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Abstract

The purpose of this article is to study the fixed point and weak convergence problem
for the new defined class of point-dependent l-hybrid mappings relative to a Bregman
distance Df in a Banach space. We at first extend the Aoyama-Iemoto-Kohsaka-Takahashi
fixed point theorem for l-hybrid mappings in Hilbert spaces in 2010 to this much wider
class of nonlinear mappings in Banach spaces. Secondly, we derive an Opial-like
inequality for the Bregman distance and apply it to establish a weak convergence
theorem for this new class of nonlinear mappings. Some concrete examples in a Hilbert
space showing that our extension is proper are also given.
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1 Introduction
Let C be a nonempty subset of a Hilbert space H. A mapping T : C ® H is said to be

(1.1) nonexpansive if ||Tx - Ty|| ≤ ||x - y||, ∀x, y Î C, cf. [1,2];

(1.2) nonspreading if ||Tx - Ty||2 ≤ ||x - y||2 + 2 〈x - Tx, y - Ty〉, ∀x, y Î C, cf. [3-5];

(1.3) hybrid if ||Tx - Ty||2 ≤ ||x - y||2 + 〈x - Tx, y - Ty〉, ∀x, y Î C, cf. [3,5-7].

As shown in [3], (1.2) is equivalent to

2||Tx − Ty||2 ≤ ||Tx − y||2 + ||x − Ty||2

for all x, y Î C.

In 1965, Browder [1] established the following

Browder fixed point Theorem. Let C be a nonempty closed convex subset of a Hil-

bert space H, and let T : C ® C be a nonexpansive mapping. Then, the following are

equivalent:

(a) There exists x Î C such that {Tnx}nÎN is bounded;

(b) T has a fixed point.

The above result is still true for nonspreading mappings which was shown in

Kohsaka and Takahashi [4]. (We call it the Kohsaka-Takahashi fixed point theorem.)

Recently, Aoyama et al. [8] introduced a new class of nonlinear mappings in a

Hilbert space containing the classes of nonexpansive mappings, nonspreading map-

pings and hybrid mappings. For l Î ℝ, they call a mapping T : C ® H
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(1.4) l-hybrid if ||Tx - Ty||2 ≤ ||x - y||2 + l 〈x - Tx, y - Ty〉, ∀x, y Î C.

And, among other things, they establish the following

Aoyama-Iemoto-Kohsaka-Takahashi fixed point Theorem. [8]Let C be a none-

mpty closed convex subset of a Hilbert space H, and let T : C ® C be a l-hybrid map-

ping. Then, the following are equivalent:

(a) There exists x Î C such that {Tnx}nÎN is bounded;

(b) T has a fixed point.

Obviously, T is nonexpansive if and only if it is 0-hybrid; T is nonspreading if and

only if it is 2-hybrid; T is hybrid if and only if it is 1-hybrid.

Motivated by the above works, we extend the concept of l-hybrid from Hilbert

spaces to Banach spaces in the following way:

Definition 1.1. For a nonempty subset C of a Banach space X, a Gâteaux differenti-

able convex function f : X ® (-∞,∞] and a function l : C ® ℝ, a mapping T : C ® X

is said to be point-dependent l-hybrid relative to Df if

(1.5) Df (Tx, Ty) ≤ Df (x, y) + l(y) 〈x - Tx, f’(y) - f(Ty)〉, ∀x, y Î C,

where Df is the Bregman distance associated with f and f’(x) denotes the Gâteaux

derivative of f at x.

In this article, we study the fixed point and weak convergence problem for mappings

satisfying (1.5). This article is organized in the following way: Section 2 provides prelimin-

aries. We investigate the fixed point problem for point-dependent l-hybrid mappings in

Section 3, and we give some concrete examples showing that even in the setting of a Hil-

bert space, our fixed point theorem generalizes the Aoyama-Iemoto-Kohsaka-Takahashi

fixed point theorem properly in Section 4. Section 5 is devoting to studying the weak con-

vergence problem for this new class of nonlinear mappings.

2 Preliminaries
In what follows, X will be a real Banach space with topological dual X* and f : X ®
(-∞,∞] will be a convex function. D denotes the domain of f, that is,

D = {x ∈ X : f (x) < ∞},

and D◦ denotes the algebraic interior of D , i.e., the subset of D consisting of all

those points x ∈ D such that, for any y Î X \ {x}, there is z in the open segment (x, y)

with [x, z] ⊆ D . The topological interior of D , denoted by Int(D) , is contained in

D◦ . f is said to be proper provided that D �= ∅ . f is called lower semicontinuous (l.s.c.)

at x Î X if f(x) ≤ lim infy®x f (y). f is strictly convex if

f (αx + (1 − α)y) < αf (x) + (1 − α)f (y)

for all x, y Î X and a Î (0, 1).

The function f : X ® (-∞, ∞] is said to be Gâteaux differentiable at x Î X if there is

f’(x) Î X* such that

lim
t→0

f (x + ty) − f (x)
t

= 〈y, f ′(x)〉

for all y Î X.

