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Abstract

In this article, we introduce some new iterative schemes based on the extragradient
method (and the hybrid method) for finding a common element of the set of
solutions of a generalized equilibrium problem, and the set of fixed points of a
family of infinitely nonexpansive mappings and the set of solutions of the variational
inequality for a monotone, Lipschitz-continuous mapping in Hilbert spaces. We
obtain some strong convergence theorems and weak convergence theorems. The
results in this article generalize, improve, and unify some well-known convergence
theorems in the literature.
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1. Introduction
Let H be a real Hilbert space with inner product 〈.,.〉 and induced norm ||·||. Let C be

a nonempty closed convex subset of H. Let F be a bifunction from C × C to R and let

B : C ® H be a nonlinear mapping, where R is the set of real numbers. Moudafi [1],

Moudafi and Thera [2], Peng and Yao [3,4], Takahashi and Takahashi [5] considered

the following generalized equilibrium problem:

Find x ∈ C Such that F(x, y) + 〈Bx, y − x〉 ≥ 0,∀y ∈ C. (1:1)

The set of solutions of (1.1) is denoted by GEP(F, B). If B = 0, the generalized equili-

brium problem (1.1) becomes the equilibrium problem for F : C × C ® R, which is to

find x Î C such that

F(x, y) ≥ 0 for all y ∈ C. (1:2)

The set of solutions of (1.2) is denoted by EP(F).

The problem (1.1) is very general in the sense that it includes, as special cases, opti-

mization problems, variational inequalities, minimax problems, Nash equilibrium pro-

blem in noncooperative games, and others; see for instance [1-7].

Recall that a mapping S : C ® C is nonexpansive if there holds that

||Sx − Sy|| ≤ ||x − y|| for all x, y ∈ C.

We denote the set of fixed points of S by Fix(S).
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Let the mapping A : C ® H be monotone and k-Lipschitz-continuous. The varia-

tional inequality problem is to find x Î C such that

〈Ax, y − x〉 ≥ 0

for all y Î C. The set of solutions of the variational inequality problem is denoted by

V I(C, A).

Several algorithms have been proposed for finding the solution of problem (1.1). Mou-

dafi [1] introduced an iterative scheme for finding a common element of the set of solu-

tions of problem (1.1) and the set of fixed points of a nonexpansive mapping in a Hilbert

space, and proved a weak convergence theorem. Moudafi and Thera [2] introduced an

auxiliary scheme for finding a solution of problem (1.1) in a Hilbert space and obtained a

weak convergence theorem. Peng and Yao [3,4] introduced some iterative schemes for

finding a common element of the set of solutions of problem (1.1), the set of fixed points

of a nonexpansive mapping and the set of solutions of the variational inequality for a

monotone, Lipschitz-continuous mapping and obtain both strong convergence theorems,

and weak convergence theorems for the sequences generated by the corresponding pro-

cesses in Hilbert spaces. Takahashi and Takahashi [5] introduced an iterative scheme for

finding a common element of the set of solutions of problem (1.1) and the set of fixed

points of a nonexpansive mapping in a Hilbert space, and proved a strong convergence

theorem.

Some methods also have been proposed to solve the problem (1.2); see, for instance,

[8-19] and the references therein. Takahashi and Takahashi [9] introduced an iterative

scheme by the viscosity approximation method for finding a common element of the

set of solutions of problem (1.2) and the set of fixed points of a non-expansive map-

ping, and proved a strong convergence theorem in a Hilbert space. Su et al. [10] intro-

duced and researched an iterative scheme by the viscosity approximation method for

finding a common element of the set of solutions of problem (1.2) and the set of fixed

points of a nonexpansive mapping and the set of solutions of the variational inequality

problem for an a-inverse-strongly monotone mapping in a Hilbert space. Tada and

Takahashi [11] introduced two iterative schemes for finding a common element of the

set of solutions of problem (1.2) and the set of fixed points of a nonexpansive mapping

in a Hilbert space, and obtained both strong convergence and weak convergence theo-

rems. Plubtieng and Punpaeng [12] introduced an iterative processes based on the

extragradient method for finding the common element of the set of fixed points of a

nonexpansive mapping, the set of solutions of an equilibrium problem and the set of

solutions of variational inequality problem for an a-inverse-strongly monotone map-

ping. Chang et al. [13] introduced an iterative processes based on the extragradient

method for finding the common element of the set of solutions of an equilibrium pro-

blem, the set of common fixed point for a family of infinitely nonexpansive mappings

and the set of solutions of variational inequality problem for an a-inverse-strongly
monotone mapping. Yao et al. [14] and Ceng and Yao [15] introduced some iterative

viscosity approximation schemes for finding the common element of the set of solu-

tions of problem (1.2) and the set of fixed points of a family of infinitely nonexpansive

mappings in a Hilbert space. Colao et al. [16] introduced an iterative viscosity approxi-

mation scheme for finding a common element of the set of solutions of problem (1.2)
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and the set of fixed points of a family of finitely nonexpansive mappings in a Hilbert

space. We observe that the algorithms in [13-16] involves the W-mapping generated

by a family of infinitely (finitely) nonexpansive mappings which is an effective tool in

nonlinear analysis (see [20,21]). However, the W-mapping generated by a family of infi-

nitely (finitely) nonexpansive mappings is too completed to use for finding the com-

mon element of the set of solutions of problem (1.2) and the set of fixed points of a

family of infinitely (finitely) nonexpansive mappings. It is natural to raise and to give

an answer to the following question: Can one construct algorithms for finding a com-

mon element of the set of solutions of a generalized equilibrium problem (an equili-

brium problem), the common set of fixed points of a family of infinitely nonexpansive

mappings and the set of solutions of a variational inequality without the W-mapping

generated by a family of infinitely (finitely) nonexpansive mappings? In this article, we

will give a positive answer to this question.

Recently, OHaraa et al. [22] introduced and researched an iterative approach for

finding a nearest point of infinitely many nonexpansive mappings in a Hilbert spaces

without using the W-mapping generated by a family of infinitely (finitely) nonexpansive

mappings. Inspired by the ideas in [1-6,8-16,22] and the references therein, we intro-

duce some new iterative schemes based on the extragradient method (and the hybrid

method) for finding a common element of the set of solutions of a generalized equili-

brium problem, the set of fixed points of a family of infinitely nonexpansive mappings,

and the set of solutions of the variational inequality for a monotone, Lipschitz–contin-

uous mapping without using the W-mapping generated by a family of infinitely

(finitely) nonexpansive mappings. We obtain both strong convergence theorems and

weak convergence theorems for the sequences generated by the corresponding pro-

cesses. The results in this article generalize, improve, and unify some well-known con-

vergence theorems in the literature.

