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Abstract

Let {Si}Ni=1 be N uniformly continuous asymptotically li-strict pseudocontractions in
the intermediate sense defined on a nonempty closed convex subset C of a real
Hilbert space H. Consider the problem of finding a common element of the fixed
point set of these mappings and the solution set of a system of equilibrium
problems by using hybrid method. In this paper, we propose new iterative schemes
for solving this problem and prove these schemes converge strongly.
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1. Introduction
Let H be a real Hilbert space and let C be a nonempty closed convex subset of H.

A nonlinear mapping S : C ® C is a self mapping of C. We denote the set of fixed

points of S by F(S) (i.e., F(S) = {x Î C : Sx = x}). Recall the following concepts.

(1) S is uniformly Lipschitzian if there exists a constant L > 0 such that

||Snx − −Sny|| ≤ L||x − y|| for all integers n ≥ 1 and x, y ∈ C.

(2) S is nonexpansive if

||Sx − Sy|| ≤ ||x − y|| for all x, y ∈ C.

(3) S is asymptotically nonexpansive if there exists a sequence kn of positive num-

bers satisfying the property limn®∞ kn = 1 and

||Snx − Sny|| ≤ kn||x − y|| for all integers n ≥ 1 and x, y ∈ C.
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(4) S is asymptotically nonexpansive in the intermediate sense [1] provided S is

continuous and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(||Snx − Sny|| − ||x − y||) ≤ 0.

(5) S is asymptotically l-strict pseudocontractive mapping [2] with sequence {gn} if
there exists a constant l Î [0, 1) and a sequence {gn} in [0, ∞) with limn®∞ gn = 0

such that

||Snx − Sny||2 ≤ (1 + γn)||x − y||2 + λ||x − Snx − (y − Sny)||2

for all x, y Î C and n Î N.

(6) S is asymptotically l-strict pseudocontractive mapping in the intermediate sense

[3,4] with sequence {gn} if there exists a constant l Î [0, 1) and a sequence {gn} in
[0, ∞) with limn®∞ gn = 0 such that

lim sup
n→∞

sup
x,y∈C

(||Snx − Sny||2 − (1 + γn)||x − y||2 − λ||x − Snx − (y − Sny)||2) ≤ 0 (1:1)

for all x, y Î C and n Î N.

Throughout this paper, we assume that

cn = max{0, sup
x,y∈C

(||Snx − Sny||2 − (1 + γn)||x − y||2 − λ||x − Snx − (y − Sny)||2)}.

Then, cn ≥ 0 for all n Î N, cn ® 0 as n ® ∞ and (1.1) reduces to the relation

||Snx − Sny||2 ≤ (1 + γn)||x − y||2 + λ||x − Snx − (y − Sny)||2 + cn (1:2)

for all x, y Î C and n Î N.

When cn = 0 for all n Î N in (1.2), then S is an asymptotically l-strict pseudocon-
tractive mapping with sequence {gn}. We note that S is not necessarily uniformly L-

Lipschitzian (see [4]), more examples can also be seen in [3].

Let {Fk} be a countable family of bifunctions from C × C to ℝ, where ℝ is the set of

real numbers. Combettes and Hirstoaga [5] considered the following system of equili-

brium problems:

Finding x ∈ C such that Fk(x, y) ≥ 0,∀k ∈ � and ∀y ∈ C, (1:3)

where Γ is an arbitrary index set. If Γ is a singleton, then problem (1.3) becomes the

following equilibrium problem:

Finding x ∈ C such that F(x, y) ≥ 0,∀y ∈ C. (1:4)

The solution set of (1.4) is denoted by EP(F).

The problem (1.3) is very general in the sense that it includes, as special cases, opti-

mization problems, variational inequalities, minimax problems, Nash equilibrium pro-

blem in noncooperative games and others; see, for instance, [6,7] and the references

therein. Some methods have been proposed to solve the equilibrium problem (1.3),

related work can also be found in [8-11].
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For solving the equilibrium problem, let us assume that the bifunction F satisfies the

following conditions:

(A1) F(x, x) = 0 for all x Î C;

(A2) F is monotone, i.e.F(x, y) + F(y, x) ≤ 0 for any x, y Î C;

(A3) for each x, y, z Î C, lim supt®0 F(tz + (1 - t)x, y) ≤ F(x, y);

(A4) F(x,·) is convex and lower semicontionuous for each x Î C.

