + (V — Xp,, AXy,,)]
1—>00

> lim inf(v — xp,, Axy,) > liminf(v — x,,, Ax,) > 0
1—00 n—oo

and so (v — %, w) > 0. Since T is maximal monotone, we have 3 ¢ T-10 and hence
X €

This shows that X € F(S) N £2. Therefore by the property of the metric projection, we
derive (f(q) —q, % —q) < 0.

STEP 5. We claim that lim,_,.. ||, - g|| = 0 where g = Pgs)na f (¢). Indeed, since
{Ax,}, {Ay,}, {S"t,} are bounded, we may assume that there exists a constant M > sup
{l1Ax,|| +||Ay.l| + ||Aql| + ||S"t, - ql]: » = 1 g. Then from (3.1), (3.5) and Lemma 2.8,
we get

Page 13 of 18
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(1% — qlI?
= 11(1 = atn = Bu = va) (0 — @) + @n(f () — 4) + Bul(tn — @) + vu(S"tn — q)II?
< (1= an = Ba = i) (% — 4) + Bultn — 4) + va(S"tn — D)I1” + 20 (f (yn) — G, Xer — q)
< (1 = an = Bo— va)ll%n — Il + Bullta — ql1 + val1S™tn — ql11* + 20 (f (yn) — 4, Xns1 — q)
< [(1 = an = Bo— va)llxn — gl + Bu(llxn — qll + 2uM) + vaM]* + 200 (f (yn) = G, Xn1 — )
= [(1 = an = va)llxn = gl + (Bukn + vi)M]? + 20 (f (V) — G, Xne1 — @)
< [(1 = an)llxn — gl + (hn + v)M] + 200 (f (7) — 4, Xne1 — )
= [(1 = a)lln — gl + (hn + va)M]? + 200 [ (f (yn) = f (%), %01 — )
+{f () = £(@) xna1 — @) + (F(0) — G, Xne1 — 9]
< (1= an)? Il — gl + (un + v)M[2(1 = @) %0 — gl + (An + va)M]
+20tn[allyn — xul |11 — q11 + allxn — lll1%ne1 — gl1 + (F(@) — G, X1 — G)]
< (1= an)?{lxn — g1 + enll1n — 11> + [1%ns1 — q1*] + 200 [er]yn — xul|[1xne1 — 1]
+(f(q) —{,Xn+1 — 4>] + ()‘n + Vn)M[2||xn —qll + ()‘n + Vn)M]:

which implies that

2ay

1—a, 2+ozot,,
( ) o — qll* + 1 — a Nlyn = ullllxner = dll + £(q) = 4, xne1 = 9)]

2
P —qll® < =~

1
+ ()tn + Vn)M[ZHXn —qll+ ()“n + Vn)M]
1—aa,
a? 2u
5(1—2(1—a)an+ " )||xn—q||2+ " ellyn = xallllxne — 4l
— ooy 17(10(”

1
1 (3.20)

+(f(q) — 4, %1 — @] + 1 (n + va)M[2[[xn = ql| + (An + va)M]
— ooty

=(1=2(1 —a)an)llxn — ql1? +2(1 — @)y
1
T —a)(1 - aay)

1
+ 1 —aay (An + va)M[2]1xy — gl| + (An + va)M].

[ 10 = g1 + allys = xalll 501 =1l + (F(0) = .50 = )]

Note that lim,, ,.. &, = 0 and > 72, 2(1 — &)ay, = co. Since lim sup,, .. f (q) - ¢, X411
- q) <0, lim, .. ||y, - %,|| =0 and {x, - g} is bounded, we know that

. 1 ap 2
timsup gy [ 1= il e =l = dll+ (@) = a5 —@)] <0

Also, since Y 12, Ay < 00 and Y o2, vy = 0, it is easy to see that
1
Z |- (An + V)M [2||xn — gl + (rn + vn)M] < 00.
n=1 n
Therefore, according to Lemma 2.6, we deduce that from (3.20) that ||x, - g|| — 0.
Further from ||y, - x,|| — 0, we obtain ||y, - g|| = 0. This completes the proof. O
In Theorem 3.1, if we put v, = 0 (Vn = 1) and S = [ the identity mapping. Then, the

iterative scheme (3.1) reduces to the following scheme:

x1 = x € C chosen arbitrary,
Yn = (1 = pn)xn + pinPc(xn — AnAxn), (3.21)
Xne1 = (1 = ay — Bn)xn + anf (yu) + BnPc(Xn — AnAyn), VYn > 1.

Moreover, it is easy to see that Y oo v, = 0o and |[(I - §")x,|| = 0. Thus, we have
following corollary.

