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Abstract

The convex feasibility problem (CFP) of finding a point in the nonempty intersection⋂r
m=1 Cm is considered, where r ≥ 1 is an integer and each Cm is assumed to be the

solution set of a generalized variational inequality. Let C be a nonempty closed and
convex subset of a real Hilbert space H. Let Am, Bm : C ® H be relaxed cocoercive
mappings for each 1 ≤ m ≤ r. It is proved that the sequence {xn} generated in the
following algorithm:

x1 ∈ C, xn+1 = αnu + βnxn + γn

r∑
m=1

δ(m,n)PC(τmBmxn − λmAmxn), n ≥ 1,

where u Î C is a fixed point, {an}, {bn}, {gn}, {δ(1,n)}, ..., and {δ(r,n)} are sequences in (0, 1)
and {τm}rm=1, {λm}rm=1 are positive sequences, converges strongly to a solution of CFP
provided that the control sequences satisfies certain restrictions.
2000 AMS Subject Classification: 47H05; 47H09; 47H10.
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1. Introduction and Preliminaries
Many problems in mathematics, in physical sciences and in real-world applications of

various technological innovations can be modeled as a convex feasibility problem

(CFP). This is the problem of finding a point in the intersection of finitely many closed

convex sets in a real Hilbert spaces H. That is,

finding an x ∈
r⋂

m=1

Cm, (1:1)

where r ≥ 1 is an integer and each Cm is a nonempty closed and convex subset of H.

There is a considerable investigation on CFP in the setting of Hilbert spaces which

captures applications in various disciplines such as image restoration [1,2], computer

tomography [3] and radiation therapy treatment planning [4].

Throughout this paper, we always assume that H is a real Hilbert space, whose inner

product and norm are denoted by 〈·, ·〉 and ||·||. Let C be a nonempty closed and con-

vex subset of H and A: C ® H a nonlinear mapping. Recall the following definitions:
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(a) A is said to be monotone if

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C.

(b) A is said to be r-strongly monotone if there exists a positive real number r >0

such that

〈Ax − Ay, x − y〉 ≥ ρ||x − y||2, ∀x, y ∈ C.

(c) A is said to be h-cocoercive if there exists a positive real number h >0 such that

〈Ax − Ay, x − y〉 ≥ η||Ax − Ay||2, ∀x, y ∈ C.

(d) A is said to be relaxed h-cocoercive if there exists a positive real number h >0

such that

〈Ax − Ay, x − y〉 ≥ (−η)||Ax − Ay||2, ∀x, y ∈ C.

(e) A is said to be relaxed (h, r)-cocoercive if there exist positive real numbers h, r
>0 such that

〈Ax − Ay, x − y〉 ≥ (−η)||Ax − Ay||2 + ρ||x − y||2, ∀x, y ∈ C.

The main purpose of this paper is to consider the following generalized variational

inequality. Given nonlinear mappings A : C ® H and B : C ® H, find a u Î C such

that

〈u − τBu + λAu, v − u〉 ≥ 0, ∀v ∈ C, (1:2)

where l and τ are two positive constants. In this paper, we use GV I(C, B, A) to

denote the set of solutions of the generalized variational inequality (1.2).

It is easy to see that an element u Î C is a solution to the variational inequality (1.2)

if and only if u Î C is a fixed point of the mapping PC(τB - lA), where PC denotes the

metric projection from H onto C. Indeed, we have the following relations:

u = PC(τB − λA)u ⇔ 〈u − τBu + λAu, v − u〉 ≥ 0, ∀v ∈ C. (1:3)

Next, we consider a special case of (1.2). If B = I, the identity mapping and τ = 1,

then the generalized variational inequality (1.1) is reduced to the following. Find u Î C

such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C. (1:4)

The variational inequality (1.4) emerging as a fascinating and interesting branch of

mathematical and engineering sciences with a wide range of applications in industry,

finance, economics, social, ecology, regional, pure and applied sciences was introduced

by Stam-pacchia [5]. In this paper, we use V I(C, A) to denote the set of solutions of

the variational inequality (1.4).

Let S : C ® C be a mapping. We use F(S) to denote the set of fixed points of the

mapping S. Recall that S is said to be nonexpansive if

||Sx − Sy|| ≤ ||x − y||, ∀x, y ∈ C.
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It is well known that if C is nonempty bounded closed and convex subset of H, then

the fixed point set of the nonexpansive mapping S is nonempty, see [6] more details.

Recently, fixed point problems of nonexpansive mappings have been considered by

many authors; see, for example, [7-16].

