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Abstract

We first prove the existence of a solution of the generalized equilibrium problem
(GEP) using the KKM mapping in a Banach space setting. Then, by virtue of this
result, we construct a hybrid algorithm for finding a common element in the
solution set of a GEP and the fixed point set of countable family of nonexpansive
mappings in the frameworks of Banach spaces. By means of a projection technique,
we also prove that the sequences generated by the hybrid algorithm converge
strongly to a common element in the solution set of GEP and common fixed point
set of nonexpansive mappings.
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1. Introduction
Let E be a real Banach space with the dual E* and C be a nonempty closed convex

subset of E. We denote by N and R the sets of positive integers and real numbers,

respectively. Also, we denote by J the normalized duality mapping from E to 2E*

defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}, ∀x ∈ E,

where 〈·,·〉 denotes the generalized duality pairing. We know that if E is smooth, then

J is single-valued and if E is uniformly smooth, then J is uniformly norm-to-norm con-

tinuous on bounded subsets of E. We shall still denote by J the single-valued duality

mapping. Let f : C × C → R be a bifunction and A : C ® E* be a nonlinear mapping.

We consider the following generalized equilibrium problem (GEP):

Find u ∈ C such that f (u, y) + 〈Au, y − u〉 ≥ 0, ∀y ∈ C. (1:1)

The set of such u Î C is denoted by GEP (f), i.e.,

GEP(f ) = {u ∈ C : f (u, y) + 〈Au, y − u〉 ≥ 0, ∀y ∈ C}.
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Whenever E = H a Hilbert space, the problem (1.1) was introduced and studied by

Takahashi and Takahashi [1]. Similar problems have been studied extensively

recently. In the case of A ≡ 0, GEP (f) is denoted by EP (f). In the case of f ≡ 0, EP

is also denoted by VI(C, A). Problem (1.1) is very general in the sense that it

includes, as spacial cases, optimization problems, variational inequalities, minimax

problems, the Nash equilibrium problem in noncooperative games, and others; see,

e.g., [2,3]. A mapping T : C ® E is called nonexpansive if ||Tx - Ty|| ≤ ||x - y|| for

all x, y Î C. Denote by F (T ) the set of fixed points of T , that is, F (T ) = {x Î C :

Tx = x}. A mapping A : C ® E* is called a-inverse-strongly monotone, if there exists

an a > 0 such that

〈Ax − Ay, x − y〉 ≥ α||Ax − Ay||2, ∀x, y ∈ C.

It is easy to see that if A : C ® E* is an a-inverse-strongly monotone mapping, then

it is 1/a- Lipschitzian.
In 1953, Mann [4] introduced the following iterative procedure to approximate a

fixed point of a nonexpansive mapping T in a Hilbert space H:

xn+1 = αnxn + (1 − αn)Txn, ∀n ∈ N , (1:2)

where the initial point x0 is taken in C arbitrarily and {an} is a sequence in [0, 1].

However, we note that Manns iteration process (1.2) has only weak convergence, in

general; for instance, see [5-7].

Let C be a nonempty, closed, and convex subset of a Banach space E and {Tn} be

sequence of mappings of C into itself such that
⋂∞

n=1 F(Tn) 
= ∅. Then, {Tn} is said to

satisfy the NST-condition if for each bounded sequence {zn} ⊂ C,

lim
n→∞ ||zn − Tnzn|| = 0

implies ωw(zn) ⊂ ⋂∞
n=1 F(Tn), where ωw(zn) is the set of all weak cluster points of

{zn}; see [8-10].

In 2008, Takahashi et al. [11] has adapted Nakajo and Takahashi’s [12] idea to mod-

ify the process (1.2) so that strong convergence has been guaranteed. They proposed

the following modification for a family of nonexpansive mappings in a Hilbert space:

x0 Î H, C1 = C, u1 = PC1x0 and⎧⎨
⎩
yn = αnun + (1 − αn)Tnun,
Cn+1 = {z ∈ Cn : ||yn − z|| ≤ ||un − z||},
un+1 = PCn+1x0, n ∈ N ,

(1:3)

where 0 ≤ an ≤ a < 1 for all n ∈ N . They proved that if {Tn} satisfies the NST-

condition, then {un} generated by (1.3) converges strongly to a common fixed point of

Tn.