The Bregman distance Df associated with a proper convex function f is the function

Df : D × D → [0,∞] defined by
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Df (y, x) = f (y) − f (x) + f ◦(x, x − y), (1)

where f ◦(x, x − y) = lim
t→0+

f (x + t(x − y)) − f (x)
t

. Df(y, x) is finite valued if and only if

x ∈ Do , cf. Proposition 1.1.2 (iv) of [9]. When f is Gâteaux differentiable on D, (1)

becomes

Df (y, x) = f (y) − f (x) − 〈y − x, f ′(x)〉, (2)

and then the modulus of total convexity is the function νf : D◦ × [0,∞) → [0,∞]

defined by

νf (x, t) = inf{Df (y, x) : y ∈ D, ||y − x|| = t}.

It is known that

νf (x, ct) ≥ cνf (x, t) (3)

for all t ≥ 0 and c ≥ 1, cf. Proposition 1.2.2 (ii) of [9]. By definition it follows that

Df (y, x) ≥ νf (x, ||y − x||). (4)

The modulus of uniform convexity of f is the function δf : [0, ∞) ® [0, ∞] defined by

δf (t) = inf
{
f (x) + f (y) − 2f

(x + y

2

)
: x, y ∈ D, ||x − y|| ≥ t

}
.

The function f is called uniformly convex if δf(t) >0 for all t >0. If f is uniformly con-

vex then for any ε >0 there is δ >0 such that

f
(x + y

2

)
≤ f (x)

2
+
f (y)
2

− δ (5)

for all x, y ∈ D with ||x - y|| ≥ ε.

Note that for y ∈ D and x ∈ D◦ , we have

f (x) + f (y) − 2f
(x + y

2

)

= f (y) − f (x) − f (x + y−x
2 ) − f (x)
1
2

≤ f (y) − f (x) − f ◦(x, y − x) ≤ Df (y, x),

where the first inequality follows from the fact that the function t ® f(x + tz) - f(x)/t

is nondecreasing on (0, ∞). Therefore,

νf (x, t) ≥ δf (t) (6)

whenever x ∈ D◦ and t ≥ 0. For other properties of the Bregman distance Df, we

refer readers to [9].

The normalized duality mapping J from X to 2X* is defined by

Jx = {x∗ ∈ X∗ : 〈x, x∗〉 = ||x||2 = ||x∗||2}

for all x Î X.
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When f(x) = ||x||2 in a smooth Banach space X, it is known that f’(x) = 2J(x) for x Î
X, cf. Corollaries 1.2.7 and 1.4.5 of [10]. Hence, we have

Df (y, x) = ||y||2 − ||x||2 − 〈y − x, f ′(x)〉
= ||y||2 − ||x||2 − 2〈y − x, Jx〉
= ||y||2 + ||x||2 − 2〈y, Jx〉.

Moreover, as the normalized duality mapping J in a Hilbert space H is the identity

operator, we have

Df (y, x) = ||y||2 + ||x||2 − 2〈y, x〉 = ||y − x||2.

Thus, in case l is a constant function and f(x) = ||x||2 in a Hilbert space, (1.5) coin-

cides with (1.4). However, in general, they are different.

A function g : X ® (-∞,∞] is said to be subdifferentiable at a point x Î X if there

exists a linear functional x* Î X* such that

g(y) − g(x) ≥ 〈y − x, x∗〉, ∀y ∈ X.

We call such x* the subgradient of g at x. The set of all subgradients of g at x is

denoted by ∂g(x) and the mapping ∂g : X ® 2X* is called the subdifferential of g. For a

l.s.c. convex function f, ∂f is bounded on bounded subsets of Int(D) if and only if f is

bounded on bounded subsets there, cf. Proposition 1.1.11 of [9]. A proper convex l.s.c.

function f is Gâteaux differentiable at x ∈ Int(D) if and only if it has a unique subgra-

dient at x; in such case ∂f(x) = f’(x), cf. Corollary 1.2.7 of [10].

The following lemma will be quoted in the sequel.

Lemma 2.1. (Proposition 1.1.9 of [9]) If a proper convex function f : X ® (-∞, ∞] is

Gâteaux differentiable on Int(D) in a Banach space X, then the following statements

are equivalent:

(a) The function f is strictly convex on Int(D) .

(b) For any two distinct points x, y ∈ Int(D) , one has Df (y, x) >0.

(c) For any two distinct points x, y ∈ Int(D) , one has

〈x − y, f ′(x) − f ′(y)〉 > 0.

Throughout this article, F(T) will denote the set of all fixed points of a mapping T.

3 Fixed point theorems
In this section, we apply Lemma 2.1 to study the fixed point problem for mappings

satisfying (1.5).

Theorem 3.1. Let X be a reflexive Banach space and let f : X ® (-∞,∞] be a l.s.c.

strictly convex function so that it is Gâteaux differentiable on Int(D) and is bounded on

bounded subsets of Int(D) . Suppose C ⊆ Int(D) is a nonempty closed convex subset of X

and T : C ® C is point-dependent l-hybrid relative to Df for some function l : C ® ℝ.