2. Preliminaries
Let H be a real Hilbert space with inner product 〈·,·〉 and norm ||·||. Let C be a none-

mpty closed convex subset of H. Let symbols ® and ⇀ denote strong and weak con-

vergences, respectively. In a real Hilbert space H, it is well known that

∥∥λx + (1 − λ)y
∥∥2 = λ‖x‖2 + (1 − λ)

∥∥y∥∥2 − λ(1 − λ)
∥∥x − y

∥∥2
for all x, y Î H and l Î [0, 1].

For any x Î H, there exists the unique nearest point in C, denoted by PC(x), such

that ||x - PC(x)|| ≤ ||x - y|| for all y Î C. The mapping PC is called the metric projec-

tion of H onto C. We know that PC is a nonexpansive mapping from H onto C. It is

also known that PCx Î C and

〈x − PC(x),PC(x) − y〉 ≥ 0 (2:1)

for all x Î H and y Î C.

It is easy to see that (2.1) is equivalent to

∥∥x − y
∥∥2 ≥ ∥∥x − PC(x)

∥∥2 + ∥∥y − PC(x)
∥∥2 (2:2)

for all x Î H and y Î C.
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A mapping A of C into H is called monotone if

〈Ax − Ay, x − y〉 ≥ 0

for all x, y Î C. A mapping A of C into H is called a-inverse-strongly monotone if

there exists a positive real number a such that

〈x − y,Ax − Ay〉 ≥ α
∥∥Ax − Ay

∥∥2
for all x, y Î C. A mapping A : C ® H is called k-Lipschitz-continuous if there exists

a positive real number k such that
∥∥Ax − Ay

∥∥ ≤ k
∥∥x − y

∥∥
for all x, y Î C. It is easy to see that if A is a-inverse-strongly monotone, then A is

monotone and Lipschitz-continuous. The converse is not true in general. The class of

a-inverse-strongly monotone mappings does not contain some important classes of

mappings even in a finite-dimensional case. For example, if the matrix in the corre-

sponding linear complementarity problem is positively semidefinite, but not positively

definite, then the mapping A will be monotone and Lipschitz-continuous, but not a-
inverse-strongly monotone (see [23]).

Let A be a monotone mapping of C into H. In the context of the variational inequal-

ity problem, the characterization of projection (2.1) implies the following:

u ∈ VI(C,A) ⇒ u = PC(u − λAu), λ > 0.

and

u = PC(u − λAu) for some λ > 0 ⇒ u ∈ VI(C,A).

It is also known that H satisfies the Opial’s condition [24], i.e., for any sequence {xn}

⊂ H with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞
∥∥xn − y

∥∥
holds for every y Î H with x ≠ y.

A set-valued mapping T : H ® 2H is called monotone if for all x, y Î H, f Î Tx and g Î
Ty imply 〈x - y, f - g〉 ≥ 0. A monotone mapping T : H ® 2H is maximal if its graph G(T)

of T is not properly contained in the graph of any other monotone mapping. It is known

that a monotone mapping T is maximal if and only if for (x, f) Î H × H, 〈x - y, f - g〉 ≥ 0

for every (y, g) Î G(T) implies f Î Tx. Let A be a monotone, k-Lipschitz-continuous

mapping of C into H and NCv be normal cone to C at v Î C, i.e., NCv = {w Î H : 〈v - u,

w〉 ≥ 0, ∀u Î C}. Define

Tv =
{
Av +NCv if v ∈ C,
∅ if v /∈ C.

Then, T is maximal monotone and 0 Î Tv if and only if v Î V I(C, A) (see [25]).

For solving the equilibrium problem, let us assume that the bifunction F satisfies the

following condition:

(A1) F(x, x) = 0 for all x Î C;

(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for any x, y Î C;
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(A3) for each x, y, z Î C,

lim
t↓0

F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x Î C, y ↦ F(x, y) is convex and lower semicontinuous.

We recall some lemmas which will be needed in the rest of this article.

Lemma 2.1.[7] Let C be a nonempty closed convex subset of H, let F be a bifunction from

C × C to R satisfying (A1)-(A4). Let r >0 and x Î H. Then, there exists z Î C such that

F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, for all y ∈ C.

Lemma 2.2.[8] Let C be a nonempty closed convex subset of H, let F be a bi-func-

tion from C × C to R satisfying (A1)-(A4). For r >0 and x Î H, define a mapping Tr :

H ® C as follows:

Tr(x) = {z ∈ C : F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0,∀y ∈ C}

for all x Î H. Then, the following statements hold:

(1) Tr is single-valued;

(2) Tr is firmly nonexpansive, i.e., for any x, y Î H,
∥∥Tr(x) − Tr(y)

∥∥2 ≤ 〈Tr(x) − Tr(y), x − y〉;
(3) F(Tr) = EP (F);

(4) EP(F) is closed and convex.

3. The main results
We first show a strong convergence of an iterative algorithm based on extragradient

and hybrid methods which solves the problem of finding a common element of the set

of solutions of a generalized equilibrium problem, the set of fixed points of a family of

infinitely nonexpansive mappings, and the set of solutions of the variational inequality

for a monotone, Lipschitz-continuous mapping in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C × C to R satisfying (A1)-(A4). Let A be a monotone and

k-Lipschitz-continuous mapping of C into H and B be an a-inverse-strongly monotone

mapping of C into H. Let S1, S2,... be a family of infinitely nonexpansive mappings of C

into itself such that � = ∩∞
i=1Fix(Si) ∩ VI(C,A) ∩ GEP(F,B) �= ∅. Assume that for all i Î

{1, 2,...} and for any bounded subset K of C, thenthere holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn}, {un}, {yn} and {zn} be sequences generated by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C,

F(un, y) + 〈Bxn, y − un〉 + 1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = (1 − γn)un + γnPC(un − λnAun),
zn = (1 − αn − βn)xn + αnyn + βnSnPC(un − λnAyn),
Cn = {z ∈ C : ||zn − z||2 ≤ ||xn − z||2 + (3 − 3γn + αn)b2||Aun||2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn

⋂
Qnx

(3:1)

Peng Fixed Point Theory and Applications 2011, 2011:12
http://www.fixedpointtheoryandapplications.com/content/2011/1/12

Page 5 of 19



for every n = 1, 2,... where {ln} ⊂ [a, b] for some a, b ∈ (0,
1
4k

), {rn} ⊂ [d, e] for some

d, e Î (0, 2a), and {an}, {bn}, {gn} are three sequences in [0, 1] satisfying the conditions:

(i) an + bn ≤ 1 for all n Î N;

(ii) lim
n→∞ αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn >

3
4
for all n Î N;

Then, {xn}, {un}, {yn} and {zn} converge strongly to w = PΩ(x).