Recently, motivated by Nakajo and Takahashi [12] and Xu [13], Matsushita and

Takahashi [14] introduced the iterative algorithm for finding fixed points of nonexpan-

sive mappings in a uniformly convex and smooth Banach space: x0 = x Î C and⎧⎨
⎩
Cn = co{z ∈ C : ||z − Tz|| ≤ tn||xn − Txn||},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},
xn+1 = PCn∩Dnx, n ≥ 0,

(1:4)
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where coD denotes the convex closure of the set D, {tn} is a sequence in (0,1) with tn
® 0, and PCn∩Dn is the metric projection from E onto Cn ∩ Dn. They proved that {xn}

generated by (1.4) converges strongly to a fixed point of T .

Very recently, Kimura and Nakajo [15] investigated iterative schemes for finding com-

mon fixed points of a family of nonexpansive mappings and proved strong convergence

theorems by using the Mosco convergence technique in a uniformly convex and smooth

Banach space. In particular, they proposed the following algorithm: x1 = x Î C and⎧⎨
⎩
Cn = co{z ∈ C : ||z − Tnz|| ≤ tn||xn − Tnxn||},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},
xn+1 = PCn∩Dnx, n ≥ 0,

(1:5)

where {tn} is a sequence in (0,1) with tn ® 0 as n ® ∞. They proved that if {Tn} satis-

fies the NST-condition, then {xn} converges strongly to a common fixed point of Tn.

Motivated and inspired by Nakajo and Takahashi [12], Takahashi et al. [11], Xu [13],

Masushita and Takahashi [14], and Kimura and Nakajo [15], we introduce a hybrid

projection algorithm for finding a common element in the solution set of a GEP and

the common fixed point set of a family of nonexpansive mappings in a Banach space

setting.

2. Preliminaries
Let E be a real Banach space and let U = {x Î E : ||x|| = 1} be the unit sphere of E.

A Banach space E is said to be strictly convex if for any x, y Î U,

x 
= y implies —|x + y|| < 2.

It is also said to be uniformly convex if for each ε Î (0, 2], there exists δ > 0 such

that for any x, y Î U,

||x − y|| ≥ ε implies —|x + y|| < 2(1 − δ).

It is known that a uniformly convex Banach space is reflexive and strictly convex.

Define a function δ: [0, 2] ® [0, 1] called the modulus of convexity of E as follows:

δ(ε) = inf
{
1 − ||x + y

2
|| : x, y ∈ E, ||x|| = ||y|| = 1, ||x − y|| ≥ ε

}
.

Then, E is uniformly convex if and only if δ(ε) > 0 for all ε Î (0, 2]. A Banach space

E is said to be smooth if the limit

lim
t→0

||x + ty|| − ||x||
t

(2:1)

exists for all x, y Î U. Let C be a nonempty, closed, and convex subset of a reflexive,

strictly convex and smooth Banach space E. Then, for any x Î E, there exists a unique

point x0 Î C such that

||x0 − x|| ≤ min
y∈C

||y − x||.

The mapping PC : E ® C defined by PC × = x0 is called the metric projection from

E onto C. Let x Î E and u Î C. Then, it is known that u = PC × if and only if

〈u − y, J(x − u)〉 ≥ 0 (2:2)
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for all y Î C; see [16] for more details. It is well known that if PC is a metric

projection from a real Hilbert space H onto a nonempty, closed, and convex subset

C, then PC is nonexpansive. However, in a general Banach space, this fact is not

true.

In the sequel, we will need the following lemmas.

Lemma 2.1. [17]Let E be a uniformly convex Banach space, {an} be a sequence of real

numbers such that 0 <b ≤ an ≤ c < 1 for all n ≥ 1, and {xn} and {yn} be sequences in E

such that lim supn®∞ ||xn|| ≤ d, lim supn®∞ ||yn|| ≤ d and limn®∞ ||anxn + (1 - an)

yn|| = d. Then, limn®∞ ||xn - yn|| = 0.