For x Î C and any n Î N define

Snx =
1
n

n−1∑
k=0

Tkx,
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where T0 is the identity mapping on C. If {Tnx}nÎN is bounded, then every weak clus-

ter point of {Snx}nÎN is a fixed point of T.

Proof. Since T is point-dependent l-hybrid relative to Df, we have, for any y Î C and

k Î N ∪ {0},

0 ≤ Df (T
kx, y) − Df (T

k+1x,Ty) + λ(y)〈Tkx − Tk+1x, f ′(y) − f ′(Ty)〉
= f (Tkx) − f (y) − 〈Tkx − y, f ′(y)〉 − f (Tk+1x) + f (Ty) + 〈Tk+1x − Ty, f ′(Ty)〉
+λ(y)〈Tkx − Tk+1x, f ′(y) − f ′(Ty)〉

= [f (Tkx) − f (Tk+1x)] + [f (Ty) − f (y)] + 〈λ(y)(Tkx − Tk+1x) − Tkx + y, f ′(y)〉
+〈Tk+1x − Ty − λ(y)(Tkx − Tk+1x), f ′(Ty)〉.

Summing up these inequalities with respect to k = 0, 1,..., n - 1, we get

0 ≤ [f (x) − f (Tnx)] + n[f (Ty) − f (y)] + 〈λ(y)(x − Tnx) + ny − nSnx, f ′(y)〉
+〈(n + 1)Sn+1x − x − nTy − λ(y)(x − Tnx), f ′(Ty)〉.

Dividing the above inequality by n, we have

0 ≤ f (x) − f (Tnx)
n

+ [f (Ty) − f (y)] +
〈
λ(y)(x − Tnx)

n
+ y − Snx, f ′(y)

〉

+
〈
n + 1
n

Sn+1x − x
n

− Ty − λ(y)(x − Tnx)
n

, f ′(Ty)
〉
.

(7)

Since {Tnx}nÎN is bounded, {Snx}nÎN is bounded, and so, in view of X being reflexive,

it has a subsequence {Snix}i∈� so that Snix converges weakly to some v Î C as ni ®
∞. Replacing n by ni in (7), and letting ni ® ∞, we obtain from the fact that {Tnx}nÎN
and {f(Tnx)}nÎN are bounded that

0 ≤ f (Ty) − f (y) + 〈y − v, f ′(y)〉 + 〈v − Ty, f ′(Ty)〉. (8)

Putting y = v in (8), we get

0 ≤ f (Tv) − f (v) + 〈v − Tv, f ′(Tv)〉,

that is,

0 ≤ −Df (v,Tv),

from which follows that Df(v, Tv) = 0. Therefore Tv = v by Lemma 2.1. □
The following theorem comes from Theorem 3.1 immediately.

Theorem 3.2. Let X be a reflexive Banach space and let f : X ® (-∞,∞] be a l.s.c.

strictly convex function so that it is Gâteaux differentiable on Int(D) and is bounded on

bounded subsets of Int(D) . Suppose C ⊆ Int(D) is a nonempty closed convex subset of X

and T : C ® C is point-dependent l-hybrid relative to Df for some function l : C ® ℝ.

Then, the following two statements are equivalent:

(a) There is a point x Î C such that {Tnx}nÎN is bounded.

(b) F(T) ≠ ∅.

Taking l(x) = l, a constant real number, for all x Î C and noting the function f(x) =

||x||2 in a Hilbert space H satisfies all the requirements of Theorem 3.2, the corollary

below follows immediately.
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Corollary 3.3. [8]Let C be a nonempty closed convex subset of Hilbert space H and

suppose T : C ® C is l-hybrid. Then, the following two statements are equivalent:

(a) There exists x Î C such that {Tn(x)}nÎN is bounded.

(b) T has a fixed point.

We now show that the fixed point set F(T) is closed and convex under the assump-

tions of Theorem 3.2.

A mapping T : C ® X is said to be quasi-nonexpansive with respect to Df if F(T) ≠

∅ and Df (v, Tx) ≤ Df(v, x) for all x Î C and all v Î F(T).

Lemma 3.4. Let f : X ® (-∞,∞] be a proper strictly convex function on a Banach

space X so that it is Gâteaux differentiable on Int(D) , and let C ⊆ Int(D) be a none-

mpty closed convex subset of X. If T : C ® C is quasi-nonexpansive with respect to Df,

then F(T) is a closed convex subset.

Proof. Let x ∈ F(T) and choose {xn}nÎN ⊆ F(T) such that xn ® x as n ® ∞. By the

continuity of Df(·, Tx) and Df(xn, Tx) ≤ Df(xn, x), we have

Df (x,Tx) = lim
n→∞Df (xn,Tx) ≤ lim

n→∞Df (xn, x) = Df (x, x) = 0.

