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Abstract

The purpose of this paper is to introduce a new hybrid projection method based on
modified Mann iterative scheme by the generalized f-projection operator for a
countable family of relatively quasi-nonexpansive mappings and the solutions of the
system of generalized mixed equilibrium problems. Furthermore, we prove the
strong convergence theorem for a countable family of relatively quasi-nonexpansive
mappings in a uniformly convex and uniform smooth Banach space. Finally, we also
apply our results to the problem of finding zeros of B-monotone mappings and
maximal monotone operators. The results presented in this paper generalize and
improve some well-known results in the literature.
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1 Introduction
The theory of equilibrium problems, the development of an efficient and implementa-

ble iterative algorithm, is interesting and important. This theory combines theoretical

and algorithmic advances with novel domain of applications. Analysis of these pro-

blems requires a blend of techniques from convex analysis, functional analysis, and

numerical analysis.

Equilibrium problems theory provides us with a natural, novel, and unified frame-

work for studying a wide class of problems arising in economics, finance, transporta-

tion, network, and structural analysis, image reconstruction, ecology, elasticity and

optimization, and it has been extended and generalized in many directions. The ideas

and techniques of this theory are being used in a variety of diverse areas and proved to

be productive and innovative. In particular, generalized mixed equilibrium problem

and equilibrium problems are related to the problem of finding fixed points of non-

linear mappings.

Let E be a real Banach space with norm || · ||, C be a nonempty closed convex sub-

set of E and let E* denote the dual of E. Let {θi}iÎΛ : C × C ® ℝ be a bifunction, {�i}
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iÎΛ: C ® ℝ be a real-valued function, and {Ai}iÎΛ : C ® E* be a monotone mapping,

where Λ is an arbitrary index set. The system of generalized mixed equilibrium pro-

blems is to find x Î C such that

θi(x, y) + 〈Aix, y − x〉 + ϕi(y) − ϕi(x) ≥ 0, i ∈ �, ∀y ∈ C. (1:1)

If Λ is a singleton, then problem (1.1) reduces to the generalized mixed equilibrium

problem is to find x Î C such that

θ(x, y) + 〈Ax, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:2)

The set of solutions to (1.2) is denoted by GMEP(θ, A, �), i.e.,

GMEP(θ ,A,ϕ) = {x ∈ C : θ(x, y) + 〈Ax, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C}. (1:3)

If A ≡ 0, the problem (1.2) reduces to the mixed equilibrium problem for θ, denoted

by MEP(θ, �) is to find x Î C such that

θ(x, y) + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:4)

If θ ≡ 0, the problem (1.2) reduces to the mixed variational inequality of Browder

type, denoted by V I(C, A, �) is to find x Î C such that

〈Ax, y − x〉 + ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:5)

If A ≡ 0 and � ≡ 0 the problem (1.2) reduces to the equilibrium problem for θ,

denoted by EP(θ) is to find x Î C such that

θ(x, y) ≥ 0, ∀y ∈ C. (1:6)

If θ ≡ 0, the problem (1.4) reduces to the minimize problem, denoted by Argmin(�)

is to find x Î C such that

ϕ(y) − ϕ(x) ≥ 0, ∀y ∈ C. (1:7)

The generalized mixed equilibrium problems include fixed point problems, optimiza-

tion problems, variational inequality problems, Nash equilibrium problems, and the

equilibrium problems as special cases. Moreover, the above formulation (1.5) was

shown in [1] to cover monotone inclusion problems, saddle point problems, variational

inequality problems, minimization problems, optimization problems, vector equilibrium

problems, and Nash equilibria in noncooperative games. In other words, the GMEP(θ,

A, �), MEP(θ, �) and EP(θ) are an unifying model for several problems arising in phy-

sics, engineering, science, optimization, economics, etc. Many authors studied and con-

structed some solution methods to solve the GMEP(θ, A, �), MEP(θ, �), EP(θ) [[1-16],

and references therein].