Lemma 2.2. [18]Let C be a bounded, closed, and convex subset of a uniformly convex

Banach space E. Then, there exists a strictly increasing, convex, and continuous function

g : [0, ∞) ® [0, ∞) such thatg (0) = 0 and

γ

(∥∥∥∥∥T
(

n∑
i=1

λixi

)
−

n∑
i=1

λiTxi

∥∥∥∥∥
)

≤ max
1≤j≤k≤n

(||xj − xk|| − ||Txj − Txk||)

for all n ∈ N , {x1, x2,..., xn} ⊂ C, {l1, l2,..., ln} ⊂ [0, 1] with
∑n

i=1 λi = 1and nonexpan-

sive mapping T of C into E.

Following Bruck’s [19] idea, we know the following result for a convex combination

of nonexpansive mappings which is considered by Aoyama et al. [20] and Kimura and

Nakajo [15].

Lemma 2.3. [15]Let C be a nonempty, closed, and convex subset of a uniformly

convex Banach space E and {Sn} be a family of nonexpansive mappings of C into itself

such that F =
⋂∞

n=1 F(Sn) 
= ∅. Let {βk
n}be a family of nonnegative numbers with indices

n, k ∈ Nwith k ≤ n such that

(i)
∑n

k=1 βk
n = 1for every n ∈ N ;

(ii) limn→∞βk
n > 0for every k ∈ N

and let Tn = αnI + (1 − αn)
∑n

k=1 βk
nSkfor all n ∈ N , where {an} ⊂ [a, b] for some a, b

Î (0, 1) with a ≤ b. Then, {Tn} is a family of nonexpansive mappings of C into itself

with
⋂∞

n=1 F(Tn) = Fand satisfies the NST-condition.

Now, let us turn to following well-known concept and result.

Definition 2.4. Let B be a subset of topological vector space X. A mapping G : B ® 2X

is called a KKM mapping if co{x1, x2, . . . , xm} ⊂ ⋃m
i=1 G(xi) for xi Î B and i = 1, 2,..., m,

where coA denotes the convex hull of the set A.

Lemma 2.5. [21]Let B be a nonempty subset of a Hausdorff topological vector space ×

and let G : B ® 2X be a KKM mapping. If G(x) is closed for all × Î B and is compact

for at least one x Î B, then ⋂xÎBG(x) ≠ ∅.

3. Existence results of gep
Motivated by Takahashi and Zembayashi [22], and Ceng and Yao [23], we next prove

the following crucial lemma concerning the GEP in a strictly convex, reflexive, and

smooth Banach space.
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Theorem 3.1. Let C be a nonempty, bounded, closed, and convex subset of a smooth,

strictly convex, and reflexive Banach space E, let f be a bifunction from C × C to

Rsatisfying (A1)-(A4), where

(A1) f(x, x) = 0 for all x Î C;

(A2) f is monotone, i.e. f(x, y) + f(y, x) ≤ 0 for all x, y Î C;

(A3) for all y Î C, f(., y) is weakly upper semicontinuous;

(A4) for all x Î C, f(x,.) is convex.

Let A be a-inverse strongly monotone of C into E*. For all r > 0 and × Î E, define the

mapping Sr : E ® 2C as follows:

Sr(x) = {z ∈ C : f (z, y) + 〈Az, y − z〉 + 1
r
〈y − z, J(z − x)〉 ≥ 0, ∀y ∈ C}. (3:1)

Then, the following statements hold:

(1) for each x Î E, Sr(x) ≠ ∅;

(2) Sr is single-valued;

(3) 〈Sr(x) - Sr(y), J(Srx - x)〉 ≤ 〈Sr(x) - Sr(y), J(Sry - y)〉 for all x, y Î E;

(4) F (Sr) = GEP (f);

(5) GEP(f) is nonempty, closed, and convex.