Thus, due to the strict convexity of f, it follows from Lemma 2.2 that Tx = x. This

shows F(T) is closed. Next, let x, y Î F(T) and a Î [0, 1]. Put z = ax + (1 - a)y. We

show that Tz = z to conclude F(T) is convex. Indeed,

Df (z, Tz)

= f (z) − f (Tz) − 〈z − Tz, f ′(Tz)〉
= f (z) + [αf (x) + (1 − α)f (y)] − f (Tz) − 〈z − Tz, f ′(Tz)〉 − [αf (x) + (1 − α)f (y)]

= f (z) + α[f (x) − f (Tz) − 〈x − Tz, f ′(Tz)〉]
+ (1 − α)[f (y) − f (Tz) − 〈y − Tz, f ′(Tz)〉] − [αf (x) + (1 − α)f (y)]

= f (z) + αDf (x,Tz) + (1 − α)Df (y, Tz) − [αf (x) + (1 − α)f (y)]

≤ f (z) + αDf (x, z) + (1 − α)Df (y, z) − [αf (x) + (1 − α)f (y)]

= f (z) + α[f (x) − f (z) − 〈x − z, f ′(z)〉] + (1 − α)[f (y) − f (z) − 〈y − z, f ′(z)〉]
− [αf (x) + (1 − α)f (y)]

= f (z) + αf (x) − αf (z) − 〈αx − αz, f ′(z)〉 + (1 − α)f (y) − (1 − α)f (z)

− 〈(1 − α)y − (1 − α)z, f ′(z)〉 − [αf (x) + (1 − α)f (y)]

= −〈αx + (1 − α)y − (αz + (1 − α)z), f ′(z)〉
= −〈0, f ′(z)〉 = 0.

Therefore, Tz = z by the strictly convex of f. This completes the proof. □
Proposition 3.5. Let f : X ® (-∞,∞] be a proper strictly convex function on a reflexive

Banach space X so that it is Gâteaux differentiable on Int(D) and is bounded on

bounded subsets of Int(D), and let C ⊆ Int(D) be a nonempty closed convex subset of

X. Suppose T : C ® C is point-dependent l-hybrid relative to Df for some function l :

C ® ℝ and has a point x0 Î C such that {Tn(x0)}nÎN is bounded. Then, T is quasi-non-

expansive with respect to Df, and therefore, F(T) is a nonempty closed convex subset

of C.

Proof. In view of Theorem 3.2, F(T) ≠ ∅. Now, for any v Î F(T) and any y Î C, as T

is point-dependent l-hybrid relative to Df, we have
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Df (v,Ty) = Df (Tv,Ty)

≤ Df (v, y) + λ(y) 〈v − Tv, f ′(y) − f ′(Ty)〉
= Df (v, y)

for all y Î C, so T is quasi-nonexpansive with respect to Df, and hence, F(T) is a

nonempty closed convex subset of C by Lemma 3.4. □
For the remainder of this section, we establish a common fixed point theorem for a

commutative family of point-dependent l-hybrid mappings relative to Df.

Lemma 3.6. Let X be a reflexive Banach space and let f : X ® (-∞,∞] be a l.s.c.

strictly convex function so that it is Gâteaux differentiable on Int(D) and is bounded

on bounded subsets of Int(D) . Suppose C ⊆ Int(D) is a nonempty bounded closed con-

vex subset of X and {T1, T2,..., TN} is a commutative finite family of point-dependent l-
hybrid mappings relative to Df for some function l : C ® ℝ from C into itself. Then

{T1, T2,..., TN} has a common fixed point.

Proof. We prove this lemma by induction with respect to N. To begin with, we deal

with the case that N = 2. By Proposition 3.5, we see that F(T1) and F(T2) are nonempty

bounded closed convex subsets of X. Moreover, F(T1) is T2-invariant. Indeed, for any v

Î F(T1), it follows from T1T2 = T2T1 that T1T2v = T2T1v = T2v, which shows that T2v

Î F(T1). Consequently, the restriction of T2 to F(T1) is point-dependent l-hybrid rela-

tive to Df, and hence by Theorem 3.2, T2 has a fixed point u Î F(T1), that is, u Î F

(T1) ∩ F(T2).

By induction hypothesis, assume that for some n ≥ 2, E = ∩n
k=1F(Tk) is nonempty.

Then, E is a nonempty closed convex subset of X and the restriction of Tn+1 to E is a

point-dependent l-hybrid mapping relative to Df from E into itself. By Theorem 3.2,

Tn+1 has a fixed point in X. This shows that E ∩ F(Tn+1) ≠ ∅, that is, ∩n+1
k=1F(Tk) �= ∅ ,

completing the proof. □.
Theorem 3.7. Let X be a reflexive Banach space and let f : X ® (-∞,∞] be a l.s.c. strictly

convex function so that it is Gâteaux differentiable on Int(D) . Suppose C ⊆ Int(D) is a

nonempty bounded closed convex subset of X and {Ti}iÎI is a commutative family of point-

dependent l-hybrid mappings relative to Df for some function l : C ® ℝ from C into itself.

Then, {Ti}iÎI has a common fixed point.

Proof. Since C is a nonempty bounded closed convex subset of the reflexive Banach

space X, it is weakly compact. By Proposition 3.5, each F(Ti) is a nonempty weakly

compact subset of C. Therefore, the conclusion follows once we note that {F(Ti)}iÎI has

the finite intersection property by Lemma 3.6. □.