Proof. It is obvious that Cn is closed, and Qn is closed and convex for every n = 1,

2,.... Since

Cn = {z ∈ H : ‖zn − xn‖2 + 2〈zn − xn, xn − z〉 ≤ (3 − 3γn + αn)b2‖Aun‖2},

we also have that Cn is convex for every n = 1, 2,.... It is easy to see that 〈xn - z, x -

xn〉 ≥ 0 for all z Î Qn and by (2.1), xn = PQn
x. Let tn = PC(un - lnAyn) for every n = 1,

2,.... Let u Î Ω and let {Trn} >be a sequence of mappings defined as in Lemma 2.2.

Then u = PC(u − λnAu) = Trn(u − rnBu). From un = Trn(xn − rnBxn) ∈ C and the a-
inverse strongly monotonicity of B, we have

‖un − u‖2 =
∥∥Trn(xn − rnBxn) − Trn(u − rnBu)

∥∥2
≤ ∥∥xn − rnBxn − (u − rnBu)

∥∥2
≤ ‖xn − u‖2 − 2rn〈xn − u,Bxn − Bu〉 + r2n‖Bxn − Bu‖2

≤ ‖xn − u‖2 − 2rnα‖Bxn − Bu‖2 + r2n‖Bxn − Bu‖2
= ‖xn − u‖2 + rn(rn − 2α)‖Bxn − Bu‖2

≤ ‖xn − u‖2.

(3:2)

From (2.2), the monotonicity of A, and u Î V I(C, A), we have

‖tn − u‖2 ≤ ∥∥un − λnAyn − u
∥∥2 − ∥∥un − λnAyn − tn

∥∥2
= ‖un − u‖2 − ‖un − tn‖2 + 2λn〈Ayn, u − tn〉
= ‖un − u‖2 − ‖un − tn‖2 + 2λn(〈Ayn − Au, u − yn〉 + 〈Au, u − yn〉 + 〈Ayn, yn − tn〉)

≤ ‖un − u‖2 − ‖un − tn‖2 + 2λn〈Ayn, yn − tn〉
≤ ‖un − u‖2 − ∥∥un − yn

∥∥2 − 2〈un − yn, yn − tn〉 − ∥∥yn − tn
∥∥2

+ 2λn〈Ayn, yn − tn〉
= ‖un − u‖2 − ∥∥un − yn

∥∥2 − ∥∥yn − tn
∥∥2 + 2〈un − λnAyn − yn, tn − yn〉.

Further, Since yn = (1 - gn)un + gnPC(un - lnAun) and A is k-Lipschitz-continuous, we

have

〈un − λnAyn − yn, tn − yn〉
= 〈un − λnAun − yn, tn − yn〉 + 〈λnAun − λnAyn, tn − yn〉
≤ 〈un − λnAun − (1 − γn)un − γnPC(un − λnAun), tn − yn〉 + λn

∥∥Aun − Ayn
∥∥∥∥tn − yn

∥∥
≤ γn〈un − λnAun − PC(un − λnAun), tn − yn〉 − (1 − γn)λn〈Aun, tn − yn〉 + λnk

∥∥un − yn
∥∥ ∥∥tn − yn

∥∥ .
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In addition, from the definition of PC, we have

〈un − λnAun − PC(un − λnAun), tn − yn〉
= 〈un − λnAun − PC(un − λnAun), tn − (1 − γn)un − γnPC(un − λnAun)〉
= (1 − γn)〈un − λnAun − PC(un − λnAun), tn − un〉
+γn〈un − λnAun − PC(un − λnAun), tn − PC(un − λnAun)〉

≤ (1 − γn)
∥∥un − λnAun − PC(un − λnAun)

∥∥ ‖tn − un‖
≤ (1 − γn)λn ‖un − Aun − un‖ (

∥∥tn − yn
∥∥ +

∥∥yn − un
∥∥)

≤ (1 − γn)λn ‖Aun‖ (
∥∥tn − yn

∥∥ +
∥∥yn − un

∥∥).
It follows from b < 1

4k, γn >
3
4
and (3.2) that

‖tn − u‖2 ≤ ‖un − u‖2 − ∥∥un − yn
∥∥2 − ∥∥yn − tn

∥∥2 + 2γn(1 − γn)b ‖Aun‖ (
∥∥tn − yn

∥∥ +
∥∥yn − un

∥∥)
+2(1 − γn)b ‖Aun‖

∥∥tn − yn
∥∥ + 2bk

∥∥un − yn
∥∥ ∥∥tn − yn

∥∥
≤ ‖un − u‖2 − ∥∥un − yn

∥∥2 − ∥∥yn − tn
∥∥2 + (1 − γn)(2b2‖Aun‖2 +

∥∥tn − yn
∥∥2 + ∥∥yn − un

∥∥2)
+(1 − γn)(b2‖Aun‖2 +

∥∥tn − yn
∥∥2) + bk(

∥∥un − yn
∥∥2 + ∥∥tn − yn

∥∥2)
= ‖un − u‖2 − (γn − bk)

∥∥un − yn
∥∥2 + (1 − 2γn + bk)

∥∥tn − yn
∥∥2 + 3(1 − γn)b2‖Aun‖2

≤ ‖un − u‖2 + 3(1 − γn)b2‖Aun‖2
≤ ‖xn − u‖2 + 3(1 − γn)b2‖Aun‖2.

(3:3)

In addition, from u Î V I(C, A) and (3.2), we have

∥∥yn − u
∥∥2

=
∥∥(1 − γn)(un − u) + γn(PC(un − λnAun) − u)

∥∥2
≤ (1 − γn)‖un − u‖2 + γn

∥∥PC(un − λnAun) − PC(u)
∥∥2

≤ (1 − γn)‖un − u‖2 + γn‖un − λnAun − u‖2
≤ (1 − γn)‖un − u‖2 + γn[‖un − u‖2 − 2λn〈Aun, un − u〉 + λ2

n‖Aun‖2]
≤ ‖un − u‖2 + b2‖Aun‖2
≤ ‖xn − u‖2 + b2‖Aun‖2.