Proof. (1) Let x0 be any given point in E. For each y Î C, we define the mapping G :

C ® 2E by

G(y) = {z ∈ C : f (z, y) + 〈Az, y − z〉 + 1
r
〈y − z, J(z − x0)〉 ≥ 0} for all y ∈ C.

It is easily seen that y Î G(y), and hence G(y). ≠ ∅
(a) First, we will show that G is a KKM mapping. Suppose that there exists a finite

subset {y1, y2,..., ym} of C and ai > 0 with
∑m

i=1 αi = 1 such that x̂ =
∑m

i=1 αiyi 
∈ G(yi) for

all i = 1, 2,..., m. It follows that

f (x̂, yi) + 〈Ax̂, yi − x̂〉 + 1
r
〈yi − x̂, J(x̂ − x0)〉 < 0, for all i = 1, 2, . . . ,m.

By (A1) and (A4), we have

0 = f (x̂, x̂) + 〈Ax̂, x̂ − x̂〉 + 1
r
〈x̂ − x̂, J(x̂ − x0)〉

≤
m∑
i=1

(
f (x̂, yi) + 〈Ax̂, yi − x̂〉 + 1

r
〈yi − x̂, J(x̂ − x0)〉

)
< 0,

which is a contradiction. Thus, G is a KKM mapping on C.

(b) Next, we show that G(y) is closed for all y Î C. Let {zn} be a sequence in G(y)

such that zn ® z as n ® ∞. It then follows from zn Î G(y) that,

f (zn, y) + 〈Azn, y − zn〉 + 1
r
〈y − zn, J(zn − x)〉 ≥ 0. (3:2)
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By (A3), the continuity of J, and the lower semicontinuity of || · ||2, we obtain from

(3.2) that

0 ≤ lim inf
n→∞ [f (zn, y) + 〈Azn, y − zn〉 + 1

r
〈y − zn, J(zn − x0)〉]

≤ lim sup
n→∞

[f (zn, y) + 〈Azn, y − zn〉 + 1
r
〈y − x0, J(zn − x0)〉 + 1

r
〈x0 − zn, J(zn − x0)〉]

= lim sup
n→∞

[f (zn, y) + 〈Azn, y − zn〉 + 1
r
〈y − x0, J(zn − x0)〉 − 1

r
||zn − x0||2]

≤ lim sup
n→∞

f (zn, y) + lim sup
n→∞

〈Azn, y − zn〉 + 1
r
lim sup
n→∞

〈y − x0, J(zn − x0)〉 − 1
r
lim inf
n→∞ ||zn − x0||2

≤ f (z, y) + 〈Az, y − z〉 + 1
r
〈y − x0, J(z − x0)〉 − 1

r
||z − x0||2

= f (z, y) + 〈Az, y − z〉 + 1
r
〈y − x0, J(z − x0)〉 − 1

r
〈z − x0, J(z − x0)〉

= f (z, y) + 〈Az, y − z〉 + 1
r
〈y − z, J(z − x0)〉.

This shows that z Î G(y), and hence G(y) is closed for all y Î C.

(c) We prove that G(y) is weakly compact. We now equip E with the weak topology.

Then, C, as closed, bounded convex subset in a reflexive space, is weakly compact.

Hence, G(y) is also weakly compact.

Using (a), (b), and (c) and Lemma 2.5, we have ⋂xÎCG(y) ≠ ∅. It is easily seen that

Sr(x0) =
⋂
y∈C

G(y)

Hence, sr(x0) ≠ ∅. Since x0 is arbitrary, we can conclude that sr(x) ≠ ∅ for all x Î E.

(2) We prove that Sr is single-valued. In fact, for x Î C and r > 0, let z1, z2 Î Sr(x).

Then,

f (z1, z2) + 〈Az1, z2 − z1〉 + 1
r
〈z2 − z1, J(z1 − x)〉 ≥ 0.

and

f (z2, z1) + 〈Az2, z1 − z2〉 + 1
r
〈z1 − z2, J(z2 − x)〉 ≥ 0.