Let C be a closed convex subset of E and recall that a mapping T : C ® C is said to

be nonexpansive if

||Tx − Ty|| ≤ ||x − y||, ∀x, y ∈ C.

A point x Î C is a fixed point of T provided Tx = x. Denote by F(T) the set of fixed

points of T, that is, F(T) = {x Î C : Tx = x}.

As we know that if C is a nonempty closed convex subset of a Hilbert space H and

recall that the (nearest point) projection PC from H onto C assigns to each x Î H, the

unique point in PCx Î C satisfying the property ||x - PCx|| = minyÎC ||x - y||, then we
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also have PC is nonexpansive. This fact actually characterizes Hilbert spaces and conse-

quently, it is not available in more general Banach spaces. We consider the functional

defined by

φ(y, x) = ||y||2 − 2〈y, Jx〉 + ||x||2, for x, y ∈ E, (1:8)

where J is the normalized duality mapping. In this connection, Alber [17] introduced

a generalized projection ΠC from E in to C as follows:

�C(x) = arg min
y∈C

φ(y, x), ∀x ∈ E. (1:9)

It is obvious from the definition of functional j that

(||y|| − ||x||)2 ≤ φ(y, x) ≤ (||y|| + ||x||)2, ∀x, y ∈ E. (1:10)

If E is a Hilbert space, then j(y, x) = ||y - x||2 and ΠC becomes the metric projection

of E onto C. The generalized projection ΠC : E ® C is a map that assigns to an arbi-

trary point x Î E the minimum point of the functional j(y, x), that is, �Cx = x̄, where

x̄ is the solution to the minimization problem

φ(x̄, x) = inf
y∈C

φ(y, x). (1:11)

The existence and uniqueness of the operator ΠC follow from the properties of the

functional j(y, x) and strict monotonicity of the mapping J [17-21]. It is well known

that the metric projection operator plays an important role in nonlinear functional

analysis, optimization theory, fixed point theory, nonlinear programming, game theory,

variational inequality, and complementarity problems, etc. [17,22]. In 1994, Alber [23]

introduced and studied the generalized projections from Hilbert spaces to uniformly

convex and uniformly smooth Banach spaces. Moreover, Alber [17] presented some

applications of the generalized projections to approximately solve variational inequal-

ities and von Neumann intersection problem in Banach spaces. In 2005, Li [22]

extended the generalized projection operator from uniformly convex and uniformly

smooth Banach spaces to reflexive Banach spaces and studied some properties of the

generalized projection operator with applications to solve the variational inequality in

Banach spaces. Later, Wu and Huang [24] introduced a new generalized f-projection

operator in Banach spaces. They extended the definition of the generalized projection

operators introduced by Abler [23] and proved some properties of the generalized f-

projection operator. In 2009, Fan et al. [25] presented some basic results for the gener-

alized f-projection operator and discussed the existence of solutions and approximation

of the solutions for generalized variational inequalities in noncompact subsets of

Banach spaces.

Let 〈·, ·〉 denote the duality pairing of E* and E. Next, we recall the concept of the

generalized f-projection operator. Let G : C × E* ® ℝ ∪ {+∞} be a functional defined

as follows:

G(ξ ,� ) = ||ξ ||2 − 2〈ξ ,� 〉 + ||� ||2 + 2ρf (ξ), (1:12)

where ξ Î C, ϖ Î E*, r is positive number and f : C ® ℝ ∪ {+∞}is proper, convex,

and lower semicontinuous. By the definitions of G, it is easy to see the following
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properties:

(1) G(ξ, ϖ) is convex and continuous with respect to ϖ when ξ is fixed;

(2) G(ξ, ϖ) is convex and lower semicontinuous with respect to ξ when ϖ is fixed.

Definition 1.1. Let E be a real Banach space with its dual E*. Let C be a nonempty

closed convex subset of E. We say that π
f
C : E∗ → 2C is generalized f-projection opera-

tor if

π
f
C� = {u ∈ C : G(u,� ) = inf

ξ∈C
G(ξ ,� )}, ∀� ∈ E ∗ .