(3:4)

Therefore, from (3.2) to (3.4) and zn = (1 - an - bn)xn + anyn + bnSntn and u = Snu,

we have

‖zn − u‖2 =
∥∥(1 − αn − βn)xn + αnyn + βnSntn − u

∥∥2
≤ (1 − αn − βn)‖xn − u‖2 + αn

∥∥yn − u
∥∥2 + βn‖Sntn − u‖2

≤ (1 − αn − βn)‖xn − u‖2 + αn
∥∥yn − u

∥∥2 + βn‖tn − u‖2
≤ (1 − αn − βn)‖xn − u‖2 + αn[‖un − u‖2 + b2‖Aun‖2]

+βn[‖un − u‖2 + 3(1 − γn)b2‖Aun‖2]
≤ ‖xn − u‖2 + (3 − 3γn + αn)b2‖Aun‖2],

(3:5)

for every n = 1, 2,... and hence u Î Cn. So, Ω ⊂ Cn for every n = 1, 2,.... Next, let us

show by mathematical induction that xn is well defined and Ω ⊂ Cn ∩ Qn for every n

= 1, 2,.... For n = 1 we have x1 = x Î C and Q1 = C. Hence, we obtain Ω ⊂C1 ∩ Q1.

Suppose that xk is given and Ω ⊂ Ck ∩ Qk for some k Î N. Since Ω is nonempty, Ck ∩
Qk is a nonempty closed convex subset of H. Hence, there exists a unique element xk+1
Î Ck ∩ Qk such that xk+1 = PCk∩Qkx. It is also obvious that there holds 〈xk+1 - z, x - xk

+1〉 ≥ 0 for every z Î Ck ∩ Qk. Since Ω ⊂ Ck ∩ Qk, we have 〈xk+1 - z, x - xk+1〉 ≥ 0 for

every z Î Ω and hence Ω ⊂ Qk+1. Therefore, we obtain Ω ⊂ Ck+1 ∩ Qk+1.
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Let l0 = PΩx. From xn+1 = PCn∩Qnx and l0 v Ω ⊂ Cn ∩ Qn, we have

‖xn+1 − x‖ ≤ ‖l0 − x‖ (3:6)

for every n = 1, 2,.... Therefore, {xn} is bounded. From (3.2) to (3.5) and the lipschitz

continuity of A, we also obtain that {un}, {yn}, {Aun}, {tn} and {zn} are bounded. Since

xn+1 Î Cn ∩ Qn ⊂ Cn and xn = PQn
x, we have

‖xn − x‖ ≤ ‖xn+1 − x‖

for every n = 1, 2,.... It follows from (3.6) that limn®∞ ||xn - x|| exists.

Since xn = PQn
x and xn+1 Î Qn, using (2.2), we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2

for every n = 1, 2,.... This implies that

lim
n→∞ ‖xn+1 − xn‖ = 0.

Since xn+1 Î Cn, we have ||zn - xn+1||
2 ≤ ||xn - xn+1||

2 + (3 - 3gn + an)b
2||Aun||

2 and

hence it follows from limn®∞ gn = 1 and limn®∞ an = 0 that limn®∞ ||zn - xn+1|| = 0. Since

||xn − zn|| ≤ ||xn − xn+1|| + ||xn+1 − zn||

for every n = 1, 2,..., we have ||xn - zn|| ® 0.

For u Î Ω, from (3.5), we obtain

||zn − u||2 − ||xn − u||2
≤ (−αn − βn)||xn − u||2 + αn||yn − u||2 + βn||Sntn − u||2

≤ (3 − 3γn + αn)b2||Aun||2.

Since limn®∞ gn = 1 and limn®∞ an = 0, {xn}, {yn}, {Aun}, and {zn} are bounded, we

have

lim
n→∞ βn(||Sntn − u||2 − ||xn − u||2) = 0.

By lim inf n®∞ bn > 0, we get

lim
n→∞ ||Sntn − u||2 − ||xn − u||2 = 0.

From (3.3) and u = Snu, we have

lim
n→∞ ||Sntn − u||2 − ||xn − u||2 ≤ lim

n→∞ ||tn − u||2 − ||xn − u||2

≤ lim
n→∞ 3(1 − γn)b2||Aun||2 = 0.

Thus, limn®∞ ||tn - u||2 - ||xn - u||2 = 0.

From (3.3) and (3.2), we have

(γn − bk)||un − yn||2 + (2γn − 1 − bk)||tn − yn||2
≤ ||xn − u||2 − ||tn − u||2 + 3(1 − γn)b2||Aun||2.

It follows that

lim
n→∞(γn − bk)||un − yn||2 + (2γn − 1 − bk)||tn − yn||2 = 0.
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The assumptions on gn and ln imply that γn − bk >
1
2
and 2γn − 1 − bk >

1
4
. Conse-

quently, limn®∞ ||un - yn|| = limn®∞ ||tn - yn|| = 0. Since A is Lipschitz-continuous,

we have limn®∞ ||Atn - Ayn|| = 0. It follows from ||un - tn|| ≤ ||un - yn|| + ||tn - yn||

that limn®∞ ||un - tn|| = 0.

We rewrite the definition of zn as

zn − xn = αn(yn − xn) + βn(Sntn − xn).

From limn®∞ ||zn - xn|| = 0, limn®∞ an = 0, the boundedness of {xn}, {yn} and lim

infn®∞ bn > 0 we infer that limn®∞ ||Sntn - xn|| = 0.

By (3.2)-(3.5), we have

||zn − u||2 ≤ (1 − αn − βn)||xn − u||2 + αn[||un − u||2 + b2||Aun||2] + βn[||un − u||2 + 3(1 − γn)b2||Aun||2]
≤ (1 − αn − βn)||xn − u||2 + αn[||xn − u||2 + rn(rn − 2α)||Bxn − Bu||2 + b2||Aun||2]

+ βn[||xn − u||2 + rn(rn − 2α)||Bxn − Bu||2 + 3(1 − γn)b2||Aun||2]
≤ ||xn − u||2 + (αn + βn)rn(rn − 2α)||Bxn − Bu||2 + (3βn − 3βnγn + αn)b2||Aun||2].

(3:7)

Hence, we have

(αn + βn)d(2α − e)||Bxn − Bu||2
≤ (αn + βn)rn(2α − rn)||Bxn − Bu||2

≤ ||xn − u||2 − ||zn − u||2 + (3βn − 3βnγn + αn)b2||Aun||2
≤ (||xn − u|| + ||zn − u||)||xn − zn|| + (3βn − 3βnγn + αn)b2||Aun||2.

Since limn®∞ an = 1, lim infn®∞ bn > 0, limn®∞ gn = 1, ||xn - zn|| ® 0 and the

sequences {xn} and {zn} are bounded, we obtain ||Bxn - Bu|| ® 0.