Recall Mann’s iteration algorithm was introduced by Mann [12]. Since then, the con-

struction of fixed points for nonexpansive mappings and asymptotically strict pseudo-

contractions via Mann’ iteration algorithm has been extensively investigated by many

authors (see, e.g., [2,6]).

Mann’s iteration algorithm generates a sequence {xn} by the following manner:

∀x0 ∈ C, xn+1 = αnxn + (1 − αn)Sxn,n ≥ 0,

where an is a real sequence in (0, 1) which satisfies certain control conditions.

On the other hand, Qin et al. [13] introduced the following algorithm for a finite

family of asymptotically li-strict pseudocontractions. Let x0 Î C and {αn}∞n=0 be a

sequence in (0, 1). The sequence {xn} by the following way:

x1 = α0x0 + (1 − α0)S1x0,
x2 = α1x1 + (1 − α1)S2x1,
· · ·
xN = αN−1xN−1 + (1 − αN−1)SNxN−1,
xN+1 = αNxN + (1 − αN)S21xN,
· · ·
x2N = α2N−1x2N−1 + (1 − α2N−1)S2Nx2N−1,
x2N+1 = α2Nx2N + (1 − α2N)S31x2N,
· · · .

It is called the explicit iterative sequence of a finite family of asymptotically li-strict
pseudocontractions {S1, S2,..., SN}. Since, for each n ≥ 1, it can be written as n = (h - 1)

N + i, where i = i(n) Î {1, 2,..., N}, h = h(n) ≥ 1 is a positive integer and h(n) ® ∞, as

n ® ∞. We can rewrite the above table in the following compact form:

xn = αn−1xn−1 + (1 − αn−1)S
h(n)
i(n) xn−1,∀n ≥ 1.

Recently, Sahu et al. [4] introduced new iterative schemes for asymptotically strict

pseudocontractive mappings in the intermediate sense. To be more precise, they

proved the following theorem.

Theorem 1.1. Let C be a nonempty closed convex subset of a real Hilbert space H

and T: C ® C a uniformly continuous asymptotically �-strict pseudocontractive map-

ping in the intermediate sense with sequence gn such that F(T) is nonempty and

bounded. Let an be a sequence in [0, 1] such that 0 <δ ≤ an ≤ 1 - � for all n Î N. Let

{xn} ⊂ C be sequences generated by the following (CQ) algorithm:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

u = x1 ∈ C chosen arbitrary,
yn = (1 − αn)xn + αnTnxn,
Cn = {z ∈ C : ||yn − z||2 ≤ ||xn − z||2 + θn},
Qn = {z ∈ C : 〈xn − z, u − xn〉 ≥ 0},
xn+1 = PCn∩Qn(u), for all n ∈ N,
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where θn = cn + gnΔn and Δn = sup {||xn - z||: z Î F(T)} < ∞. Then, {xn} converges

strongly to PF(T)(u).

Very recently, Hu and Cai [3] further considered the asymptotically strict pseudocon-

tractive mappings in the intermediate sense concerning equilibrium problem. They

obtained the following result in a real Hilbert space.

Theorem 1.2. Let C be a nonempty closed convex subset of a real Hilbert space H

and N ≥ 1 be an integer, j : C ® C be a bifunction satisfying (A1)-(A4) and A : C ®
H be an a-inverse-strongly monotone mapping. Let for each 1 ≤ i ≤ N, Ti : C ® C be a

uniformly continuous ki-strictly asymptotically pseudocontractive mapping in the inter-

mediate sense for some 0 ≤ ki < 1 with sequences {gn,i} ⊂ [0, ∞) such that limn®∞ gn,i =
0 and {cn,i} ⊂ [0, ∞) such that limn®∞ cn,i = 0. Let k = max{ki : 1 ≤ i ≤ N}, gn = max{gn,
i : 1 ≤ i ≤ N} and cn = max{cn,i : 1 ≤ i ≤ N}. Assume that F = ∩N

i=1F(Ti) ∩ EPis nonempty

and bounded. Let {an} and {bn} be sequences in [0, 1] such that 0 <a ≤ an ≤ 1, 0 <δ ≤

bn ≤ 1 - k for all n Î N and 0 <b ≤ rn ≤ c < 2a. Let {xn} and {un} be sequences gener-

ated by the following algorithm:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C chosen arbitrary,
un ∈ C, such that φ(un, y) + 〈Axn, y − un〉 + 1

s 〈y − un, un − xn〉 ≥ 0,∀y ∈ C,

zn = (1 − βn)un + βnT
h(n)
i(n) un,

yn = (1 − αn)un + αnzn,
Cn = {v ∈ C : ||yn − v||2 ≤ ||xn − v||2 + θn},
Qn = {v ∈ C : 〈xn − v, x0 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx0,∀n ∈ N ∪ {0},

where θn = ch(n) + γh(n)ρ
2
n → 0, as n ® ∞, where rn = sup{||xn - v||: v Î F} < ∞.