Observe that, if f(x) = 0, then the generalized f-projection operator (1.12) reduces to

the generalized projection operator (1.9).

For the generalized f-projection operator, Wu and Hung [24] proved the following

basic properties:

Lemma 1.2. [24]Let E be a real reflexive Banach space with its dual E* and C a

nonempty closed convex subset of E. Then the following statement holds:

(1) π
f
C�, is a nonempty closed convex subset of C for all ϖ Î E*;

(2) if E is smooth, then for all ϖ Î E*, x ∈ π
f
C�if and only if

〈x − y,� − Jx〉 + ρf (y) − ρf (x) ≥ 0, ∀y ∈ C;

(3) if E is strictly convex and f : C ® ℝ ∪ {+∞} is positive homogeneous (i.e., f(tx) =

tf(x) for all t >0 such that tx Î C where x Î C), then π
f
C�is single-valued mapping.

Recently, Fan et al. [25] show that the condition f is positive homogeneous which

appeared in [[25], Lemma 2.1 (iii)] can be removed.

Lemma 1.3. [25]Let E be a real reflexive Banach space with its dual E* and C a

nonempty closed convex subset of E. If E is strictly convex, then π
f
C�is single valued.

Recall that J is single value mapping when E is a smooth Banach space. There exists

a unique element ϖ Î E* such that ϖ = Jx where x Î E. This substitution for (1.12)

gives

G(ξ , Jx) = ||ξ ||2 − 2〈ξ , Jx〉 + ||x||2 + 2ρf (ξ). (1:13)

Now we consider the second generalized f projection operator in Banach space [26].

Definition 1.4. Let E be a real smooth and Banach space and C be a nonempty

closed convex subset of E. We say that �
f
C : E → 2C is generalized f-projection opera-

tor if

�
f
Cx = {u ∈ C : G(u, Jx) = inf

ξ∈C
G(ξ , Jx)}, ∀x ∈ E.

Next, we give the following example [27] of metric projection, generalized projection

operator and generalized f-projection operator do not coincide.
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Example 1.5. Let X = ℝ3 be provided with the norm

||(x1, x2, x3)|| =
√
(x21 + x22) +

√
x22 + x23 .

This is a smooth strictly convex Banach space and C = {x Î ℝ3|x2 = 0, x3 = 0} is a

closed and convex subset of X. It is a simple computation; we get

PC(1, 1, 1) = (1, 0, 0), �C(1, 1, 1) = (2, 0, 0)

We set r = 1 is positive number and define f : C ® ℝ ∪ {+∞} by

f (x) =
{
2 + 2

√
5, x < 0;

−2 − 2
√
5, x ≥ 0.

Then, f is proper, convex, and lower semicontinuous. Simple computations show that

�
f
C(1, 1, 1) = (4, 0, 0).

Recall that a point p in C is said to be an asymptotic fixed point of T [28] if C con-

tains a sequence {xn} which converges weakly to p such that limn®∞ ||xn - Txn|| = 0.

The set of asymptotic fixed points of T will be denoted by F̂(T). A mapping T from C

into itself is said to be relatively nonexpansive mapping [29-31] if

(R1) F(T) is nonempty;

(R2) j(p, Tx) ≤ j(p, x) for all x Î C and p Î F(T);

(R3) F̂(T) = F(T).

A mapping T is said to be relatively quasi-nonexpansive (or quasi-j-nonexpansive) if
the conditions (R1) and (R2) are satisfied. The asymptotic behavior of a relatively non-

expansive mapping was studied in [32-34]. The class of relatively quasi-nonexpansive

mappings is more general than the class of relatively nonexpansive mappings

[11,32-35] which requires the strong restriction: F(T) = F̂(T). In order to explain this

better, we give the following example [36] of relatively quasi-nonexpansive mappings

which is not relatively nonexpansive mapping. It is clearly by the definition of relatively

quasi-nonexpansive mapping T is equivalent to F(T) ≠ ∅, and G(p, JTx) ≤ G(p, Jx) for

all x Î C and p Î F(T).