Recall that S is said to be demi-closed at the origin if for each sequence {xn} in C, xn ⇀

x0 and Sxn ® 0 imply Sx0 = 0, where ⇀ and ® stand for weak convergence and strong

convergence.

Recently, many authors considered the variational inequality (1.4) based on iterative

methods; see [17-32]. For finding solutions to a variational inequality for a cocoercive

mapping, Iiduka et al. [22] proved the following theorem.

Theorem ITT. Let C be a nonempty closed convex subset of a real Hilbert space H

and let A be an a-cocoercive operator of H into H with V I(C, A) ≠ ∅. Let {xn} be a

sequence defined as follows. x1 = x Î C and

xn+1 = PC(αnxn + (1 − αn)PC(xn − λnAxn))

for every n = 1, 2, ..., where C is the metric projection from H onto C, {an} is a

sequence in [-1, 1], and {ln} is a sequence in [0, 2a]. If {an} and {ln} are chosen so that

{an} Î [a, b] for some a, b with -1 < a < b <1 and {ln} Î [c, d] for some c, d with 0 <

c < d <2(1 + a)a, then {xn} converges weakly to some element of V I(C, A).

Subsequently, Iiduka and Takahashi [23] further studied the problem of finding solu-

tions of the classical variational inequality (1.4) for cocoercive mappings (inverse-

strongly monotone mappings) and nonexpansive mappings. They obtained a strong

convergence theorem. More precisely, they proved the following theorem.

Theorem IT. Let C be a closed convex subset of a real Hilbert space H. Let S : C ®
C be a nonexpanisve mapping and A an a-cocoercive mapping of C into H such that F

(S) ∩ V I(C, A) ≠ ∅. Suppose x1 = u Î C and {xn} is given by

xn+1 = αnu + (1 − αn)SPC(xn − λnAxn)

for every n = 1, 2, ..., where {an} is a sequence in [0, 1) and {ln} is a sequence in [a,

b].

If {an} and {ln} are chosen so that {ln} Î [a, b] for some a, b with 0 < a < b <2a,

lim
n→∞ αn = 0,

∞∑
n=1

αn = ∞,
∞∑
n=1

|αn+1 − αn| < ∞ and
∞∑
n=1

|λn+1 − λn| < ∞,

then {xn} converges strongly to PF(S)∩V I(C,A)x.

In this paper, motivated by research work going on in this direction, we study the

CFP in the case that each Cm is a solution set of generalized variational inequality

(1.2). Strong convergence theorems of solutions are established in the framework of

real Hilbert spaces.

In order to prove our main results, we need the following lemmas.

Lemma 1.1 [33]. Let {xn} and {yn} be bounded sequences in a Hilbert space H and

{bn} a sequence in (0, 1) with

0 < lim inf
n→∞ βn ≤ lim sup

n→∞
βn < 1.
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Suppose that xn+1 = (1 - bn)yn + bnxn for all integers n ≥ 0 and

lim sup
n→∞

(||yn+1 − yn|| − ||xn+1 − xn||) ≤ 0.

Then limn®∞ ||yn - xn|| = 0.

Lemma 1.2 [34]. Let C be a nonempty closed and convex subset of a real Hilbert

space H. Let S1 : C ® C and S2 : C ® C be nonexpansive mappings on C. Suppose

that F(S1) ∩ F (S2) is nonempty. Define a mapping S : C ® C by

Sx = aS1x + (1 − a)S2x, ∀x ∈ C,

where a is a constant in (0, 1). Then S is nonexpansive with F(S) = F(S1) ∩ F (S2).

Lemma 1.3 [35]. Let C be a nonempty closed and convex subset of a real Hilbert

space H and S : C ® C a nonexpansive mapping. Then I - S is demi-closed at zero.

Lemma 1.4 [36]. Assume that {an} is a sequence of nonnegative real numbers such

that

αn+1 ≤ (1 − γn)αn + δn,

where {gn} is a sequence in (0, 1) and {δn} is a sequence such that

(a)
∑∞

n=1 γn = ∞;

(b) lim supn®∞ δn/gn ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn®∞ an = 0.