For u Î Ω, we have, from Lemma 2.2,

||un − u||2 = ||Trn(xn − rnBxn) − Trn(u − rnBu)||2
≤ 〈Trn(xn − rnBxn) − Trn(u − rnBu), xn − rnBxn − (u − rnBu)〉

=
1
2

{||un − u||2 + ||xn − rnBxn − (u − rnBu)||2 − ||xn − rnBxn − (u − rnBu) − (un − u)||2}

≤ 1
2

{||un − u||2 + ||xn − u||2 − ||xn − rnBxn − (u − rnBu) − (un − u)||2}

=
1
2

{||un − u||2 + ||xn − u||2 − ||xn − un||2 + 2rn〈Bxn − Bu, xn − un〉 − r2n ||Bxn − Bu||2}.

Hence,

||un − u||2 ≤ ||xn − u||2 − ||xn − un||2 + 2rn〈Bxn − Bu, xn − un〉 − r2n ||Bxn − Bu||2
≤ ||xn − u||2 − ||xn − un||2 + 2rn〈Bxn − Bu, xn − un〉.

Then, by (3.5), we have

||zn − u||2 ≤ (1 − αn − βn)||xn − u||2 + αn[||un − u||2 + b2||Aun||2] + βn[||un − u||2 + 3(1 − γn)b2||Aun||2]
≤ (1 − αn − βn)||xn − u||2 + αn[(||xn − u||2 − ||xn − un||2 + 2rn〈Bxn − Bu, xn − un〉) + b2||Aun||2]

+ βn[(||xn − u||2 − ||xn − un||2 + 2rn〈Bxn − Bu, xn − un〉) + 3(1 − γn)b2||Aun||2]
≤ ||xn − u||2 + (−αn − βn)||xn − un||2 + 2rn(αn + βn)||Bxn − Bu|| ||xn − un|| + (3βn − 3βnγn + αn)b2||Aun||2

Hence,

(αn + βn)||xn − un||2 ≤ ||xn − u||2 − ||zn − u||2 + 2rn(αn + βn)||Bxn − Bu|| ||xn − un|| + (3βn − 3βnγn + αn)b2||Aun||2
≤ (||xn − u|| + ||zn − u||)||xn − zn|| + 2rn(αn + βn)||Bxn − Bu|| ||xn − un|| + (3βn − 3βnγn + αn)b2||Aun||2.

Since limn®∞ an = 0, lim infn®∞ bn > 0, limn®∞ gn = 1, ||xn - zn|| ® 0, ||Bxn - Bu|| ® 0

and the sequences {xn}, {un} and {zn} are bounded, we obtain ||xn - un|| ® 0. From ||zn -

tn|| ≤ ||zn - xn||+||xn - un||+||un - tn||, we have ||zn - tn|| ® 0.
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From ||tn - xn|| ≤ ||tn - un|| + ||xn - un||, we also have ||tn - xn|| ® 0.

Since zn = (1 - an - bn)xn + anyn + bnSntn, we have bn(Sntn - tn) = (1 - an - bn)(tn -

xn) + an(tn - yn) + (zn - tn). Then

βn||Sntn − tn|| ≤ (1 − αn − βn)||tn − xn|| + αn||tn − yn|| + ||zn − tn||

and hence ||Sntn - tn|| ® 0. At the same time, observe that for all i Î {1, 2,...},

||Sitn − tn|| ≤ ||Sitn − Si(Sntn)|| + ||Si(Sntn) − Sntn|| || + ||Sntn − tn||.
≤ 2||Sntn − tn|| + sup

x∈K
||Si(Snx) − Snx||.

It follows from (3.8) and the condition (*) that for all i Î {1, 2,...},

lim
n→∞ ||Sitn − tn|| = 0. (3:9)

As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ w. From ||

xn - un|| ® 0, we obtain that uni ⇀ w. From ||un - tn|| ® 0, we also obtain that tni ⇀

w. Since {uni} ⊂ C and C is closed and convex, we obtain w Î C.

First, we show w Î GEP(F, B). By un = Trn(xn − rnBxn) ∈ C, we know that

F(un, y) + 〈Bxn, y − un〉 + 1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C.

It follows from (A2) that

〈Bxn, y − un〉 + 1
rn

〈y − un, un − xn〉 ≥ F(y, un),∀y ∈ C.

Hence,

〈Bxni , y − uni〉 + 〈y − uni ,
uni − xni

rni
〉 ≥ F(y, uni),∀y ∈ C. (3:10)

For t with 0 < t ≤ 1 and y Î C, let yt = ty + (1 - t)w. Since y Î C and w Î C, we

obtain yt Î C. So, from (3.10) we have

〈yt − uni ,Byt〉 ≥ 〈yt − uni ,Byt〉 − 〈yt − uni ,Bxni〉
− 〈yt − uni ,

uni − xni
rni

〉 + F(yt, uni)

= 〈yt − uni ,Byt − Buni〉 + 〈yt − uni ,Buni − Bxni〉
− 〈yt − uni ,

uni − xni
rni

〉 + F(yt, uni).

Since ||uni − xni || → 0, we have ||Buni − Bxni || → 0. Further, from the inverse-strongly

monotonicity of B, we have 〈yt − uni ,Byt − Buni〉 ≥ 0. Hence, from (A4),
uni−xni

rni
→ 0

and uni ⇀ w, we have

〈yt − w,Byt〉 ≥ F(yt,w), (3:11)

as i ® ∞. From (A1), (A4) and (3.11), we also have

0 =F(yt, yt) ≤ tF(yt, y) + (1 − t)F(yt ,w)

≤ tF(yt, y) + (1 − t)〈yt − w,Byt〉
= tF(yt, y) + (1 − t)t〈y − w,Byt〉.
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and hence

0 ≤ F(yt, y) + (1 − t)〈y − w,Byt〉.

Letting t ® 0, we have, for each y Î C,

F(w, y) + 〈y − w,Bw〉 ≥ 0.

This implies that w Î GEP(F, B).

We next show that w ∈ ∩∞
i=1Fix(Si). Assume w /∈ ∩∞

i=1Fix(Si). Since tni ⇀ w and

w �= Si0w for some i0 Î {1, 2,...} from the Opial condition, we have

lim inf
i→∞

||tni − w|| < lim inf
i→∞

||tni − Si0w||
≤ lim inf

i→∞
{||tni − Si0 tni || + ||Si0 tni − Si0w||}

≤ lim inf
i→∞

||tni − w||.

This is a contradiction. Hence, we get w ∈ ∩∞
i=1Fix(Si).

Finally we show w Î V I(C, A). Let

Tv =
{
Av +NCv if v ∈ C,
∅ if v ∈ C.

where NCv is the normal cone to C at v Î C. We have already mentioned that in this

case the mapping T is maximal monotone, and 0 Î Tv if and only if v Î V I(C, A). Let

(v, g) Î G(T). Then Tv = Av + NCv and hence g - Av Î NCv.