Example 1.6. Let E be any smooth Banach space and let x0 ≠ 0 be any element of E.

We define a mapping T : E ® E by

T(x) =
{(1

2 + 1
2n

)
x0, if x =

( 1
2 + 1

2n
)
x0;

−x, if x �= ( 1
2 + 1

2n
)
x0.

Then T is a relatively quasi-nonexpansive mapping but not a relatively non-expansive

mapping. Actually, T above fails to have the condition (R3).

Next, we give some examples which are closed quasi-j-nonexpansive [[4], Examples

2.3 and 2.4].

Example 1.7. Let E be a uniformly smooth and strictly convex Banach space and A ⊂
E × E* be a maximal monotone mapping such that its zero set A-10 ≠ ∅. Then, Jr = (J

+ rA)-1JJ is a closed quasi-j-nonexpansive mapping from E onto D(A) and F(Jr) = A-10.

Proof By Matsushita and Takahashi [[35], Theorem 4.3], we see that Jr is relatively

nonexpansive mapping from E onto D(A) and F(Jr) = A-10. Therefore, Jr is quasi-j-
nonexpansive mapping from E onto D(A) and F (Jr) = A-10. On the other hand, we can
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obtain the closedness of Jr easily from the continuity of the mapping J and the maximal

monotonicity of A; see [35] for more details. □
Example 1.8. Let C be the generalized projection from a smooth, strictly convex, and

reflexive Banach space E onto a nonempty closed convex subset C of E. Then, C is a

closed quasi-j-nonexpansive mapping from E onto C with F(ΠC) = C.

In 1953, Mann [37] introduced the iteration as follows: a sequence {xn} defined by

xn+1 = αnxn + (1 − αn)Txn, (1:14)

where the initial guess element x1 Î C is arbitrary and {an} is real sequence in 0[1].

Mann iteration has been extensively investigated for nonexpansive mappings. One of

the fundamental convergence results is proved by Reich [38]. In an infinite-dimen-

sional Hilbert space, Mann iteration can conclude only weak convergence [39,40].

Attempts to modify the Mann iteration method (1.14) so that strong convergence is

guaranteed have recently been made. Nakajo and Takahashi [41] proposed the follow-

ing modification of Mann iteration method as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = x ∈ Cis arbitrary,
yn = αnJxn + (1 − αn)Txn,
Cn = {z ∈ C : ||yn − z|| ≤ ||xn − z||},
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx,n ≥ 1.

(1:15)

They proved that if the sequence {an} bounded above from one, then {xn} defined by

(1.15) converges strongly to PF(T)x.

In 2007, Aoyama et al. [[42], Lemma 3.1] introduced {Tn} is a sequence of nonexpan-

sive mappings of C into itself with ∩∞
n=1F(Tn) �= ∅ satisfy the following condition: if for

each bounded subset B of C,
∑∞

n=1
sup{||Tn+1z − Tnz|| : z ∈ B < ∞}. Assume that if

the mapping T : C ® C defined by Tx = limn®∞ Tnx for all x Î C, then limn®∞ sup{||

Tz - Tnz|| : z Î C} = 0. They proved that the sequence {Tn} converges strongly to

some point of C for all x Î C.

In 2009, Takahashi et al. [43] studied and proved a strong convergence theorem by

the new hybrid method for a family of nonexpansive mappings in Hilbert spaces as fol-

lows: x0 Î H, C1 = C and x1 = PC1x0 and⎧⎨
⎩

yn = αnxn + (1 − αn)Tnxn,
Cn+1 = {z ∈ C : ||yn − z|| ≤ ||xn − z||},
xn+1 = PCn+1x0, n ≥ 1,

(1:16)

where 0 ≤ an ≤ a <1 for all n Î ∞ and {Tn} is a sequence of nonexpansive mappings

of C into itself such that ∩∞
n=1F(Tn) �= ∅. They proved that if {Tn} satisfies some appro-

priate conditions, then {xn} converges strongly to P∩∞
n=1F(Tn)x0.