Then, {xn} converges strongly to PF(T)x0.

Motivated by Hu and Cai [3], Sahu et al. [4], and Duan [8], the main purpose of this

paper is to introduce a new iterative process for finding a common element of the

fixed point set of a finite family of asymptotically li-strict pseudocontractions and the

solution set of the problem (1.3). Using the hybrid method, we obtain strong conver-

gence theorems that extend and improve the corresponding results [3,4,13,14].

We will adopt the following notations:

1. ⇀ for the weak convergence and ® for the strong convergence.

2. ωw(xn) = {x : ∃xnj ⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries
We need some facts and tools in a real Hilbert space H which are listed below.

Lemma 2.1. Let H be a real Hilbert space. Then, the following identities hold.

(i) ||x - y||2 = ||x||2 - ||y||2 - 2〈x - y, y〉, ∀x, y Î H.

(ii) ||tx +(1 - t)y||2 = t||x||2+(1 - t)||y||2 - t(1 - t)||x - y||2, ∀t Î [0, 1], ∀x, y Î H.

Lemma 2.2. ([10]) Let H be a real Hilbert space. Given a nonempty closed convex

subset C ⊂ H and points x, y, z Î H and given also a real number a Î ℝ, the set

{v ∈ C : ||y − v||2 ≤ ||x − v||2 + 〈z, v〉 + a}

is convex (and closed).
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Lemma 2.3. ([15]) Let C be a nonempty, closed and convex subset of H. Let {xn} be a

sequence in H and u Î H. Let q = PCu. Suppose that {xn} is such that ωw(xn) ⊂ C and

satisfies the following condition

||xn − u|| ≤ ||u − q|| for all n.

Then, xn ® q.

Lemma 2.4. ([4]) Let C be a nonempty closed convex subset of a real Hilbert space H

and T : C ® C a continuous asymptotically �-strict pseudocontractive mapping in the

intermediate sense. Then I - T is demiclosed at zero in the sense that if {xn} is a

sequence in C such that xn ⇀ x Î C and lim supm®∞ lim supn®∞ ||xn - Tmxn|| = 0,

then (I - T)x = 0.

Lemma 2.5. ([4]) Let C be a nonempty subset of a Hilbert space H and T : C ® C an

asymptotically � - strict pseudocontractive mapping in the intermediate sense with

sequence {gn}. Then

||Tnx − Tny|| ≤ 1
1 − κ

(κ||x − y|| +
√
(1 + (1 − κ)γn)||x − y||2 + (1 − κ)cn)

for all x, y Î C and n Î N.

Lemma 2.6. ([6]) Let C be a nonempty closed convex subset of H, let F be bifunction

from C × C to ℝ satisfying (A1)-(A4) and let r > 0 and x Î H. Then there exists z Î C

such that

F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, for all y ∈ C.

Lemma 2.7. ([5]) For r > 0, x Î H, define a mapping Tr : H ® C as follows:

Tr(x) = {z ∈ C | F(z, y) + 1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

for all x Î H. Then, the following statements hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, i.e., for any x, y Î H,

||Trx − Try||2 ≤ 〈Trx − Try, x − y〉;

(iii) F(Tr) = EP(F);

(iv) EP(F) is closed and convex.