Hence, we have 〈v - t, g - Av〉 ≥ 0 for all t Î C. On the other hand, from tn = PC(un -

lnAyn) and v Î C, we have

〈un − λnAyn − tn, tn − v〉 ≥ 0

and hence

〈v − tn,
tn − un

λn
+ Ayn〉 ≥ 0.

Therefore, we have

〈v − tni , g〉 ≥ 〈v − tni ,Av〉
≥ 〈v − tni ,Av〉 − 〈v − tni ,

tni − uni
λni

+ Ayni〉

= 〈v − tni ,Av − Ayni −
tni − uni

λni
〉

= 〈v − tni ,Av − Atni + Atni − Ayni −
tni − uni

λni
〉

= 〈v − tni ,Av − Atni 〉 + 〈v − tni ,Atni − Ayni〉 − 〈v − tni ,
tni − uni

λni
〉

≥ 〈v − tni ,Atni − Ayni〉 − 〈v − tni ,
tni − uni

λni
〉

Hence, we obtain 〈v - w, g〉 ≥ 0 as i ® ∞. Since T is maximal monotone, we have w

Î T-10 and hence w Î V I(C, A). This implies that w Î Ω.
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From l0 = PΩx, w Î Ω and (3.6), we have

||l0 − x|| ≤ ||w − x|| ≤ lim inf
i→∞

||xni − x|| ≤ lim sup
i→∞

||xni − x|| ≤ ||l0 − x||.

Hence, we obtain

lim
i→∞

||xni − x|| = ||w − x||.

From xni − x ⇀ w − x, we have xni − x → w − x, and hence xni → w. Since xn = PQn
x

and l0 Î Ω ⊂ Cn ∩ Qn ⊂ Qn, we have

−||l0 − xni ||2 ≤ 〈l0 − xni , xni − x〉 + 〈l0 − xni , x − l0〉 ≥ 〈l0 − xni , x − l0〉.

As i ® ∞, we obtain - ||l0 - w||
2 ≥ 〈l0 - w, x - l0〉 ≥ 0 by l0 = PΩx and w Î Ω. Hence,

we have w = l0. This implies that xn ® l0. It is easy to see un ® l0, yn ® l0 and zn ®
l0. The proof is now complete.

By combining the arguments in the proof of Theorem 3.1 and those in the proof of

Theorem 3.1 in [3], we can easily obtain the following weak convergence theorem for

an iterative algorithm based on the extragradient method which solves the problem of

finding a common element of the set of solutions of a generalized equilibrium pro-

blem, the set of fixed points of a family of infinitely nonexpansive mappings and the

set of solutions of the variational inequality for a monotone, Lipschitz-continuous

mapping in a Hilbert space.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C × C to R satisfying (A1)-(A4). Let A be a monotone, and

k-Lipschitz-continuous mapping of C into H and B be an a-inverse-strongly monotone

mapping of C into H. Let S1, S2,... be a family of infinitely nonexpansive mappings of C

into itself such that � = ∩∞
i=1Fix(Si) ∩ VI(C,A) ∩ GEP(F,B) �= ∅. Assume that for all i Î

{1, 2,...} and for any bounded subset K of C, thenthere holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn}, {un} and {yn} be the sequences generated by
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = x ∈ C,

F(un, y) + 〈Bxn, y − un〉 + 1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),
xn+1 = βnxn + (1 − βn)SnPC(un − λnAyn)

(3:12)

for every n = 1, 2,.... If {ln} ⊂ [a, b] for some a, b ∈ (0, 1k ), {bn} ⊂ [δ, ε] for some δ, ε

Î (0, 1) and {rn} ⊂ [d, e] for some d, e Î (0, 2a). Then, {xn}, {un} and {yn} converge

weakly to w Î Ω, where w = limn®∞ PΩxn.

4. Applications
By Theorems 3.1 and 3.2, we can obtain many new and interesting convergence theo-

rems in a real Hilbert space. We give some examples as follows:

Let A = 0, by Theorems 3.1 and 3.2, respectively, we obtain the following results.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C×C to R satisfying (A1)-(A4). Let B be an a-inverse-
strongly monotone mapping of C into H. Let S1, S2,... be a family of infinitely
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nonexpansive mappings of C into itself such that
∑

= ∩∞
i=1Fix(Si) ∩ GEP(F,B) �= ∅.

Assume that for all i Î {1, 2,...} and for any bounded subset K of C, thenthere holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn}, {un} {yn}, and {zn} be the sequences generated by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C,

F(un, y) + 〈Bxn, y − un〉 + 1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

zn = (1 − αn − βn)xn + αnun + βnSnun,
Cn = {z ∈ C : ||zn − z||2 ≤ ||xn − z||2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 1, 2,.... where {rn} ⊂ [d, e] for some d, e Î (0, 2a), and {an}, {bn} are
sequences in [0, 1] satisfying the conditions:

(i) an + bn ≤ 1 for all n Î N;

(ii) lim
n→∞ αn = 0;

(iii) lim inf
n→∞ βn > 0 for all n Î N;

Then, {xn}, {un}, and {zn} converge strongly to w = P∑(x).

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C×C to R satisfying (A1)-(A4). Let B be an a-inverse-
strongly monotone mapping of C into H. Let S1, S2,... be a family of infinitely nonex-

pansive mappings of C into itself such that
∑

= ∩∞
i=1Fix(Si) ∩ GEP(F,B) �= ∅. Assume

that for all i Î {1, 2,...} and for any bounded subset K of C, thenthere holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn} and {un} be sequences generated by
⎧⎪⎪⎨
⎪⎪⎩
x1 = x ∈ C,

F(un, y) + 〈Bxn, y − un〉 + 1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = βnxn + (1 − βn)Snun

for every n = 1, 2,.... If {bn} ⊂ [δ, ε] for some δ, ε Î (0, 1) and {rn} ⊂ [d, e] for some

d, e Î (0, 2a). Then, {xn} and {un} converge weakly to w Î ∑, where w = limn®∞ P∑xn.