4 Examples
In this section, we give some concrete examples for our fixed point theorem. At first,

we need a lemma.

Lemma 4.1. Let h and k be two real numbers in [0, 1]. Then, the following two state-

ments are true.

(a) (h2 - k2)2 - (h - k)2 ≥ 0, if h+k
2 > 0.5 .

(b) (h2 - k2)2 - (h - k)2 ≤ 0, if h+k
2 ≤ 0.5 .
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Proof. First, we represent h and k by

h = 0.5 + a, where − 0.5 ≤ a ≤ 0.5,

and

k = 0.5 + b, where − 0.5 ≤ b ≤ 0.5.

Then, we have

(h2 − k2)2 − (h − k)2 = (a − b)2(a + b) (a + b + 2).

If h+k
2 > 0.5 , then a + b >0, and so through the above equation, we obtain that (h2 -

k2)2 - (h - k)2 ≥ 0. On the other hand, h+k
2 ≤ 0.5 implies a + b ≤ 0, and hence, (h2 -

k2)2 - (h - k)2 ≤ 0.

Example 4.2. Let C = {x ∈ l2(�) : x = (x1, x2, . . . , xn, . . .), 0 ≤ xi ≤ 1 − 1
i+1 } and δ be

a positive number so small that
√

δ < 0.5 . Define a mapping T : C ® C by

Tx = (Tx1,Tx2, . . . ,Txn, . . .) : Txi =

⎧⎨
⎩
x2i , if

√
δ < xi ≤ 1 − 1

i+1 ;
δ, if δ < xi ≤ √

δ;
xi, if0 ≤ xi ≤ δ.

Then for any l Î ℝ, T is not l-hybrid. However, for each x Î C, if we let

nx = min{n :
∑∞

i=n+1 x
2
i ≤ δ2} and define l : C ® ℝ by

λ(x) =
1(

1
nx+1

− 1
(nx+1)

2

)2 ,

then T is point-dependent l-hybrid, that is,

||Tx − Ty||2 ≤ ||x − y||2 + λ(y) 〈x − Tx, y − Ty〉 (9)

for all x, y Î C. Therefore, we can apply Theorem 3.2 to conclude that T has a fixed

point, while the Aoyama-Iemoto-Kohsaka-Takahashi fixed point theorem fails to give us

the desired conclusion.

Proof. Let x and y be two elements from C so that the mth coordinate of x is 1 − 1
m+1

the mth coordinate of y is 0.5 and the rest coordinates of x and y are zero. We have

||Tx − Ty||2 − ||x − y||2 − m 〈x − Tx, y − Ty〉

=

[(
1 − 1

m + 1

)2

− (0.5)2
]2

−
[(

1 − 1
m + 1

)
− 0.5

]2

−m

[(
1 − 1

m + 1

)
−

(
1 − 1

m + 1

)2
]
[0.5 − (0.5)2]

=
9
16

− 2
m + 1

+
9

2(m + 1)2
− 4

(m + 1)3
+

1

(m + 1)4
− m2

4(m + 1)2

→ 5
16

as m → ∞.

Since the value of above equality is always positive as m is large enough, we conclude

that there is no constant l to satisfy the inequality:
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||Tx − Ty||2 ≤ ||x − y||2 + λ 〈x − Tx, y − Ty〉

for all x, y Î C.

It remains to show that T satisfies the inequality (9). We can rewrite the inequality as

∞∑
i=1

(Txi − Tyi)
2 ≤

∞∑
i=1

(xi − yi)
2 +

∞∑
i=1

λ(y)(xi − Txi)(yi − Tyi).

Thus, if we can show that for all i Î N,

(Txi − Tyi)2 ≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi), (10)

then the assertion follows. We prove inequality (10) holds for all i Î N by consider-

ing the following two cases: (I) i >min{nx, ny} and (II) i ≤ min{nx, ny}.

● Case (I). i >min{nx, ny}.

In this case, at least one of xi and yi is less than or equal to δ. Suppose that 0 ≤ xi ≤

δ. There are three subcases to discuss.

(I-1): If
√

δ < yi ≤ 1 − 1
i+1 , then we have

(Txi − Tyi)2 = (xi − y2i )
2 ≤ (xi − yi)2

≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

(I-2): δ < yi ≤ √
δ , then we have

(Txi − Tyi)2 = (xi − δ)2 ≤ (xi − yi)2

≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

(I-3): If 0 ≤ yi ≤ δ, then we have

(Txi − Tyi)2 = (xi − yi)2 ≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

The case that 0 ≤ yi ≤ δ can be proved in the same manner.

● Case (II). i ≤ min{nx, ny}.

In this case, there are 9 subcases to discuss.

(II-1):
√

δ < xi ≤ 1 − 1
i+1 and

√
δ < yi ≤ 1 − 1

i+1 .