2. Main results
Theorem 2.1. Let C be a nonempty closed and convex subset of a real Hilbert space H.

Let Am : C ® H be a relaxed (hm, rm)-cocoercive and μm-Lipschitz continuous mapping

and Bm : C ® H a relaxed (̂ηm, ρ̂m)-cocoercive and μ̂m-Lipschitz continuous mapping

for each 1 ≤ m ≤ r. Assume that
⋂r

m=1 GVI(C,Bm,Am) �= ∅. Let {xn} be a sequence gener-

ated in the following manner:

x1 ∈ C, xn+1 = αnu + βnxn + γn

r∑
m=1

δ(m,n)PC(τmBmxn − λmAmxn), n ≥ 1, (ϒ)

where u Î C is a fixed point, {an}, {bn}, {gn}, {δ(1,n)}, ..., and {δ(r,n)} are sequences in (0,

1) satisfying the following restrictions:

(a) αn + βn + γn =
∑r

m=1 δ(m,n) = 1, ∀n ≥ 1;

(b) 0 <lim infn®∞ bn ≤ lim supn®∞ bn <1;

(c) limn®∞ an = 0 and
∑∞

n=1 αn = ∞;

(d) limn®∞ δ(m,n) = δm Î (0, 1), ∀1 ≤ m ≤ r,

And {τm}rm=1, {λm}rm=1are two positive sequences such that

(e)
√
1 − 2λmρm + λ2

mμ2
m + 2λmηmμ2

m+
√
1 − 2̂λmρ̂m + λ̂2

mμ̂2
m + 2̂λmη̂mμ̂2

m ≤ 1, ∀1 ≤ m ≤ r.

Then the sequence {xn} generated in the iterative process (ϒ) converges strongly to a
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common element x̄ ∈ ⋂r
m=1 GVI(C,Bm,Am), which uniquely solves the following varia-

tional inequality.

〈u − x̄, x̄ − x∗〉 ≥ 0, ∀x∗ ∈
⋂r

m=1
GVI(C,Bm,Am).

Proof. First, we prove that the mapping PC(τmBm - lmAm) is nonexpansive for each 1

≤ m ≤ r. For each x, y Î C, we have

||PC(τmBm − λmAm)x − PC(τmBm − λmAm)y||
≤ ||(τmBm − λmAm)x − (τmBm − λmAm)y||
≤ ||(x − y) − λm(Amx − Amy)|| + ||(x − y) − τm(Bmx − Bmy)||.

(2:1)

It follows from the assumption that each Am is relaxed (hm, rm)-cocoercive and μm-

Lipschitz continuous that

||x − y − λm(Amx − Amy)||2
= ||x − y||2 − 2λm〈Amx − Amy, x − y〉 + λ2

m||Amx − Amy||2
≤ ||x − y||2 − 2λm[(−ηm)||Amx − Amy||2 + ρm||x − y||2] + λ2

mμ2
m||x − y||2

= (1 − 2λmρm + λ2
mμ2

m)||x − y||2 + 2λmηm||Amx − Amy||2
= (1 − 2λmρm + λ2

mμ2
m)||x − y||2 + 2λmηmμ2

m||Amx − Amy||2
= ξ2m||x − y||2,

where ξm =
√
1 − 2λmρm + λ2

mμ2
m + 2λmηmμ2

m. This shows that

||x − y − λm(Amx − Amy)|| ≤ ξm||x − y||. (2:2)

In a similar way, we can obtain that

||x − y − τm(Bmx − Bmy)|| ≤ ζm||x − y||, (2:3)

where ζm =
√
1 − 2̂λmρ̂m + λ̂2

mμ̂2
m + 2̂λmη̂mμ̂2

m. Substituting (2.2) and (2.3) into (2.1),

we from the condition (e) see that PC(τmBm - lmAm) is nonexpansive for each 1 ≤ m ≤

r. Put

yn =
r∑

m=1

δ(m,n)PC(τmBmxn − λmAmxn), ∀n ≥ 1.

Fixing p ∈ ⋂r
m=1 GVI(C,Bm,Am), we see that

||yn − p|| ≤ ||xn − p||.

It follows that

||xn+1 − p|| = ||αnu + βnxn + γnyn − p||
≤ αn||u − p|| + βn||xn − p|| + γn||yn − p||
≤ αn||u − p|| + βn||xn − p|| + γn||xn − p||
= αn||u − p|| + (1 − αn)||xn − p||.

By mathematical inductions we arrive at

||xn − p|| ≤ max{||u − p||, ||x1 − p||}, ∀n ≥ 1.
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Since the mapping PC(τmBm - lmAm) is nonexpansive for each 1 ≤ m ≤ r, we see that

||yn+1 − yn||

= ||
r∑

m=1

δ(m,(n+1))PC(τmBmxn+1 − λmAmxn+1) −
r∑

m=1

δ(m,n)PC(τmBmxn − λmAmxn)||

≤ ||xn+1 − xn|| +M
r∑

m=1

|δ(m,(n+1)) − δ(m,n)|,

(2:4)

where M is an appropriate constant such that

M = max{sup
n≥1

||PC(τmBmxn − λmAmxn)||, ∀1 ≤ m ≤ r}.