The ideas to generalize the process (1.14) from Hilbert spaces have recently been

made. By using available properties on a uniformly convex and uniformly smooth

Banach space, Matsushita and Takahashi [35] proposed the following hybrid iteration

method with generalized projection for relatively nonexpansive mapping T in a Banach

space E:
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x0 ∈ Cchosen arbitrarily,
yn = J−1(αnJxn + (1 − αn)JTxn),
Cn = {z ∈ C : φ(z, yn) ≤ φ(z, xn)},
Qn = {z ∈ C : 〈xn − z, Jx0 − Jxn〉 ≥ 0},
xn+1 = �Cn∩Qnx0.

(1:17)

They proved that {xn} converges strongly to ΠF(T) x0, where ΠF(T) is the generalized

projection from C onto F(T). Plubtieng and Ungchittrakool [44] introduced and proved

the processes for finding a common fixed point of a countable family of relatively non-

expansive mappings in a Banach space. They proved the strong convergence theorems

for a common fixed point of a countable family of relatively nonexpansive mappings

{Tn} provided that {Tn} satisfies the following condition:

• if for each bounded subset D of C, there exists a continuous increasing and con-

vex function h : ℝ+ ® ℝ+. such that h(0) = 0 and limk,l®∞ supzÎD h(||Tkz - Tlz||)

= 0.

Motivated by the results of Takahashi and Zembayashi [13], Cholumjiak and Suantai

[2] proved the following strong convergence theorem by the hybrid iterative scheme

for approximation of common fixed point of countable families of relatively quasi-non-

expansive mappings {Ti} on C into itself in a uniformly convex and uniformly smooth

Banach space: x0 Î E, x1 = �C1x0,C1 = C⎧⎪⎪⎨
⎪⎪⎩
yn,i = J−1(αnJxn + (1 − αn)JTixn),
un,i = TFm

rm,nT
Fm−1
rm−1,n . . . TF1

r1,n yn,i
Cn+1 = {z ∈ Cn : supi>1φ(z, Jun,i) ≤ φ(w, Jxn)},
xn+1 = �Cn+1x0,n ≥ 1,

(1:18)

where TFi
ri,n, i = 1, 2, 3, ..., m defined in Lemma 2.8. Then, they proved that under cer-

tain appropriate conditions imposed on {an}, and {rn,i}, the sequence {xn} converges

strongly to �Cn+1x0.

Recently, Li et al. [26] introduced the following hybrid iterative scheme for approxi-

mation of fixed point of relatively nonexpansive mapping using the properties of gener-

alized f-projection operator in a uniformly smooth real Banach space which is also

uniformly convex: x0 Î C,⎧⎨
⎩
yn = J−1(αnJxn + (1 − αn)JTxn),
Cn+1 = {w ∈ Cn : G(w, Jyn) ≤ G(w, Jxn)},
xn+1 = �

f
Cn+1

x0,n ≥ 1
(1:19)

They obtained a strong convergence theorem for finding an element in the fixed

point set of T. The results of Li et al. [26] extended and improved on the results of

Matsushita and Takahashi [35].

Very recently, Shehu [45] studied and obtained the following strong convergence

theorem by the hybrid iterative scheme for approximation of common fixed point of

finite family of relatively quasi-nonexpansive mappings in a uniformly convex and uni-

formly smooth Banach space: let x0 Î C, x1 = �C1x0, C1 = C and
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⎧⎪⎪⎨
⎪⎪⎩
yn = J−1(αnJxn + (1 − αn)JTnxn),
un = TFm

rm,nT
Fm−1
rm−1,n . . . TF1

r1,n yn
Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, xn)},
xn+1 = �Cn+1x0,n ≥ 1

(1:20)

where Tn = Tn(mod N ). He proved that the sequence {xn} converges strongly to
�Cn+1x0 under certain appropriate conditions.