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C×C to R satisfying (A1)-(A4). Let A be a monotone and k-

Lipschitz-continuous mapping of C into H and B be an a-inverse-strongly monotone

mapping of C into H. Let S1, S2,... be a family of infinitely nonexpansive mappings of C

into itself such that � = ∩∞
i=1Fix(Si) ∩ VI(C,A) ∩ GEP(F,B) �= ∅. Assume that for all i Î

{1, 2,...} and for any bounded subset K of C, thenthere holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Peng Fixed Point Theory and Applications 2011, 2011:12
http://www.fixedpointtheoryandapplications.com/content/2011/1/12

Page 13 of 19



Let {xn}, {un}, {yn}, and {zn} be sequences generated by
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C,
F(un, y) + 〈Bxn, y − un〉 + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),
zn = (1 − βn)xn + βnSnPC(un − λnAyn),
Cn = {z ∈ C : ||zn − z||2 ≤ ||xn − z||2,
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 1, 2,... where {ln} ⊂ [a, b] for some a, b ∈ (0,
1
4k

), {rn} ⊂ [d, e] for some

d, e Î (0, 2a), and {bn} is a sequence in [0, 1] satisfying lim inf
n→∞ βn > 0. Then, {xn},

{un}, {yn}, and {zn} converge strongly to w = PΩ(x).

Proof. Putting gn = 1 and an = 0, by Theorem 3.1, we obtain the desired result.

Let B = 0, by Theorems 3.1, 3.2, and 4.3, we obtain the following results.

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C×C to R satisfying (A1)-(A4). Let A be a monotone and k-

Lipschitz-continuous mapping of C into H. Let S1, S2,... be a family of infinitely nonex-

pansive mappings of C into itself such that 	 = ∩∞
i=1Fix(Si) ∩ VI(C,A) ∩ EP(F) �= ∅.

Assume that for all i Î {1, 2,...}, and for any bounded subset K of C, there holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn}, {un}, {yn}, and {zn} be the sequences generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C,
F(un, y) + 1

rn
〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = (1 − γn)un + γnPC(un − λnAun),
zn = (1 − αn − βn)xn + αnyn + βnSnPC(un − λnAyn),
Cn = {z ∈ C : ||zn − z||2 ≤ ||xn − z||2 + (3 − 3γn + αn)b2||Aun||2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 1, 2,.... where {ln} ⊂ [a, b] for some a, b ∈ (0,
1
4k

), {rn} ⊂ [d, +∞) for

some d >0, and {an}, {bn}, {gn} are three sequences in [0, 1] satisfying the following

conditions:

(i) an + bn ≤ 1 for all n Î N;

(ii) lim
n→∞ αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn >

3
4
for all n Î N;

Then, {xn}, {un}, {yn} and {zn} converge strongly to w = PΛ(x).

Theorem 4.5. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C×C to R satisfying (A1)-(A4). Let A be a monotone and k-

Lipschitz-continuous mapping of C into H. Let S1, S2,... be a family of infinitely nonex-

pansive mappings of C into itself such that 	 = ∩∞
i=1Fix(Si) ∩ VI(C,A) ∩ EP(F) �= ∅.

Assume that for all i Î {1, 2,...} and for any bounded subset K of C, thenthere holds
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lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn}, {un}, and {yn} be the sequences generated by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = x ∈ C,

F(un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),
xn+1 = βnxn + (1 − βn)SnPC(un − λnAyn)

for every n = 1, 2,.... If {ln} ⊂ [a, b] for some a, b ∈ (0, 1k ),{bn} ⊂ [δ, ε], for some δ, ε

Î (0, 1) and {rn} ⊂ [d, +∞] for some d > 0, then {xn}, {un} and {yn} converge weakly to

w Î Λ, where w = limn®∞ PΛxn.

Theorem 4.6. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C × C to R satisfying (A1)-(A4). Let A be a monotone and

k-Lipschitz-continuous mapping of C into H. Let S1, S2,... be a family of infinitely non-

expansive mappings of C into itself such that 	 = ∩∞
i=1Fix(Si) ∩ VI(C,A) ∩ EP(F) �= ∅.

Assume that for all i Î {1, 2,...} and for any bounded subset K of C, thenthere holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn}, {un} {yn}, and {zn} be the sequences generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C,

F(un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),
zn = (1 − βn)xn + βnSnPC(un − λnAyn),
Cn = {z ∈ C : ||zn − z||2 ≤ ||xn − z||2,
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 1, 2,.... where {ln} ⊂ [a, b] for some a, b ∈ (0,
1
4k

), {rn} ⊂ [d, +∞) and

for some d >0, and {bn} is a sequence in [0, 1] satisfying lim inf
n→∞ βn > 0. Then, {xn},

{un}, {yn}, and {zn} converge strongly to w = PΛ(x).

Let B = 0 and F(x, y) = 0 for x, y Î C, by Theorems 3.1 and 4.3, we obtain the fol-

lowing results.

Theorem 4.7. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let A be a monotone and k-Lipschitz-continuous mapping of C into H. Let S1, S2,... be

a family of infinitely nonexpansive mappings of C into itself such that


 = ∩∞
i=1Fix(Si) ∩ VI(C,A) �= ∅. Assume that for all i Î {1, 2,...} and for any bounded

subset K of C, thenthere holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn}, {yn}, and {zn} be the sequences generated by
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C,
yn = (1 − γn)xn + γnPC(xn − λnAxn),
zn = (1 − αn − βn)xn + αnyn + βnSnPC(xn − λnAyn),
Cn = {z ∈ C : ||zn − z||2 ≤ ||xn − z||2 + (3 − 3γn + αn)b2||Axn||2},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx
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for every n = 1, 2,.... where {ln} ⊂ [a, b] for some a, b ∈ (0,
1
4k

), and {an}, {bn}, {gn}are

three sequences in [0, 1] satisfying the following conditions:

(i) an + bn ≤ 1 for all n Î N;

(ii) lim
n→∞ αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn >

3
4
for all n Î N;

Then, {xn}, {yn}, and {zn} converge strongly to w = PΓ(x).

Theorem 4.8. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let A be a monotone and k-Lipschitz-continuous mapping of C into H. Let S1, S2,... be

a family of infinitely nonexpansive mappings of C into itself such that


 = ∩∞
i=1Fix(Si) ∩ VI(C,A) �= ∅. Assume that for all i Î {1, 2,...} and for any bounded

subset K of C, thenthere holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn}, {yn}, and {zn} be the sequences generated by
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x1 = x ∈ C,
yn = PC(xn − λnAxn),
zn = (1 − βn)xn + βnSnPC(xn − λnAyn),
Cn = {z ∈ C : ||zn − z||2 ≤ ||xn − z||2,
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx

for every n = 1, 2,.... where {ln} ⊂ [a, b] for some a, b ∈ (0,
1
4k

), and {bn} is a

sequence in [0, 1] satisfying lim inf
n→∞ βn > 0. Then, {xn}, {yn}, and {zn} converge strongly

to w = PΓ(x).