Put ln = xn+1−βnxn
1−βn

, for all n ≥ 1. That is,

xn+1 = (1 − βn)ln + βnxn, ∀n ≥ 1. (2:5)

Now, we estimate ||ln+1 - ln||. Note that

ln+1 − ln =
αn+1u + γn+1yn+1

1 − βn+1
− αnu + γnyn

1 − βn

=
αn+1

1 − βn+1
(u − yn+1) +

αn

1 − βn
(yn − u) + yn+1 − yn,

which combines with (2.4) yields that

||ln+1 − ln|| − ||xn+1 − xn||

≤ αn+1

1 − βn+1
||u − yn+1|| + αn

1 − βn
||yn − u|| +M

r∑
m=1

|δ(m,(n+1)) − δ(m,n)|.

It follows from the conditions (b), (c) and (d) that

lim sup
n→∞

(||ln+1 − ln|| − ||xn+1 − xn+1||) ≤ 0.

It follows from Lemma 1.1 that limn®∞ ||ln - xn|| = 0. In view of (2.5), we see that xn
+1 xn = (1 - bn)(ln - xn). It follows that

lim
n→∞ ||xn+1 − xn|| = 0. (2:6)

On the other hand, from the iterative algorithm (ϒ), we see that xn+1 - xn = an(u -

xn) + gn(yn - xn). It follows from (2.6) and the conditions (b), (c) that

lim
n→∞ ||yn − xn|| = 0. (2:7)

Next, we show that lim supn→∞〈u − x̄, xn − x̄〉 ≤ 0. To show it, we can choose a sub-

sequence {xni} of {xn} such that

lim sup
n→∞

〈u − x̄, xn − x̄〉 = lim
i→∞

〈u − x̄, xni − x̄〉. (2:8)

Since {xni} is bounded, we obtain that there exists a subsequence {xnij } of {xni} which
converges weakly to q. Without loss of generality, we may assume that xni ⇀ q. Next,

we show that q ∈ ⋂r
m=1 GVI(C,Bm,Am). Define a mapping R : C ® C by
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Rx =
r∑

m=1

δmPC(τmBm − λmAm)x, ∀x ∈ C,

where δm = limn®∞ δ(m,n). From Lemma 1.2, we see that R is nonexpansive with

F(R) =
r⋂

m=1

F(PC(τmBm − λmAm)) =
r⋂

m=1

GVI(C,Bm,Am).

Now, we show that Rxn - xn ® 0 as n ® ∞. Note that

||Rxn − xn||

= ||
r∑

m=1

δmPC(τmBm − λmAm)xn −
r∑

m=1

δ(m,n)PC(τmBmxn − λmAmxn)|| + ||yn − xn||

≤ M
r∑

m=1

|δ(m,n) − δm| + ||yn − xn||.

From the condition (d) and (2.7), we obtain that limn®∞ ||Rxn - xn|| = 0. From

Lemma 1.3, we see that

q ∈ F(R) =
r⋂

m=1

F(PC(τmBm − λmAm)) =
r⋂

m=1

GVI(C,Bm,Am).

In view of (2.8), we arrive at

lim sup
n→∞

〈u − x̄, xn − x̄〉 = 〈u − x̄, q − x̄〉 ≤ 0. (2:9)

Finally, we show that xn → x̄ as n - ∞. Note that

||xn+1 − x̄||2
= 〈αnu + βnxn + γnyn − x̄, xn+1 − x̄〉
= αn〈u − x̄, xn+1 − x̄〉 + βn〈xn − x̄, xn+1 − x̄〉 + γn〈yn − x̄, xn+1 − x̄〉
≤ αn〈u − x̄, xn+1 − x̄〉 + βn||xn − x̄||||xn+1 − x̄|| + γn||yn − x̄|| ||xn+1 − x̄||
≤ αn〈u − x̄, xn+1 − x̄〉 + (1 − αn)||xn − x̄|| ||xn+1 − x̄||
≤ 1 − αn

2
(||xn − x̄||2 + ||xn+1 − x̄||2) + αn〈u − x̄, xn+1 − x̄〉,

which implies that

||xn+1 − x̄||2 ≤ (1 − αn)||xn − x̄||2 + 2αn〈u − x̄, xn+1 − x̄〉. (2:10)

From the condition (c), (2.9) and applying Lemma 1.4 to (2.10), we obtain that

lim
n→∞ ||xn − x̄|| = 0.

This completes the proof.

If Bm ≡ I, the identity mapping and τm ≡ 1, then Theorem 2.1 is reduced to the fol-

lowing result on the classical variational inequality (1.4).