Recall that a mapping T : C ® C is closed if for each {xn} in C, if xn ® x and Txn ®
y, then Tx = y. Let {Tn} be a family of mappings of C into itself with

F := ∩∞
n=1F(Tn) �= ∅, {Tn} is said to satisfy the (*)-condition [46] if for each bounded

sequence {zn} in C,

lim
n→∞ ||zn − Tnzn|| = 0, and zn → z imply z ∈ F . (1:21)

It follows directly from the definitions above that if Tn ≡ T and T is closed, then {Tn}

satisfies (*)-condition [46]. Next, we give the following example:

Example 1.9. Let E = ℝ with the usual norm. We define a mapping Tn : E ® E by

Tn(x) =

⎧⎪⎨
⎪⎩
0, if x ≤ 1

n
;

1
n
, if x >

1
n
,

for all n ≥ 0 and for each x Î ℝ. Hence,
⋂∞

n=1
F(Tn) = F(Tn) = {0} and j(0, Tnx) = ||

0 - Tnx|| ≤ ||0 - x|| = j(0, x), ∀x Î ℝ. Then, T is a relatively quasi-nonexpansive map-

ping but not a relatively nonexpansive mapping. Moreover, for each bounded sequence

zn Î E, we observe that Tnzn = 1
n → 0 as n ® ∞, and hence z = limn®∞ zn = limn®∞

Tnzn = 0 as n ® ∞; this implies that z = 0 Î F(Tn). Therefore, Tn is a relatively quasi-

nonexpansive mapping and satisfies the (*)-condition.

In 2010, Shehu [47] introduced a new iterative scheme by hybrid methods and

proved strong convergence theorem for approximation of a common fixed point of

two countable families of weak relatively nonexpansive mappings which is also a solu-

tion to a system of generalized mixed equilibrium problems in a uniformly convex real

Banach space which is also uniformly smooth using the properties of generalized f-pro-

jection operator.

The following questions naturally arise in connection with the above results using

the (*)-condition:

Question 1: Can the Mann algorithms (1.20) of [45] still be valid for an infinite family

of relatively quasi-nonexpansive mappings?

Question 2: Can an iterative scheme (1.19) to solve a system of generalized mixed

equilibrium problems?

Question 3: Can the Mann algorithms (1.20) be extended to more generalized f-pro-

jection operator?

The purpose of this paper is to solve the above questions. We introduce a new

hybrid iterative scheme of the generalized f-projection operator for finding a common

element of the fixed point set for a countable family of relatively quasi-nonexpansive

mappings and the set of solutions of the system of generalized mixed equilibrium pro-

blem in a uniformly convex and uniformly smooth Banach space by using the (*)-con-

dition. Furthermore, we show that our new iterative scheme converges strongly to a
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common element of the aforementioned sets. Our results extend and improve the

recent result of Li et al. [26], Matsushita and Takahashi [35], Takahashi et al. [43],

Nakajo and Takahashi [41] and Shehu [45] and others.

2 Preliminaries

A Banach space E is said to be strictly convex if || x+y2 || < 1 for all x, y Î E with ||x|| =

||y|| = 1 and x ≠ y. Let U = {x Î E : ||x|| = 1} be the unit sphere of E. Then a Banach

space E is said to be smooth if the limit lim
t→0

||x+ty||−||x||
t exists for each x, y Î U. It is

also said to be uniformly smooth if the limit exists uniformly in x, y Î U. Let E be a

Banach space. The modulus of smoothness of E is the function rE : [0, ∞] ® [0, ∞]

defined by ρE(t) = sup
{ ||x+y||+||x−y||

2 − 1 : ||x|| = 1, ||y|| ≤ t
}
. The modulus of convexity

of E is the function δE : [0, 2] ® [0, 1] defined by

δE(ε) = inf{1 − || x+y2 || : x, y ∈ E, ||x|| = ||y|| = 1, ||x − y|| ≥ ε}. The normalized duality

mapping J : E → 2E∗ is defined by J(x) = {x* Î E* : 〈x, x*〉 = ||x||2, ||x*|| = ||x||}. If E is

a Hilbert space, then J = I, where I is the identity mapping.

It is also known that if E is uniformly smooth, then J is uniformly norm-to-norm

continuous on each bounded subset of E.