Corollary 3.1. Let A : C — H be a monotone, L-Lipschitz continuous mapping, and f
: C — C be a contraction with contractive constant o (0, 1). Let Q = @. Let {x,}, Wt



Ceng et al. Fixed Point Theory and Applications 2011, 2011:22 Page 15 of 18
http://www fixedpointtheoryandapplications.com/content/2011/1/22

be the sequences generated by (3.21), where {A,} is a sequence in (0, 1) with
Yo < 00, and {a}, {B,} and {u,} are three sequences in [0, 1] satisfying the condi-
tions:

(Bl) a,, + B, <1 foralln > 1,
(B2) lim,, . &t = 0, Y 02 oty = 005

(B3) 0 < lim inf,,_,.. B, < lim sup,_,. B, < 1.

Then, the sequences {x,}, {y,} converge strongly to the same point q = Pq f (q) if and
only if {Ax,} is bounded and lim inf, ... (Ax,, y - x,) 20 forall y e C.

If A '0 = Q and Py = I, the identity mapping of H, then the iterative scheme (3.1)
reduces to the following iterative scheme:

x1 = x € H chosen arbitrary,

Vn = (1 - /an)xn + Mn(xn - )bnAxn)/
tn = Xn — AnAyn,

X1 = (1 — on — Bu — vn)Xn + &nf (Yn) + Bntn + vuS"t,, Vn > 1.

(3.22)

The following corollary can be easily derived from Theorem 3.1.

Corollary 3.2. Let f: H — H be a contractive mapping with constant a € (0, 1), A :
H — H be a monotone, L-Lipschitz continuous mapping and S : H — H be a uniformly
continuous asymptotically k-strict pseudocontractive mapping in the intermediate sense
with sequence {y,} such that F(S) N A" '0 = & and Y o Yn < 0. Let {x,}, {y,.} be the
sequences generated by (3.22), where {A,)} is a sequence in (0, 1) with Y ;21 An < 05,
and {o,.}, B}, {p.} and {v,} are four sequences in [0, 1] satisfying the conditions (Al)-
(A4). Then, the sequences {x,}, {y,} converge strongly to the same point
q = Prsyna—1of (@)if and only if {Ax,} is bounded, ||(I - $")x,|| — 0 and lim inf, ,..
(Ax,, vy - %,) 2 0 for all y e H.

Let B : H — 2" be a maximal monotone mapping. Then, for any x € H and r > 0,
consider ]fx ={z € H:z+71Bz > x}. Such ]fxis called the resolvent of B and is denoted
by J = (I+71B)~".

If we put S = JB and Py = I, then the iterative scheme (3.1) reduces to the following

scheme:

x1 = x € H chosen arbitrary,

Vn = (1 - /‘Ln)xn + Hn(xn - )hnAxn),
tn = Xn — AnAyn,

Xne1 = (1 — otn — Bn — vn )X + duf (Yn) + Bnln + vn(]f)"tn, vn > 1.

(3.23)

It is easy to see that x = 0, 7, = 0 and ¢,, = O for all #» > 1. Moreover, we have Ao =
Q and F(JB) = B710. Thus, utilizing Theorem 3.1, we obtain the following corollary.

Corollary 3.3. Let f: H — H be a contractive mapping with constant € (0, 1), A :
H — H be a monotone, L-Lipschitz continuous mapping and B : H — 2" be a maximal
monotone mapping such that A0 n B = &. Let JPbe the resolvent of B for each r > 0.
Let {x,}, {y,} be the sequences generated by (3.23), where {A,,} is a sequence in (0, 1)
with Y 02, Ay < 00, and {0}, B}, {4} and {v,} are four sequences in [0, 1] satisfying
the conditions (Al)-(A4). Then, the sequences {x,}, {y,} converge strongly to the same
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point q = Pa-iong-10f (q)if and only if {Ax,} is bounded, ||(I — (JB)")xn|| — Oand lim
inf, ,.. (Ax,, y - x,,) 20 for all y e H.

Corollary 3.4. Let f: H — H be a contractive mapping with constant oc € (0, 1) and
A : H - H be a monotone, L-Lipschitz continuous mapping such that A0 = @.Let
{4}, ) be the sequences generated by

x1 = x € H chosen arbitrary,
Yo = (1 = tn)%n + pn(Xn — AnAxn), (3.24)
Xns1 = (1 — oty — Bu)Xn + &nf (Yn) + Bu(%n — AnAyn), VYn =1,

where {A,,} is a sequence in (0, 1) with Y .21 Ay < 00, and {o}, {B,.} and {u,} are three
sequences in [0, 1] satisfying the conditions (B1)-(B3). Then, the sequences {x,}, {y,.} con-
verge strongly to the same point q = Pa-1of (q)if and only if {Ax,} is bounded and lim
inf, ,.. (Ax,, y - x,) 20 forall ye C.