Adding the two inequalities and from the condition (A2) and monotonicity of A, we

have

0 ≤ f (z1, z2) + f (z2, z1) + 〈Az1, z2 − z1〉 + 〈Az2, z1 − z2〉 + 1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉

≤ 〈Az1 − Az2, z2 − z1〉 + 1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉

≤ −α||Az1 − Az2||2 + 1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉

≤ 1
r
〈z2 − z1, J(z1 − x) − J(z2 − x)〉,

(3:3)

and hence,

〈z2 − z1, J(z1 − x) − J(z2 − x)〉 ≥ 0.

Hence,

0 ≤ 〈z2 − z1, J(z1 − x) − J(z2 − x)〉 = 〈(z2 − x) − (z1 − x), J(z1 − x) − J(z2 − x)〉.
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Since J is monotone and E is strictly convex, we obtain that z1 - x = z2 - x and hence

z1 = z2.

Therefore Sr is single-valued.

(3) For x, y Î C, we have

f (Srx, Sry) + 〈ASrx, Sry − Srx〉 + 1
r
〈Sry − Srx, J(Srx − x)〉 ≥ 0

and

f (Sry, Srx) + 〈ASry, Srx − Sry〉 + 1
r
〈Srx − Sry, J(Sry − y)〉 ≥ 0.

Again, adding the two inequalities, we also have

〈ASrx − ASry, Sry − Srx〉 + 〈Sry − Srx, J(Srx − x) − J(Sry − y)〉 ≥ 0.

It follows from monotonicity of A that

〈Sry − Srx, J(Srx − x)〉 ≤ 〈Sry − Srx, J(Sry − y)〉.

(4) It is easy to see that

z ∈ F(Sr) ⇔ z = Srz

⇔ f (z, y) + 〈Az, y − z〉 + 1
r
〈y − z, J(z − z)〉 ≥ 0, ∀y ∈ C

⇔ f (z, y) + 〈Az, y − z〉 ≥ 0, ∀y ∈ C

⇔ z ∈ GEP(f ).

Hence, F (Sr) = GEP (f).

(5) Finally, we claim that GEP (f) is nonempty, closed, and convex. For each y Î C,

we define the mapping Θ : C ® 2E by

	(y) = {x ∈ C : f (x, y) + 〈Ax, y − x〉 ≥ 0}.

Since y Î Θ (y), we have Θ(y) ≠ ∅ We prove that Θ is a KKM mapping on C.

Suppose that there exists a finite subset {z1, z2,..., zm} of C and ai > 0 with
∑m

i=1 αi = 1

such that ẑ =
∑m

i=1 αizi 
∈ 	(zi) for all i = 1, 2,..., m. Then,

f (ẑ, zi) + 〈Aẑ, zi − ẑ〉 < 0, i = 1, 2, . . . ,m.

From (A1) and (A4), we have

0 = f (ẑ, ẑ) + 〈Aẑ, ẑ − ẑ〉 ≤
m∑
i=1

αi
(
f (ẑ, zi) + 〈Aẑ, zi − ẑ〉) < 0,

which is a contradiction. Thus, Θ is a KKM mapping on C.

Next, we prove that Θ (y) is closed for each y Î C. For any y Î C, let {xn} be any

sequence in Θ (y) such that xn ® x0. We claim that x0 Î Θ (y). Then, for each y Î C,

we have

f (xn, y) + 〈Axn, y − xn〉 ≥ 0.

By (A3), we see that

f (x0, y) + 〈Ax0, y − x0〉 ≥ lim sup
n→∞

f (xn, y) + lim
n→∞〈Axn, y − xn〉 ≥ 0.
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This shows that x0 Î Θ (y) and Θ(y) is closed for each y Î C. Thus,⋂
y∈C 	(y) = GEP(f ) is also closed.