3. Main result
Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H and

N ≥ 1 be an integer, let Fk, k Î {1, 2, ... M}, be a bifunction from C × C to ℝ which

satisfies conditions (A1)-(A4). Let, for each 1 ≤ i ≤ N, Si : C ® C be a uniformly contin-

uous asymptotically li-strict pseudocontractive mapping in the intermediate sense for

some 0 ≤ li < 1 with sequences {gn,i} ⊂ [0, ∞) such that limn®∞ gn,i = 0 and {cn,i} ⊂ [0,

∞) such that limn®∞ cn,i = 0. Let l = max{li : 1 ≤ i ≤ N}, gn = max{gn,i : 1 ≤ i ≤ N}

and cn = max{cn,i : 1 ≤ i ≤ N}. Assume that 
 = ∩N
i=1F(Si) ∩ (∩M

k=1EP(Fk))is nonempty

Duan and Zhao Fixed Point Theory and Applications 2011, 2011:13
http://www.fixedpointtheoryandapplications.com/content/2011/1/13

Page 5 of 13



and bounded. Let {an} and {bn} be sequences in [0, 1] such that 0 <a ≤ an ≤ 1, 0 <δ ≤

bn ≤ 1 - l for all n Î N and {rk,n} ⊂ (0, ∞) satisfies lim infn®∞ rk,n > 0 for all k Î {1,

2, ... M}. Let {xn} and {un} be sequences generated by the following algorithm:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C chosen arbitrary,
un = TFM

rM,n
TFM−1
rM−1,n · · ·TF2

r2,nT
F1
r1,nxn,

zn = (1 − βn)un + βnS
h(n)
i(n) un,

yn = (1 − αn)un + αnzn,
Cn = {v ∈ C : ||yn − v||2 ≤ ||xn − v||2 + θn},
Qn = {v ∈ C : 〈xn − v, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx1,∀n ∈ N,

(3:1)

where θn = ch(n) + γh(n)ρ
2
n → 0, as n ® ∞, where rn = sup{||xn - v|| : v Î Ω} < ∞.

Then {xn} converges strongly to PΩx1.

Proof. Denote �k
n = TFk

rk,n . . . TF2
r2,nT

F1
r1,n for every k Î {1, 2,..., M} and �0

n = I for all n Î N.

Therefore un = �M
n xn. The proof is divided into six steps.

Step 1. The sequence {xn} is well defined.

It is obvious that Cn is closed and Qn is closed and convex for every n Î N. From

Lemma 2.2, we also get that Cn is convex.

Take p Î Ω, since for each k Î {1, 2,..., M}, TFk
rk,n is nonexpansive, p = TFk

rk,np and

un = �M
n xn, we have

||un − p|| = ||�M
n xn − �M

n p|| ≤ ||xn − p|| for all n ∈ N. (3:2)

It follows from the definition of Si and Lemma 2.1(ii), we get

||zn − p||2 = ||(1 − βn)(un − p) + βn(S
h(n)
i(n) un − p)||2

= (1 − βn)||un − p||2 + βn||Sh(n)i(n) un − p||2 − βn(1 − βn)||Sh(n)i(n) un − un||2

≤ (1 − βn)||un − p||2 + βn

[
||(1 + γh(n))||un − p||2 + λ||Sh(n)i(n) un − un||2 + ch(n)

]
− βn(1 − βn)||Sh(n)i(n) un − un||2

≤ (1 + γh(n))||un − p||2 − βn(1 − βn − λ)||Sh(n)i(n) un − un||2 + βnch(n)

≤ (1 + γh(n))||un − p||2 + βnch(n).

(3:3)

By virtue of the convexity of ||·||2, one has

||yn − p||2 = ||(1 − αn)(un − p) + αn(zn − p)||2 ≤ (1 − αn)||un − p||2 + αn||zn − p||2. (3:4)

Substituting (3.2) and (3.3) into (3.4), we obtain

||yn − p||2 ≤ (1 − αn)||un − p||2 + αn
[
(1 + γh(n))||un − p||2 + βnch(n)

]
≤ ||un − p||2 + γh(n)||un − p||2 + βnch(n)

≤ ||un − p||2 + γh(n)||xn − p||2 + ch(n)

≤ ||un − p||2 + θn

≤ ||xn − p||2 + θn.

(3:5)

It follows that p Î Cn for all n Î N. Thus, Ω ⊂ Cn.

Next, we prove that Ω ⊂ Qn for all n Î N by induction. For n = 1, we have Ω ⊂ C =

Q1. Assume that Ω ⊂ Qn for some n ≥ 1. Since xn+1 = PCn∩Qnx1, we obtain
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〈xn+1 − z, x1 − xn+1〉 ≥ 0, ∀z ∈ Cn ∩ Qn.

As Ω ⊂ Cn ⋂ Qn by induction assumption, the inequality holds, in particular, for all z

Î Ω. This together with the definition of Qn+1 implies that Ω ⊂ Qn +1.