Corollary 2.2. Let C be a nonempty closed and convex subset of a real Hilbert space

H. Let Am : C ® H be a relaxed (hm, rm)-cocoercive and μm-Lipschitz continuous map-

ping for each 1 ≤ m ≤ r. Assume that
⋂r

m=1 VI(C,Am) �= ∅. Let {xn} be a sequence gener-

ated by the following manner:
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x1 ∈ C, xn+1 = αnu + βnxn + γn

r∑
m=1

δ(m,n)PC(xn − λmAmxn), n ≥ 1,

where u Î C is a fixed point, {an}, {bn}, {gn}, {δ(1,n)}, ..., and {δ(r,n)} are sequences in (0,

1) satisfying the following restrictions.

(a) αn + βn + γn =
∑r

m=1 δ(m,n) = 1, ∀n ≥ 1;

(b) 0 <lim infn®∞ bn ≤ lim supn®∞ bn < 1;

(c) limn®∞ an = 0 and
∑∞

n=1 α = ∞;

(d) limn®∞ δ(m,n) = δm Î (0, 1), ∀1 ≤ m ≤ r, and {λm}rm=1is a positive sequence such

that

(e) λm ≤ 2ρm−2ηmμ2
m

μ2
m

, ∀1 ≤ m ≤ r.

Then the sequence {xn} converges strongly to a common element x̄ ∈ ⋂r
m=1 VI(C,Am),

which uniquely solves the following variational inequality

〈u − x̄, x̄ − x∗〉 ≥ 0, ∀x∗ ∈
⋂r

m=1
VI(C,Am).

If r = 1, then Theorem 2.1 is reduced to the following.

Corollary 2.3. Let C be a nonempty closed and convex subset of a real Hilbert space

H. Let A : C ® H be a relaxed (h, r)-cocoercive and μ-Lipschitz continuous mapping

and B : C ® H a relaxed (̂η, ρ̂)-cocoercive and μ̂-Lipschitz continuous mapping.

Assume that GV I(C, B, A) is not empty. Let {xn} be a sequence generated in the follow-

ing manner:

x1 ∈ C, xn+1 = αnu + βnxn + γnPC(τBxn − λAxn), n ≥ 1,

where u Î C is a fixed point, {an}, {bn} and {gn} are sequences in (0, 1) satisfying the

following restrictions.

(a) an + bn + gn = 1, ∀n ≥ 1;

(b) 0 <lim infn®∞ bn ≤ lim supn®∞ bn <1;

(c) limn®∞ an = 0 and
∑∞

n=1 αn = ∞
(d)

√
1 − 2λρ + λ2μ2 + 2λημ2 +

√
1 − 2̂λρ̂ + λ̂2μ̂2 + 2̂λη̂μ̂2 ≤ 1.

Then the sequence {xn} converges strongly to a common element x̄ ∈ GVI(C,B,A),

which uniquely solves the following variational inequality

〈u − x̄, x̄ − x∗〉 ≥ 0, ∀x∗ ∈ GVI(C,B,A).

For the variational inequality (1.4), we can obtain from Corollary 2.3 the following

immediately.

Corollary 2.4. Let C be a nonempty closed and convex subset of a real Hilbert space

H. Let A : C ® H be a relaxed (h, r)-cocoercive and μ-Lipschitz continuous mapping.

Assume that V I(C, A) is not empty. Let {xn} be a sequence generated in the following

manner:

x1 ∈ C, xn+1 = αnu + βnxn + γnPC(xn − λAxn), n ≥ 1,

Yu and Liang Fixed Point Theory and Applications 2011, 2011:19
http://www.fixedpointtheoryandapplications.com/content/2011/1/19

Page 8 of 10



where u Î C is a fixed point, {an}, {bn} and {gn} are sequences in (0, 1) satisfying the

following restrictions.

(a) an + bn + gn = 1, ∀n ≥ 1;

(b) 0 <lim infn®∞ bn ≤ lim supn®∞ bn < 1;

(c) limn®∞ an = 0 and
∑∞

n=1 αn = ∞;

(d) λ ≤ 2ρ−2ημ2

μ2 .

Then the sequence {xn} converges strongly to a common element x̄ ∈ VI(C,A), which

uniquely solves the following variational inequality

〈u − x̄, x̄ − x∗〉 ≥ 0, ∀x∗ ∈ VI(C,A).

Remark 2.5. In this paper, the generalized variational inequality (1.2), which includes

the classical variational inequality (1.4) as a special case, is considered based on itera-

tive methods. Strong convergence theorems are established under mild restrictions

imposed on the parameters. It is of interest to extend the main results presented in

this paper to the framework of Banach spaces.

Abbreviation
CFP: convex feasibility problem.
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