Remark 2.1. If E is a reflexive, strictly convex and smooth Banach space, then for x, y

Î E, j(x, y) = 0 if and only if x = y. It is sufficient to show that if j(x, y) = 0 then x =

y. From (1.8), we have ||x|| = ||y||. This implies that 〈x, Jy〉 = ||x||2 = ||Jy||2. From the

definition of J, one has Jx = Jy. Therefore, we have x = y; see [19,21] for more details.

We also need the following lemmas for the proof of our main results:

Lemma 2.2. [20]Let E be a uniformly convex and smooth Banach space and let {xn}

and {yn} be two sequences of E. If j(xn, yn) ® 0 and either {xn} or {yn} is bounded, then

||xn - yn|| ® 0.

Lemma 2.3. [48]Let E be a Banach space and f : E ® ℝ ∪ {+∞} be a lower semicon-

tinuous convex functional. Then there exist x* Î E* and a Î ℝ such that

f (x) ≥ 〈x, x∗〉 + α, ∀x ∈ E.

Lemma 2.4. [26]Let E be a reflexive smooth Banach space and C be a nonempty

closed convex subset of E. The following statements hold:

1. �f
Cxis nonempty closed convex subset of C for all x Î E;

2. for all x Î E, x̂ ∈ �
f
Cxif and only if

〈x̂ − y, Jx − Jx̂〉 + ρf (y) − ρf (x̂) ≥ 0, ∀y ∈ C;

3. if E is strictly convex, then �
f
C
is a single-valued mapping.

Lemma 2.5. [26]Let E be a real reflexive smooth Banach space, let C be a nonempty

closed convex subset of E, and let x̂ ∈ �
f
Cx. Then

φ(y, x̂) + G(x̂, Jx) ≤ G(y, Jx), ∀y ∈ C.
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Remark 2.6. Let E be a uniformly convex and uniformly smooth Banach space and f

(x) = 0 for all x Î E; then Lemma 2.5 reduces to the property of the generalized pro-

jection operator considered by Alber [17].

Lemma 2.7. [4]Let E be a real uniformly smooth and strictly convex Banach space,

and C be a nonempty closed convex subset of E. Let T : C ® C be a closed and rela-

tively quasi-nonexpansive mapping. Then F(T) is a closed and convex subset of C.

For solving the equilibrium problem for a bifunction θ : C × C ® ℝ, let us assume

that θ satisfies the following conditions:

(A1) θ(x, x) = 0 for all x Î C;

(A2) θ is monotone, i.e., θ(x, y) + θ(y, x) ≤ 0 for all x, y Î C;

(A3) for each x, y, z Î C,

lim
t↓0

θ(tz + (1 − t)x, y) ≤ θ(x, y);

(A4) for each x Î C, y ↦ θ(x, y) is convex and lower semi-continuous.

For example, let A be a continuous and monotone operator of C into E* and define

θ(x, y) = 〈Ax, y − x〉,∀x, y ∈ C.

Then, θ satisfies (A1)-(A4). The following result is in Blum and Oettli [1].

Motivated by Combettes and Hirstoaga [3] in a Hilbert space and Taka-hashi and

Zembayashi [12] in a Banach space, Zhang [16] obtain the following lemma:

Lemma 2.8. Let C be a closed convex subset of a smooth, strictly convex and reflexive

Banach space E. Assume that θ be a bifunction from C × C to ℝ satisfying (A1)-(A4), A

: C ® E* be a continuous and monotone mapping and � : C ® ℝ be a semicontinuous

and convex functional. For r >0 and let x Î E. Then, there exists z Î C such that

F(z, y) +
1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C.

where F(z, y) = θ(x, y) + 〈Az, y - z〉 + �(y) - �(x), x, y Î C. Furthermore, define a

mapping TF
r : E → Cas follows:

TF
r x = {z ∈ C : F(z, y) +

1
r
〈y − z, Jz − Jx〉 ≥ 0, ∀y ∈ C}.