Hence Ω ⊂ Qn holds for all n ≥ 1. Thus Ω ⊂ Cn ⋂ Qn and therefore the sequence

{xn} is well defined.

Step 2. Set q = PΩ x1, then

||xn+1 − x1|| ≤ ||q − x1|| for all n ∈ N. (3:6)

Since Ω is a nonempty closed convex subset of H, there exists a unique q Î Ω such

that q = PΩ x1.

From xn+1 = PCn∩Qnx1, we have

||xn+1 − x1|| ≤ ||v − x1|| for all v ∈ Cn ∩ Qn, for all n ∈ N.

Since q Î Ω ⊂ Cn ⋂ Qn, we get (3.6).

Therefore, {xn} is bounded. So are {un} and {yn}.

Step 3. The following limits hold:

lim
n→∞ ||un − un+i|| = 0, lim

n→∞ ||xn − xn+i|| = 0;∀i = 1, 2, ...,N.

From the definition of Qn, we have xn = PQnx1, which together with the fact that xn+1
Î Cn ⋂ Qn ⊂ Qn implies that

||xn − x1|| ≤ ||xn+1 − x1||, 〈xn − xn+1, x1 − xn〉 ≥ 0. (3:7)

This shows that the sequence {||xn - x1||} is nondecreasing. Since {xn} is bounded,

the limit of {||xn - x1||} exists.

It follows from Lemma 2.1(i) and (3.7) that

||xn+1 − xn||2 = ||xn+1 − x1 − (xn − x1)||2
= ||xn+1 − x1||2 − ||xn − x1||2 − 2〈xn − xn+1, x1 − xn〉
≤ ||xn+1 − x1||2 − ||xn − x1||2.

Noting that limn®∞ ||xn - x1|| exists, this implies

lim
n→∞ ||xn − xn+1|| = 0. (3:8)

It is easy to get

||xn+i − xn|| → 0,∀i = 1, 2, ...,N, as n → ∞. (3:9)

Since xn+1 Î Cn, we have

||yn − xn+1||2 ≤ ||xn − xn+1||2 + θn.

So, we get limn®∞ ||yn - xn+1|| = 0. It follows that

||yn − xn|| ≤ ||yn − xn+1|| + ||xn − xn+1|| → 0, as n → ∞. (3:10)

Next we will show that

lim
n→∞ ||�k

nxn − �k−1
n xn|| = 0, k = 1, 2, . . . ,M. (3:11)
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Indeed, for p Î Ω, it follows from the firmly nonexpansivity of TFk
rk,n that for each k Î

{1, 2,..., M}, we have

||�k
nxn − p||2 = ||TFk

rk,n�
k−1
n xn − TFk

rk,n p||2
≤ 〈�k

nxn − p,�k−1
n xn − p〉

=
1
2
(||�k

nxn − p||2 + ||�k−1
n xn − p||2 − ||�k

nxn − �k−1
n xn||2).

Thus we get

||�k
nxn − p||2 ≤ ||�k−1

n xn − p||2 − ||�k
nxn − �k−1

n xn||2, k = 1, 2, . . . ,M,

which implies that for each k Î {1, 2,..., M},

||�k
nxn − p||2 ≤ ||�0

nxn − p||2 − ||�k
nxn − �k−1

n xn||2 − ||�k−1
n xn − �k−2

n xn||2
− · · · − ||�2

nxn − �1
nxn||2 − ||�1

nxn − �0
nxn||2

≤ ||xn − p||2 − ||�k
nxn − �k−1

n xn||2.
(3:12)

Therefore, by the convexity of ||·||2, (3.5) and the nonexpansivity of TFk
rk,n, we get

||yn − p||2 ≤ ||un − p||2 + θn

= ||�M
n xn − �M

n p||2 + θn

≤ ||�k
nxn − p||2 + θn

≤ ||xn − p||2 − ||�k
nxn − �k−1

n xn||2 + θn.