Proof. In Theorem 3.1, put C = H, v,, = 0 (Vn 2 1) and S = [ the identity mapping of
H. Then, we know that x = 0, %, = 0 and ¢,, = 0 for all # > 1. Moreover, we have A0
= Q. PH = I. In this case, it is easy to see that ) .2, v, =00 and ||(/ - $")x,|| = 0.
Therefore, by Theorem 3.1, we obtain the desired conclusion. O

We also know one more definition of a pseudocontractive mapping, which is equiva-
lent to the definition given in the preliminaries. A mapping S : C — C is called pseu-
docontractive [26] if

(Sx—Sy,x—y) < llx—yl>, VxyeC.

Obviously, the class of pseudocontractive mappings is more general than the class of
nonexpansive mappings. For the class of pseudocontractive mappings, there are some
nontrivial examples; see, e.g., [[24], p. 1239] for further details. In the following theo-
rem, we introduce an iterative process that converges strongly to a common fixed
point of two mappings, one of which is an asymptotically x-strict pseudocontractive
mapping in the intermediate sense with sequence {¥,} and the other Lipschitz continu-
ous and pseudocontractive.

Theorem 3.2. Let f: C — C be a contractive mapping with constant oo € (0, 1), T: C
— C be a pseudocontractive, m-Lipschitz continuous mapping and S : C — C be a uni-
formly continuous asymptotically k-strict pseudocontractive mapping in the intermedi-
ate sense with sequence {Y,} such that F(S) n F(T) = & and Y pe) yn < 00. Let {x,}, (¥}

be the sequences generated by

x1 = x € C chosen arbitrary,
Vn = (1 - M")xn + /LHPC(xn - )"nAxn)r
ty = PC(xn - )VnAYn)/

X1 = (1 — on — Bu — vn)xn + &nf (Yn) + Bty + vuS"t,, Vn > 1,

(3.25)

where A = I - T, {A,,} is a sequence in (0, 1) with Y ooy Ay < 00, and {ot,}, (B}, (.}
and {v,} are four sequences in [0, 1] satisfying the conditions (Al1)-(A4). Then, the
sequences {x,}, {y,} converge strongly to the same point q = Prsnpenyf (q) if and only if
{Ax,} is bounded, ||(I - S")x,|| — 0 and lim inf, ... (Ax,, y - x,,) 2 0 forall ye C.

Proof. Let A = I - T. Let us show that the mapping A is monotone and (m + 1)-
Lipschitz continuous. Indeed, observe that
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(Ax — Ay, x =) = |l =yII> = (Tx = Ty,x —y) 2 0
and

[[Ax — Ayll = llx —y — (Tx = TY)I| < llx — Il + [|Tx = Tyl < (m + 1)]Ix — Y.
Now, let us show that F(T) = Q. Indeed, we have, for fixed 1, € (0, 1),

Tu=u & u=u— ArAu="Pc(u—2rAu) & (Au,y—u) >0, VyeC.

By Theorem 3.1, we obtain the desired conclusion. O
Theorem 3.3. Let f: C — C be a contractive mapping with constant oo € (0, 1), T: C
— C be a pseudocontractive, m-Lipschitz continuous mapping and S : C — C be a non-
expansive mapping such that F(S) n F(T) = @. Let {x,}, {y.} be the sequences generated
by
x1 = x € C chosen arbitrary,
Yn = (1 — wn)xn + nPc(xn — AnAxy),
ty = PC(xn - )\nAYn),

Xn+l = (1 —ap— By — Vn)xn + Ofnf()’n) + Bty + v S"ty, VYn>1,

(3.26)

where A = 1 - T, {4} is a sequence in (0, 1) with Y o2 Ay < 00, and {0}, (B}, (.}
and {v,}

are sequences in [0, 1] satisfying the conditions (A1)-(A4). Then, the sequences {x,},
{y.} converge strongly to the same point q = Prsynr(ryf (q) if and only if {Ax,} is
bounded, ||(I - S")x,|| = 0 and lim inf, .. (Ax,, y - x,,) = 0 forall y e C.

Proof. Let A = I - T. In terms of the proof of Theorem 3.2, we know that A is a
monotone and (m+1)-Lipschitz continuous mapping such that F(7) = Q. Since S is a
nonexpansive mapping, we know that x = 0, 7, = 0 and ¢,, = 0 for all # > 1. By Theo-
rem 3.1, we obtain the desired conclusion. O
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