If xi+yi
2 ≤ 0.5 , it follows from Lemma 4.1 that

(Txi − Tyi)2 = (x2i − y2i )
2 ≤ (xi − yi)2

≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

If xi+yi
2 > 0.5 , then both xi and yi are greater than 1

i+1 , and so by considering the

graph of the function g(z) = z - z2 in ℝ, which is symmetric to the line L : x = 0.5, we

have

(xi − x2i ) ≥
(

1
i + 1

)
−

(
1

i + 1

)2

≥
(

1
ny + 1

)
−

(
1

ny + 1

)2

and

(yi − y2i ) ≥
(

1
i + 1

)
−

(
1

i + 1

)2

≥
(

1
ny + 1

)
−

(
1

ny + 1

)2

.
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Consequently, we obtain

(Txi − Tyi)2 = (x2i − y2i )
2 ≤ 1 ≤ 1(

1
ny+1

− 1
(ny+1)

2

)2 (xi − x2i )(yi − y2i )

≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

(II-2): δ < xi ≤ √
δ and

√
δ < yi ≤ 1 − 1

i+1 .

If yi ≤ 0.5, then xi+yi
2 < 0.5 . Thus, from Lemma 4.1, we have

(Txi − Tyi)2 = (δ − y2i )
2 ≤ (x2i − y2i )

2

≤ (xi − yi)2

≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

If yi >0.5, we have either

δ < xi ≤ δ +
(

1
i + 1

)
−

(
1

i + 1

)2

or

δ +
(

1
i + 1

)
−

(
1

i + 1

)2

< xi ≤ √
δ.

When δ < xi ≤ δ + ( 1
i+1 ) − ( 1

i+1 )
2 , by considering the graph of the function g(z) = z -

z2 in ℝ, we have

yi − y2i ≥
(

1
i + 1

)
−

(
1

i + 1

)2

≥ xi − δ.

and thus, we obtain

yi − xi ≥ y2i − δ > 0.

Therefore,

(Txi − Tyi)2 = (δ − y2i )
2

≤ (xi − yi)2 ≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

When δ +
( 1
i+1

) − ( 1
i+1

)2
< xi ≤ √

δ , both of xi-δ and yi − y2i are greater than

( 1
i+1

) − ( 1
i+1

)2 and thus also greater than
(

1
ny+1

)
−

(
1

ny+1

)2
.

Therefore,

(Txi − Tyi)2 = (δ − y2i )
2 ≤ 1 ≤ 1(

1
ny+1

− 1
(ny+1)

2

)2 (xi − δ)(yi − y2i )

≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

Likely, we can prove the case:

(II-3):
√

δ < xi ≤ 1 − 1
i+1 and δ < yi ≤ √

δ .

(II-4): 0 ≤·xi ≤ δ and
√

δ < yi ≤ 1 − 1
i+1 .
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Then, we have

(Txi − Tyi)2 = (xi − y2i )
2 ≤ (xi − yi)2

≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

Similarly, we can prove the case:

(II-5):
√

δ < xi ≤ 1 − 1
i+1 and 0 ≤ yi ≤ δ.

(II-6): δ < xi ≤ √
δ and δ < yi ≤ √

δ .

In this case, we have

(Txi − Tyi)2 = (δ − δ)2 = 0 ≤ (xi − yi)2 + λ(y)(xi − Txi)(yi − Tyi).

(II-7): 0 ≤ xi ≤ δ and δ < yi ≤ √
δ .

This case can be treated as (I-2).

(II-8): 0 ≤ xi ≤ δ and 0 ≤ yi ≤ δ.

This case can be treated as (I-3).

(II-9): δ < xi ≤ √
δ and 0 ≤ yi ≤ δ.

This case can be treated as (I-2). □
To end this section, we give another example which shows that the concept of a

nonspreading mapping in the sense of (1.2) is generally different from that of a 2-

hybrid mapping relative to some Df in Hilbert spaces.

Example 4.3. Define f : ℝ ® ℝ by f(x) = x10 for all x Î ℝ, and define T : [0, 0.85] ®
[0, 0.85] by Tx = x2 for all x Î [0, 0.85]. Then, T is neither nonexpansive nor non-

spreading, but it is l-hybrid relative to Df for any l ≥ 0. Thus, we can apply Theorem

3.2 to conclude T has a fixed point, while both of the Browder Fixed Point Theorem

and the Kohsaka-Takahashi fixed point theorem fail.

Proof. It is easy to check that T is not nonexpansive. As for not nonspreading, taking

x = 0.85 and y = 0.5, we have

||Tx − Ty||2 = (x2 − y2)2 = [(0.85)2 − (0.5)2]2 = 0.22325625

while

||x − y||2 + 2 〈x − Tx, y − Ty〉
= (x − y)2 + 2(x − x2)(y − y2)

= (0.85 − 0.5)2 + 2[0.85 − (0.85)2][0.5 − (0.5)2] = 0.18625.

Hence, T is not nonspreading in the sense of (1.2). It remains to show that for any l
≥ 0, T is l-hybrid relative to Df. Note at first that, for all l ≥ 0 and for all x, y Î [0,

0.85],

λ 〈x − Tx, f ′(y) − f ′(Ty)〉
= λ(x − x2) (10y9 − 10y18) ≥ 0.