It follows that

||�k
nxn−�k−1

n xn||2 ≤ ||xn−p||2−||yn−p||2 +θn ≤ ||xn−yn||(||xn−p||+ ||yn−p||)+θn.(3:13)

From (3.10) and (3.13), we obtain (3.11). Then, we have

||un − xn|| ≤ ||un − �M−1
n xn|| + ||�M−1

n xn − �M−2
n xn|| + · · · + ||�1

nxn − xn|| → 0.(3:14)

Combining (3.8) and (3.14), we have

||un+1 − un|| ≤ ||un+1 − xn+1|| + ||xn+1 − xn|| + ||xn − un|| → 0, as n → ∞. (3:15)

It follows that

||un+i − un|| → 0,∀i = 1, 2, ...,N, as n → ∞. (3:16)

Step 4. Show that ||un - Siun|| ® 0, ||xn - Sixn|| ® 0, as n ® ∞; ∀i Î {1, 2,..., N}.

Since, for any positive integer n ≥ N, it can be written as n = (h(n) - 1) N + i(n),

where i(n) Î {1, 2,..., N}. Observe that

||un − Snun|| ≤ ||un − Sh(n)i(n) un|| + ||Sh(n)i(n) un − Snun||
= ||un − Sh(n)i(n) un|| + ||Sh(n)i(n) un − Si(n)un||.

(3:17)

From (3.10), (3.14), the conditions 0 <a ≤ an ≤ 1 and 0 <δ ≤ bn ≤ 1 - l, we obtain

||Sh(n)i(n) un − un|| = 1
βn

||zn − un||

=
1

αnβn
||yn − un||

≤ 1
aδ

(||yn − xn|| + ||un − xn||) → 0, as n → ∞.

(3:18)
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Next, we prove that

lim
n→∞ ||Sh(n)−1

i(n) un − un|| = 0. (3:19)

It is obvious that the relations hold: h(n) = h(n - N) + 1, i(n) = i(n - N).

Therefore,

||Sh(n)−1
i(n) un − un|| ≤ ||Sh(n)−1

i(n) un − Sh(n)−1
i(n−N)un−N+1|| + ||Sh(n)−1

i(n−N)un−N+1 − Sh(n−N)
i(n−N) un−N||

+ ||Sh(n−N)
i(n−N) un−N − un−N|| + ||un−N − un−N+1|| + ||un−N+1 − un||

= ||Sh(n)−1
i(n) un − Sh(n)−1

i(n) un−N+1|| + ||Sh(n−N)
i(n−N) un−N+1 − Sh(n−N)

i(n−N) un−N||
+ ||Sh(n−N)

i(n−N) un−N − un−N|| + ||un−N − un−N+1|| + ||un−N+1 − un||.

(3:20)

Applying Lemma 2.5 and (3.16), we get (3.19). Using the uniformly continuity of Si,

we obtain

lim
n→∞ ||Sh(n)i(n) un − Si(n)un|| = 0, (3:21)

this together with (3.17) yields

lim
n→∞ ||un − Snun|| = 0.

We also have

||un−Sn+iun|| ≤ ||un −un+i||+ ||un+i −Sn+iun+i||+ ||Sn+iun+i −Sn+iun|| → 0, as n → ∞,

for any i = 1, 2, ... N, which gives that

lim
n→∞ ||un − Siun|| = 0;∀i = 1, 2, . . .N. (3:22)

Moreover, for each i Î {1, 2, ... N}, we obtain that

||xn − Sixn|| ≤ ||xn − un|| + ||un − Siun|| + ||Siun − Sixn|| → 0, as n → ∞. (3:23)

Step 5. The following implication holds:

ωw(xn) ⊂ 
. (3:24)

We first show that ωw(xn) ⊂ ∩N
i=1F(Si). To this end, we take ω Î ωw(xn) and assume

that xnj ⇀ ω as j ® ∞ for some subsequence {xnj} of xn.
Note that Si is uniformly continuous and (3.23), we see that ||xn − Smi xn|| → 0, for all

m Î N. So by Lemma 2.4, it follows that ω ∈ ∩N
i=1F(Si) and hence ωw(xn) ⊂ ∩N

i=1F(Si).

Next we will show that ω ∈ ∩M
k=1EP(Fk). Indeed, by Lemma 2.6, we have that for each

k = 1, 2, ..., M,

Fk(�k
nxn, y) +

1
rn

〈y − �k
nxn,�

k
nxn − �k−1

n xn〉 ≥ 0,∀y ∈ C.

From (A2), we get

1
rn

〈y − �k
nxn,�

k
nxn − �k−1

n xn〉 ≥ Fk(y,�k
nxn),∀y ∈ C.