Let F(x, y) = 0 for x, y Î C, then by Theorem 3.2 and the proof of Theorem 4.7 in

[3], we obtain the following result.

Theorem 4.9. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let A be a monotone and k-Lipschitz-continuous mapping of C into H and B be an a-
inverse-strongly monotone mapping of C into H. Let S1, S2,... be a family of infinitely

nonexpansive mappings of C into itself such that

� = ∩∞
i=1Fix(Si) ∩ VI(C,A) ∩ VI(C,B) �= ∅. Assume that for all i Î {1, 2,...} and for any

bounded subset K of C, thenthere holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0. (�)

Let {xn}, {un}, and {yn} be the sequences generated by
⎧⎪⎪⎨
⎪⎪⎩

x1 = x ∈ C,
un = PC(xn − rnBxn),
yn = PC(un − λnAun),
xn+1 = αnxn + (1 − αn)SnPC(un − λnAyn)
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for every n = 1, 2,.... if {ln} ⊂ [a, b] for some a, b ∈ (0, 1k ), {bn} ⊂ [δ, ε] for some δ, ε

Î (0, 1) and {rn} ⊂ [d, e] for some d, e Î (0, 2a). Then, {xn} and {un} converge weakly

to w Î Ξ, where w = limn®∞ PΞxn.

Remark 4.1.

(i) For all n ≥ 1, let Sn = S be a nonexpansive mapping, by Theorems 3.2, 4.2, 4.7,

4.8, and 4.9 we recover Theorem 3.1 in [5], Theorem 3.1 in [1], Theorem 5 in [26],

Theorem 3.1 in [23], and Theorem 4.7 in [3]. In addition, let A = 0, by Theorems

4.6 and 4.5, respectively, we recover Theorems 3.1 and 4.1 in [11].

(ii) For all n ≥ 1, let Sn = S be a nonexpansive mapping, by Theorems 3.1, 4.3, and

4.4, respectively, we recover Theorems 4.3, 4.4, and 4.7 in [4] with some modified

conditions on F.

(iii) Theorems 3.1, 3.2, 4.3-4.7 also improve the main results in [10,12,13] because

the inverse strongly monotonicity of A has been replaced by the monotonicity and

Lipschitz continuity of A.

The following result illustrates that there are the nonexpansive mappings S1, S2 ,...

satisfying the condition (*).

Lemma 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let

T be a nonexpansive mapping of C into itself such that Fix(T) ≠ ∅. If we define

Sn(x) =
1
n

∑n−1

j=0
Tjx for n Î {1, 2,...}, and x Î C, then the following results hold:

(a) For any bounded subset K of C, there holds

lim
n→∞ sup

x∈K
||Snx − T(Snx)|| = 0.

(b) ∩∞
i=1Fix(Si) = Fix(T).

(c) for all i Î {1, 2,...} and for any bounded subset K of C, there holds

lim
n→∞ sup

x∈K
||Snx − Si(Snx)|| = 0.

Proof.

(a) It is due to Bruck [27,28] (please also see Lemma 3.1 in [22]).

(b) It follows from (a) that ∩∞
i=1Fix(Si) ⊆ Fix(T).

Moreover, it is obvious that ∩∞
i=1Fix(Si) ⊇ Fix(T). Hence, ∩∞

i=1Fix(Si) = Fix(T).

(c) It can be proved by mathematical induction. In fact, it is clear that this conclu-

sion holds for i = 1. Assume that the conclusion holds for i = m, that is, for any

bounded subset K of C, there holds

lim
n→∞ sup

x∈K
||Snx − Sm(Snx)|| = 0. (4:1)

We now prove that the conclusion also holds for i = m + 1. In fact, we observe that

lim
n→∞ sup

x∈K
||Snx − Sm+1(Snx)|| ≤ lim

n→∞ sup
x∈K

||Snx − Sm(Snx)|| + lim
n→∞ sup

x∈K
||Sm(Snx) − Sm+1(Snx)||

≤ lim
n→∞ sup

x∈K
||Snx − Sm(Snx)|| + lim

n→∞ sup
x∈K

⎡
⎣ 1
m + 1

||Tm(Snx)|| + 1
m(m + 1)

m−1∑
j=0

||Tj(Snx)||
⎤
⎦ .

(4:2)
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It is easy to verify that S1, S2,... are nonexpansive mappings. It follows from (4.1) and

(4.2) that for any bounded subset K of C, there holds

lim
n→∞ sup

x∈K
||Snx − Sm+1(Snx)|| = 0.

From Lemma 4.1, we know that by Theorems 3.1 and 3.2, respectively, we can obtain

the following results.

Theorem 4.10. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C × C to R satisfying (A1)-(A4). Let A be a monotone and

k-Lipschitz-continuous mapping of C into H and B be an a-inverse-strongly monotone

mapping of C into H. Let T be a nonexpansive mapping of C into itself such that Θ =

Fix(T)∩VI(C, A)∩GEP(F, B) ≠ ∅. Let {ln} ⊂ [a, b] for some a, b ∈ (0,
1
4k

), {rn} ⊂ [d, e]

and for some d, e Î (0, 2a), and {an}, {bn}, and {gn} be three sequences in [0, 1] satisfy-

ing the following conditions:

(i) an + bn ≤ 1 for all n Î N;

(ii) lim
n→∞ αn = 0;

(iii) lim inf
n→∞ βn > 0;

(iv) lim
n→∞ γn = 1 and γn >

3
4
for all n Î N; If we define Sn(x) =

1
n

∑n−1

j=0
Tjx for n Î

{1, 2,...}, and x Î C, then the sequences {xn}, {un}, {yn}, and {zn} generated by algo-

rithm (3.1) converge strongly to w = PΘ(x).

Theorem 4.11. Let C be a nonempty closed convex subset of a real Hilbert space H.

Let F be a bifunction from C × C to R satisfying (A1)-(A4). Let A be a monotone and

k-Lipschitz-continuous mapping of C into H and B be an a-inverse-strongly monotone

mapping of C into H, and T be a nonexpansive mapping of C into itself such that Θ =

Fix(T)∩VI(C, A)∩GEP(F, B) ≠ ∅. Assume that {ln} ⊂ [a, b] for some a, b ∈ (0, 1k ) {bn}
⊂ [δ, ε] for some δ, ε Î (0, 1), and {rn} ⊂ [d, e] some d, e Î (0, 2a). If we define

Sn(x) =
1
n

∑n−1

j=0
Tjx for n Î {1, 2,...} and x Î C, then the sequences {xn}, {un}, and {yn}

generated by algorithm (3.12) converge weakly to w Î Θ, where w = limn®∞ PΘxn.
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