Hence, it suffices to prove that T is 0-hybrid relative to Df, that is, to show that

Df (Tx,Ty) − Df (x, y) ≤ 0, ∀x, y ∈ [0, 0.85].
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Fixed any x Î [0, 0.85], let h(y) = Df(Tx, Ty) - Df(x, y). Then

h(y) = f (Tx) − f (Ty) − 〈Tx − Ty, f ′(Ty)〉 − [f (x) − f (y) − 〈x − y, f ′(y)〉]
= x20 + 9y20 − 10x2y18 − x10 − 9y10 + 10xy9.

We have

h′(y) = 180y19 − 180x2y17 − 90y9 + 90xy8

= 90y8(2y11 − 2x2y9 − y + x)

= 90y8[2y9(y2 − x2) − (y − x)]

= 90y8[2y9(y + x)(y − x) − (y − x)]

= 90y8(y − x)[2y9(y + x) − 1].

Since y and x are in [0, 0.85], one has

2y9(y + x) − 1 < 2(0.85)9(0.85 + 0.85) − 1 < 0,

and hence

h′(y)
{≥ 0 , if y ≤ x;

≤ 0 , if y > x.

Moreover, we know h(y) = 0 if x = y. Therefore, h(y) is always less than or equal to

zero and we have proved that Df(Tx, Ty) - Df(x, y) ≤ 0 for all x, y Î [0, 0.85]. □

5 Weak convergence theorems
In this section, we discuss the demiclosedness and the weak convergence problem of

point-dependent l-hybrid relative to Df. We denote the weak convergence and strong

convergence of a sequence {xn} to v in a Banach space by xn ⇀ v and xn ® v, respec-

tively. For a nonempty closed convex subset C of a Banach space X, a mapping T : C

® X is demiclosed if for any sequence {xn} in C with xn ⇀ v and xn - Txn ® 0, one

has Tv = v.

We first derive an Opial-like inequality for the Bregman distance. For the Opial’s

inequality, we refer readers to Lemma 1 of [11].

Lemma 5.1. Suppose f : X ® (-∞,∞] is a proper strictly convex function so that it is

Gâteaux differentiable on Int(D) in a Banach space X and {xn}nÎN is a sequence in D
such that xn ⇀ v for some v ∈ Int(D) . Then

lim inf
n→∞ Df (xn, v) < lim inf

n→∞ Df (xn, y), ∀y ∈ Int(D) with y �= v.

Proof. Since

Df (xn, v) − Df (xn, y)

= f (xn) − f (v) − 〈xn − v, f ′(v)〉 − [f (xn) − f (y) − 〈xn − y, f ′(y)〉]
= f (xn) − f (v) − 〈xn − v, f ′(v)〉 − f (xn) + f (y) + 〈xn − y, f ′(y)〉]

+ 〈xn − v, f ′(y)〉 − 〈xn − v, f ′(y)〉
= − [f (v) − f (y) − 〈v − y, f ′(y)〉] + 〈xn − v, f ′(y) − f ′(v)〉
= − Df (v, y) + 〈xn − v, f ′(y) − f ′(v)〉
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and xn ⇀ v, we have

lim
n→∞[Df (xn, v) − Df (xn, y)] = −Df (v, y).

Consequently,

lim inf
n→∞ Df (xn, v) = lim inf

n→∞ [(Df (xn, v) − Df (xn, y)) +Df (xn, y)]

= lim
n→∞(Df (xn, v) − Df (xn, y)) + lim inf

n→∞ Df (xn, y)

= −Df (v, y) + lim inf
n→∞ Df (xn, y),

and hence in view of Df(v, y) >0 for y ≠ v we obtain

lim inf
n→∞ Df (xn, v) < lim inf

n→∞ Df (xn, y).

□
Proposition 5.2. Let f : X ® (-∞,∞] be a strictly convex function so that it is Gâteaux

differentiable on Int(D) and is bounded on bounded subsets of Int(D) . Suppose C is a

closed convex subset of Int(D) and T : C ® C is point-dependent l-hybrid relative to

Df for some l : C ® ℝ. Then T is demiclosed.

Proof. Let {xn} be any sequence in C with xn ⇀ v and xn - Txn ® 0. We have to show

that Tv = v. Since f is bounded on bounded subsets, by Proposition 1.1.11 of [9] there

exists a constant M >0 such that

max{sup{||f ′(xn)|| : n ∈ �}, ||λ(v)||, ||f ′(Tv)||, ||f ′(v)||} ≤ M.

Rewrite Df(xn, Tv) as

Df (xn,Tv) = f (xn) − f (Tv) − 〈xn − Tv, f ′(Tv)〉
= f (xn) + f (Txn) − f (Txn) − f (Tv) − 〈xn − Tv, f ′(Tv)〉
+ 〈Txn − Tv, f ′(Tv)〉 − 〈Txn − Tv, f ′(Tv)〉

= [f (Txn) − f (Tv) − 〈Txn − Tv, f ′(Tv)〉] + f (xn) − f (Txn)

+ 〈Txn − xn, f ′(Tv)〉
= Df (Txn,Tv) + f (xn) − f (Txn) + 〈Txn − xn, f ′(Tv)〉.