Hence,

〈y − �k
njxnj ,

�k
njxnj − �k−1

nj xnj
rnj

〉 ≥ Fk(y,�k
njxnj),∀y ∈ C.
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From (3.11), we obtain that �k
njxnj ⇀ ω as j ® ∞ for each k = 1, 2, ..., M (especially,

unj = �M
nj xnj). Together with (3.11) and (A4) we have, for each k = 1, 2, ..., M, that

0 ≥ Fk(y,ω),∀y ∈ C.

For any, 0 <t ≤ 1 and y Î C, let yt = ty + (1 - t)ω. Since y Î C and ω Î C, we obtain

that yt Î C and hence Fk(yt, ω) ≤ 0. So, we have

0 = Fk(yt, yt) ≤ tFk(yt, y) + (1 − t)Fk(yt,ω) ≤ tFk(yt, y).

Dividing by t, we get, for each k = 1, 2, ..., M, that

Fk(yt, y) ≥ 0,∀y ∈ C.

Letting t ® 0 and from (A3), we get

Fk(ω, y) ≥ 0

for all y Î C and ω Î EP(Fk) for each k = 1, 2, ..., M, i.e., ω ∈ ∩M
k=1EP(Fk).

Hence (3.24) holds.

Step 6. Show that xn ® q = PΩx1.

From (3.6), (3.24) and Lemma 2.3, we conclude that xn ® q, where q = PΩx1. □
Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H

and N ≥ 1 be an integer, let F be a bifunction from C × C to ℝ which satisfies condi-

tions (A1)-(A4). Let, for each 1 ≤ i ≤ N, Si : C ® C be a uniformly continuous li-strict
asymptotically pseudocontractive mapping in the intermediate sense for some 0 ≤ li <1
with sequences {gn,i} ⊂ [0, ∞) such that limn®∞ gn,i = 0 and {cn,i} ⊂ [0, ∞) such that

limn®∞ cn,i = 0. Let l = max{li : 1 ≤ i ≤ N}, gn = max{gn,i : 1 ≤ i ≤ N} and cn = max

{cn,i : 1 ≤ i ≤ N}. Assume that 
 = ∩N
i=1F(Si) ∩ EP(F)is nonempty and bounded. Let {an}

and {bn} be sequences in [0, 1] such that 0 < a ≤ an ≤ 1,0 <δ ≤ bn ≤ 1 - l for all n Î
N and {rn} ⊂ (0,∞) satisfies lim infn®∞ rn > 0 for all k Î {1, 2, ... M}.

Let {xn} and {un} be sequences generated by the following algorithm:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C chosen arbitrary,
un = TF

rnxn,

zn = (1 − βn)un + βnS
h(n)
i(n) un,

yn = (1 − αn)un + αnzn,
Cn = {v ∈ C : ||yn − v||2 ≤ ||xn − v||2 + θn},
Qn = {v ∈ C : 〈xn − v, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx1,∀n ∈ N,

(3:25)

where θn = ch(n) + γh(n)ρ
2
n → 0, as n ® ∞, where rn = sup{||xn - v|| : v Î Ω} < ∞.

Then {xn} converges strongly to PΩx1.

Proof. Putting M = 1, we can draw the desired conclusion from Theorem 3.1.

□
Remark 3.3. Corollary 3.2 extends the theorem of Tada and Takahashi [14] from a

nonexpansive mapping to a finite family of asymptotically li-strict pseudocontractive
mappings in the intermediate sense.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H and

N ≥ 1 be an integer, let, for each 1 ≤ i ≤ N, Si : C ® C be a uniformly continuous li-strict
asymptotically pseudocontractive mapping in the intermediate sense for some 0 ≤ li <1
with sequences {gn,i} ⊂ [0, ∞) such that limn®∞ gn,i = 0 and {cn,i} ⊂ [0, ∞) such that

limn®∞ cn,i = 0. Let l= max{li : 1 ≤ i ≤ N}, gn = max{gn,i : 1 ≤ i ≤ N} and cn = max{cn,i : 1
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≤ i ≤ N}. Assume that 
 = ∩N
i=1F(Si)is nonempty and bounded. Let {an} and {bn} be

sequences in [0, 1] such that 0 < a ≤ an ≤ 1, 0 <δ ≤ bn ≤ 1 - l for all n Î N. Let {xn} and

{un} be sequences generated by the following algorithm:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 ∈ C chosen arbitrary,

yn = (1 − βn)xn + βnS
h(n)
i(n) xn,

Cn = {v ∈ C : ||yn − v||2 ≤ ||xn − v||2 + θn},
Qn = {v ∈ C : 〈xn − v, x1 − xn〉 ≥ 0},
xn+1 = PCn∩Qnx1,∀n ∈ N,

(3:26)

where θn = ch(n) + γh(n)ρ
2
n → 0, as n ® ∞, where rn = sup{||xn - v|| : v Î Ω} <∞.