We observe that Θ (y) is weakly compact. In fact, since C is bounded, closed, and

convex, we also have Θ(y) is weakly compact in the weak topology. By Lemma 2.5, we

can conclude that
⋂

y∈C 	(y) = GEP(f ) 
= ∅.
Finally, we prove that GEP (f) is convex. In fact, let u, v Î F (Sr) and zt = tu+(1 - t)v

for t Î (0, 1). From (3), we know that

〈Sru − Srzt, J(Srzt − zt) − J(Sru − u)〉 ≥ 0.

This yields that

〈u − Srzt, J(Srzt − zt)〉 ≥ 0. (3:4)

Similarly, we also have

〈v − Srzt, J(Srzt − zt)〉 ≥ 0. (3:5)

It follows from (3.4) and (3.5) that

||zt − Srzt||2 = 〈zt − Srzt, J(zt − Srzt)〉
= t〈u − Srzt, J(zt − Srzt)〉 + (1 − t)〈v − Srzt, J(zt − Srzt)〉
≤ 0.

Hence, zt Î F (Sr) = GEP (f) and hence GEP (f) is convex. This completes the proof.

4. Strong convergence theorem
In this section, we prove a strong convergence theorem using a hybrid projection algo-

rithm in a uniformly convex and smooth Banach space.

Theorem 4.1. Let E be a uniformly convex and smooth Banach space and C be a

nonempty, bounded, closed, and convex subset of E. Let f be a bifunction from C × C to

Rsatisfying (A1)-(A4), A an a-inverse strongly monotone mapping of C into E* and
{Tn}∞n=0a sequence of nonexpansive mappings of C into itself such that


 :=
⋂∞

n=0
F(Tn) ∩ GEP(f ) 
= ∅and suppose that {Tn}∞n=0 satisfies the NST-condition. Let

{xn} be the sequence in C generated by⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,D0 = C,
Cn = co{z ∈ C : ||z − Tnz|| ≤ tn||xn − Tnxn||}, n ≥ 1,

un ∈ C such that f (un, y) + 〈Aun, y − un〉 + 1
rn

〈y − un, J(un − xn)〉 ≥ 0, ∀y ∈ C,n ≥ 0,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,
xn+1 = PCn∩Dnx0, n ≥ 0,

(4:1)

where {tn} and {rn} are sequences which satisfy the following conditions:

(C1) {tn} ⊂ (0, 1) and limn®∞ tn = 0;

(C2) {rn} ⊂ (0, 1) and lim infn®∞ rn > 0.

Then, the sequence {xn} converges strongly to PF x0.
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Proof. First, we rewrite the algorithm (4.1) as the following:

⎧⎪⎪⎨
⎪⎪⎩
x0 ∈ C,D0 = C,
Cn = co{z ∈ C : ||z − Tnz|| ≤ tn||xn − Tnxn||}, n ≥ 1,
Dn = {z ∈ Dn−1 : 〈Srnxn − z, J(xn − Srnxn)〉 ≥ 0}, n ≥ 1,
xn+1 = PCn∩Dnx0,n ≥ 0,

(4:2)

where Sr is the mapping defined by (3.1) for all r > 0. We first show that the

sequence {xn} is well defined. It is easy to verify that Cn ∩ Dn is closed and convex

and Ω ⊂ Cn for all n ≥ 0. Next, we prove that Ω ⊂ Cn ∩ Dn. Since D0 = C, we also

have Ω ⊂ C0 ∩ D0. Suppose that Ω ⊂ Ck - 1 ∩ Dk - 1 for k ≥ 2. It follows from

Lemma (3) that

〈Srkxk − Srku, J(Srku − u) − J(Srkxk − xk)〉 ≥ 0,

for all u Î Ω. This implies that

〈Srkxk − u, J(xk − Srkxk)〉 ≥ 0,

for all u Î Ω. Hence, Ω ⊂ Dk. By the mathematical induction, we get that Ω ⊂ Cn ∩
Dn for each n ≥ 0 and hence {xn} is well defined. Let w = PF x0. Since Ω ⊂ Cn ∩ Dn

and xn+1 = PCn∩Dnx0, we have

||xn+1 − x0|| ≤ ||w − x0||, n ≥ 0. (4:3)

Since {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ v ∈ C.