(11)

Noting f(xn) - f(Txn) ≤ 〈xn - Txn, f’(xn)〉 and T is point-dependent l-hybrid relative to

Df, we have from (11) that

Df (xn,Tv)

≤ Df (Txn,Tv) + 〈xn − Txn, f ′(xn)〉 − 〈xn − Txn, f ′(Tv)〉
≤ Df (xn, v) + λ(v)〈xn − Txn, f ′(v) − f ′(Tv)〉 + 〈xn − Txn, f ′(xn) − f ′(Tv)〉
≤ Df (xn, v) + [|λ(v)|(||f ′(v)|| + ||f ′(Tv)||) + (||f ′(xn)|| + ||f ′(Tv)||)]||xn − Txn||
≤ Df (xn, v) + 2M(M + 1)||xn − Txn||.

(12)

If Tv ≠ v, then Lemma 5.1 and (12) imply that

lim inf
n→∞ Df (xn, v)

< lim inf
n→∞ Df (xn, Tv)

≤ lim inf
n→∞ [Df (xn, v) + 2M(M + 1)||xn − Txn||] = lim inf

n→∞ Df (xn, v),
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a contradiction. This completes the proof. □
A mapping T : C ® C is said to be asymptotically regular if, for any x Î C, the

sequence {Tn+1x - Tnx} tends to zero as n ® ∞.

Theorem 5.3. Suppose the following conditions hold:

(5.3.1) f : X ® (-∞,∞] is l.s.c. uniformly convex function so that it is Gâteaux differen-

tiable on Int(D) and is bounded on bounded subsets of Int(D) in a reflexive Banach

space X.

(5.3.2) C ⊆ Int(D) is a closed convex subset of X.

(5.3.3) T : C ® C is point-dependent l-hybrid relative to Df for some l : C ® ℝ and

is asymptotically regular with a bounded sequence {Tnx0}nÎN for some x0 Î C.

(5.3.4) The mapping x ® f’(x) for x Î X is weak-to-weak* continuous.

Then for any x Î C, {Tnx}nÎN is weakly convergent to an element v Î F(T).

Proof. Let v Î F(T) and x Î C. If {Tnx}nÎN is not bounded, then there is a subse-

quence {Tnix}i∈� such that ||v − Tni x|| ≥ 1 for all i Î N and ||v − Tni x|| → ∞ as i ®
∞. From (5.3.3), for any n Î N, we have

Df (v,Tn+1x) = Df (Tv,Tn+1x)

≤ Df (v,Tnx) + λ(Tnx) {v − Tv, f ′(Tnx) − f ′(Tn+1x)} = Df (v,Tnx)

≤ Df (v, x),

which in conjunction with (3), (4), and (6) implies that

Df (v, x) ≥ Df (v,Tni x) ≥ νf (Tnix, ||v − Tnix||)
≥ ||v − Tni x||νf (Tni x, 1)

≥ ||v − Tni x||δf (1) → ∞, as i → ∞,

a contradiction. Therefore, for any x Î X, {Tnx}nÎN is bounded, and so it has a sub-

sequence {Tnj x}j∈� which is weakly convergent to w for some w Î C. As

Tnj x − Tnj+1x → 0, it follows from the demiclosedness of T that w Î F(T). It remains

to show that Tnx ⇀ w as n ® ∞. Let {Tnkx}n∈� be any subsequence of {Tnx}nÎN so

that Tnkx ⇀ u for some u Î C. Then u Î F(T). Since both of {Df(w, T
nx)}nÎN and {Df

(u, Tnx)}nÎN are decreasing, we have

lim
n→∞[Df (w,Tnx) − Df (u,Tnx)] = lim

n→∞[f (w) − f (u) − 〈w − u, f ′(Tnx)〉] = a

for some a Î ℝ. Particularly, from (5.3.4) we obtain

a = lim
nj→∞[f (w) − f (u) − 〈w − u, f ′(Tnj x)〉] = f (w) − f (u) − 〈w − u, f ′(w)〉

and

a = lim
nk→∞[f (w) − f (u) − 〈w − u, f ′(Tnkx)〉] = f (w) − f (u) − 〈w − u, f ′(u)〉.

Consequently, 〈w - u, f’(w) - f’(u)〉 = 0, and hence w = u by the strict convexity of f.

This shows that Tnx ⇀ w for some w Î F(T).□
Adopting the technique of [8], we have the following ergodic theorem for point-

dependent l-hybrid mappings in Hilbert spaces.
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Theorem 5.4. Suppose

(5.4.1) C is nonempty closed convex subset of a Hilbert space H.

(5.4.2) T : C ® C is a point-dependent l-hybrid mapping for some function l : C ®
ℝ, that is,

||Tx − Ty||2 ≤ ||x − y||2 + λ(y)〈x − Tx, y − Ty〉, ∀x, y ∈ C.

(5.4.3) F(T) ≠ ∅.

Then for any x Î C, the sequence {Sn(x)}nÎN defined by

Sn(x) =
1
n

n−1∑
k=0

Tkx

converges weakly to some point v Î F(T).
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