Then {xn} converges strongly to PΩx1.

Proof. If Fk(x, y) = 0, an = 1 in Theorem 3.1, we can draw the conclusion easily. □
Remark 3.5. Corollary 3.4 extends the Theorem 4.1 of [4] and Theorem 2.2 of [13],

respectively.

4. Numerical result
In this section, in order to demonstrate the effectiveness, realization and convergence

of the algorithm in Theorem 3.1, we consider the following simple example ever

appeared in the reference [4]:

Example 4.1. Let x = R and C = [0, 1] For each x Î C, we define

Tx =

{
kx, if x ∈ [0, 12 ],

0, if x ∈ ( 12 , 1],

where 0 <k < 1.

Set C1 : = [0, 1/2] and C2 : = (1/2, 1]. Hence,

|Tnx − Tny| = kn|x − y| ≤ |x − y| for all x, y ∈ C1 and n ∈ N

and

|Tnx − Tny| = 0 ≤ |x − y| for all x, y ∈ C2 and n ∈ N.

For x Î C1 and y Î C2, we have

|Tnx − Tny| = |knx − 0| ≤ kn|x − y| + kn|y| ≤ |x − y| + kn for all n ∈ N.

Thus

|Tnx − Tny|2 ≤ (|x − y| + kn)2 ≤ |x − y|2 + k|x − Tnx − (y − Tny)|2 + knK.

for all x, y Î C, n Î N and some K > 0. Therefore, T is an asymptotically k-strict

pseudocontractive mapping in the intermediate sense.

In the algorithm (3.1), set Fk(x, y) = 0,N = 1,βn = 1 − k,αn =
n + 1
2n

. We apply it to

find the fixed point of T of Example 4.1.

Under the above assumptions, (3.1) is simplified as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ C chosen arbitrary ,

zn = kxn + (1 − k)Tnxn,

yn =
n − 1
2n

xn +
n + 1
2n

zn,

Cn = {v ∈ C : |yn − v|2 ≤ |xn − v|2 + θn},
Qn = {v ∈ C : (xn − v)(x1 − xn) ≥ 0},
xn+1 = PCn∩Qnx1,∀n ∈ N,
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In fact, in one dimensional case, the Cn ⋂ Qn is an closed interval. If we set [an, bn] :

= Cn ⋂ Qn, then the projection point xn+1 of x1 Î C onto Cn ⋂ Qn can be expressed as:

xn+1 = PCn∩Qnx1 =

⎧⎪⎨
⎪⎩
x1, if x1 ∈ [an, bn],

bn, if x1 > bn,

an, if x1 < an.

Since the conditions of Theorem 3.1 are satisfied in Example 4.1, the conclusion

holds, i.e., xn ® 0 Î F (T).

Now we turn to realizing (3.1) for approximating a fixed point of T. Take the initial

guess x1 = 1/2, 1/5 and 5/8, respectively. All the numerical results are given in Tables

1, 2 and 3. The corresponding graph appears in Figure 1a,b,c.

Table 1 x1 = 0.5

n (iterative number) x1 (initial guess) Errors (n)

5 0.2471 2.471 × 10-1

20 0.0527 5.27 × 10-2

50 0.0028 2.8 × 10-3

93 0.0000 0

Table 2 x1 = 0.2

n (iterative number) x1 (initial guess) Errors (n)

5 0.0998 9.98 × 10-2

20 0.0211 2.11 × 10-2

50 0.0011 1.1 × 10-3

83 0.0000 0

Table 3x1 = 5
8

n (iterative number) x1 (initial guess) Errors (n)

5 0.2636 2.636 × 10-1

20 0.0562 5.62 × 10-2

50 0.0030 3.0 × 10-3

93 0.0000 0
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Figure 1 The iteration comparison chart of different initial values. (a) x1 = 0.5; (b) x1 = 0.2; (c)
x1 = 5

8.
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