Since xn+2 Î Dn+1 ⊂ Dn and xn+1 = PCn∩Dnx0, we have

||xn+1 − x0|| ≤ ||xn+2 − x0||.

Since {xn - x0} is bounded, we have limn®∞ ||xn - x0|| = d for some a constant d.

Moreover, by the convexity of Dn, we also have
1
2
(xn+1 + xn+2) ∈ Dn and hence

||x0 − xn+1|| ≤
∥∥∥x0 − xn+1 + xn+2

2

∥∥∥ ≤ 1
2

(||x0 − xn+1|| + ||x0 − xn+2||) .

This implies that

lim
n→∞

∥∥∥∥12(x0 − xn+1) +
1
2
(x0 − xn+2)

∥∥∥∥ = lim
n→∞

∥∥∥x0 − xn+1 + xn+2
2

∥∥∥ = d.

By Lemma 2.1, we have limn ®∞ ||xn - xn+1|| = 0.

Next, we show that v ∈ ⋂∞
n=0 F(Tn). Since xn+1 Î Cn and tn > 0, there exists m ∈ N ,

{l0, l1,..., lm} ⊂ [0, 1] and {y0, y1,..., ym} ⊂ C such that

m∑
i=1

λi = 1,

∥∥∥∥∥xn+1 −
m∑
i=0

λiyi

∥∥∥∥∥ < tn, and —|yi − Tnyi|| ≤ tn||xn − Tnxn||
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for each i = 0, 1,..., m. Since C is bounded, by Lemma 2.2, we have

||xn − Tnxn|| ≤ ||xn − xn+1|| +
∥∥∥∥∥xn+1 −

m∑
i=0

λiyi

∥∥∥∥∥ +

∥∥∥∥∥
m∑
i=0

λiyi −
m∑
i=0

λiTnyi

∥∥∥∥∥
+

∥∥∥∥∥
m∑
i=0

λiTnyi − Tn

(
m∑
i=0

λiyi

) ∥∥∥∥∥ +

∥∥∥∥∥Tn
(

m∑
i=0

λiyi

)
− Tnxn

∥∥∥∥∥
≤ 2||xn − xn+1|| + (2 + 2M)tn

+ γ −1
(

max
0≤i≤j≤m

(||yi − yj|| − ||Tnyi − Tnyj||)
)

≤ 2||xn − xn+1|| + (2 + 2M)tn

+ γ −1
(

max
0≤i≤j≤m

(||yi − Tnyi|| − ||yj − Tnyj||)
)

≤ 2||xn − xn+1|| + (2 + 2M)tn + γ −1(4Mtn),

where M = supn≥0 ||xn - w||. It follows from (C1) that limn ®∞ ||xn - Tnxn|| = 0.

Since {Tn} satisfies the NST-condition, we have v ∈ ⋂∞
n=0 F(Tn).

Next, we show that v Î GEP (f). By the construction of Dn, we see from (2.2) that

Srnxn = PDnxn. Since xn+1 Î Dn, we obtain

||xn − Srnxn|| ≤ ||xn − xn+1|| → 0,

as n ® ∞. From (C2), we also have

1
rn

∥∥J(xn − Srnxn)
∥∥ =

1
rn

||xn − Srnxn|| → 0, (4:4)

as n ® ∞. Since {xn} is bounded, it has a subsequence {xni} which weakly converges

to some v Î E.

By (4.4), we also have Srni ⇀ v. By the definition of Srnj, for each y Î C, we obtain

f (Srni xni , y) + 〈ASrni xni , y − Srni xni〉 +
1
rni

〈y − Srni xni , J(Srni xni − xni)〉 ≥ 0.

By (A3) and (4.4), we have

f (v, y) + 〈Av, y − v〉 ≥ 0, ∀y ∈ C.

This shows that v Î GEP (f) and hence v ∈ 
 :=
⋂∞

n=0 F(Tn) ∩ GEP(f ).

Note that w = PΩx0. Finally, we show that xn ® w as n ® ∞. By the weakly lower

semicontinuity of the norm, it follows from (4.3) that

||x0 − w|| ≤ ||x0 − v|| ≤ lim inf
i→∞

||x0 − xni || ≤ lim sup
i→∞

||x0 − xni || ≤ ||x0 − w||.

This shows that

lim
i→∞

||x0 − xni || = ||x0 − w|| = ||x0 − v||

and v = w. Since E is uniformly convex, we obtain that x0 − xni → x0 − w. It follows

that xni → w. Hence, we have xn ® w as n ® w. This completes the proof.

5. Deduced theorems
If we take f ≡ 0 and A ≡ 0 in Theorem 4.1, then we obtain the following result.
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Theorem 5.1. Let E be a uniformly convex and smooth Banach space, C a nonempty,

bounded, closed, and convex subset of E and {Tn}∞n=0a sequence of nonexpansive map-

pings of C into itself such that 
 :=
⋂∞

n=0
F(Tn) 
=
 0and suppose that {Tn}∞n=0satisfies the

NST-condition. Let {xn} be the sequence in C generated by⎧⎨
⎩
x0 ∈ C,D0 = C,
Cn = co{z ∈ C : ||z − Tnz|| ≤ tn||xn − Tnxn||},n ≥ 1,
xn+1 = PCnx0,n ≥ 0.

(5:1)

If {tn} ⊂ (0, 1) and limn®∞ tn = 0, then {xn} converges strongly to PΩx0.

Remark 5.2. By Lemma 2.3, if we define Tn = αnI + (1 − αn)
∑n

k=1 βk
nSk for all n ≥ 0

in Theorems 3.1 and 5.1, then the theorems also hold.

If we take Tn ≡ I, the identity mapping on C, for all n ≥ 0 in Theorem 4.1, then we

obtain the following result.

Theorem 5.3. Let E be a uniformly convex and smooth Banach space, C a nonempty,

bounded, closed, and convex subset of E. Let f be a bifunction from C × C to Rsatisfying

(A1)-(A4) and A an a-inverse strongly monotone mapping of C into E*. Let {xn} be the

sequence in C generated by⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x0 ∈ C,D0 = C,

un ∈ C such that f (un, y) + 〈Aun, y − un〉 + 1
rn

〈y − un, J(un − xn)〉 ≥ 0,∀y ∈ C,n ≥ 0,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,

xn+1 = PDnx0, n ≥ 0.

(5:2)

If {rn} ⊂ (0, 1) and lim infn®∞ rn > 0, then {xn} converges strongly to PGEP (f)x0.

If we take A ≡ 0 in Theorem 4.1, then we obtain the following result concerning an

equilibrium problem in a Banach space setting.

Theorem 5.4. Let E be a uniformly convex and smooth Banach space and C be a

nonempty, bounded, closed, and convex subset of E. Let f be a bifunction from C × C to

Rsatisfying (A1)-(A4) and let {Tn}∞n=0be a sequence of nonexpansive mappings of C into

itself such that 
 :=
⋂∞

n=0 F(Tn) ∩ EP(f ) 
= ∅and suppose that {Tn}∞n=0satisfies the NST-

condition. Let {xn} be the sequence in C generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,D0 = C,

Cn = co{z ∈ C : ||z − Tnz|| ≤ tn||xn − Tnxn||}, n ≥ 1,

un ∈ C such that f (un, y) +
1
rn

〈y − un, J(un − xn)〉 ≥ 0, ∀y ∈ C, n ≥ 0,

Dn = {z ∈ Dn−1 : 〈un − z, J(xn − un)〉 ≥ 0}, n ≥ 1,

xn+1 = PCn∩Dnx0, n ≥ 0,

(5:3)

where {tn} and {rn} are sequences which satisfy the conditions:

(C1) {tn} ⊂ (0, 1) and limn®∞ tn = 0;

(C2) {rn} ⊂ (0, 1) and lim infn®∞ rn > 0.

Then, the sequence {xn} converges strongly to PΩx0.
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Abbreviations
GEP: generalized equilibrium problem.
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