Then the following hold:

(1) TF
r is single-valued;

(2) TF
r is firmly nonexpansive, i.e., for all x, y Î E,

〈TF
r x − TF

r y, JT
F
r x − JTF

r y〉 ≤ 〈TF
r x − TF

r y, Jx − Jy〉;
(3) F(TF

r ) = F̂(TF
r ) = GMEP(θ ,A,ϕ);

(4) GMEP(θ, A, �) is closed and convex;

(5) φ(p,TF
r z) + φ(TF

r z, z) ≤ φ(p, z),, ∀p ∈ F(TF
r )and z Î E.

3 Main results
In this section, by using the (*)-condition, we prove the new convergence theorems for

finding a common fixed points of a countable family of relatively quasi-nonexpansive

mappings, in a uniformly convex and uniformly smooth Banach space.
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Theorem 3.1. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E. Let {Tn}∞n=1be a countable family of relatively

quasi-nonexpansive mappings of C into E satisfy the (*)-condition and f : E ® ℝ be a

convex lower semicontinuous mapping with C ⊂ int(D(f), where D(f) is a domain of f.

For each j = 1, 2, ..., m let θj be a bifunction from C × C to ℝ which satisfies conditions

(A1)-(A4), Aj : C ® E* be a continuous and monotone mapping, and �j : C ® ℝ be a

lower semicontinuous and convex function. Assume that

F := (∩∞
n=1F(Tn))

⋂
(∩m

j=1GMEP(θj,Aj,ϕj)) �= ∅. For an initial point x0 Î E with

x1 = �
f
C1
x0and C1 = C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
yn = J−1(αnJxn + (1 − αn)JTnxn),
un = TFm

rm,nT
Fm−1
rm−1,n , . . . ,T

F2
r2,nT

F1
r1,n yn,

Cn+1 = {z ∈ Cn : G(z, Jun) ≤ G(z, Jyn) ≤ G(z, Jxn)},
xn+1 = �

f
Cn+1

x0, n ≥ 1,

(3:1)

where J is the duality mapping on E, {an} is a sequence in [0, 1] and

{rj,n}∞n=1 ⊂ [d,∞)for some d >0 (j = 1, 2, ..., m). If lim infn®∞(1 - an) >0, then {xn} con-

verges strongly to p ∈ F, where p = �
f
Fx0.

Proof We split the proof into five steps.

Step 1: We first show that Cn is closed and convex for each n Î N.

Clearly C1 = C is closed and convex. Suppose that Cn is closed and convex for each

n Î N. Since for any z Î Cn, we know G(z, Jun) ≤ G(z, Jxn) is equivalent to

2〈z, Jxn − Jun〉 ≤ ||xn||2 − ||un||2.

So, Cn+1 is closed and convex. This implies that �
f
Cn+1

x0 is well defined.

Step 2 : We show that F ⊂ Cn for all n Î N.

Next, we show by induction that F ⊂ Cn for all n Î N. It is obvious that F ⊂ C = C1.

Suppose that F ⊂ Cn for some n Î N. Let q ∈ F and un = Km
n yn, when

Kj
n = T

Fj
rj,nT

Fj−1
rj−1,n , . . . ,T

F2
r2,nT

F1
r1,n
, j = 1, 2, 3, ..., m, K0

n = I; since {Tn} is relatively quasi-nonex-

pansive mappings, it follows by (3.2) that

G(q, Jun) = G(q, JKm
n yn)

≤ G(q, Jyn)
= G(q,αnJxn + (1 − αn)JTnxn)
= ||q||2 − 2〈q,αnJxn + (1 − αn)JTnxn〉

+||αnJxn + (1 − αn)JTnxn||2 + 2ρf (q)
≤ ||q||2 − 2αn〈q, Jxn〉 − 2(1 − αn)〈q, JTnxn〉

+αn||Jxn||2 + (1 − αn)||JTnxn||2 + 2ρf (q)
= αnG(q, Jxn) + (1 − αn)G(q, JTnxn)
≤ αnG(q, Jxn) + (1 − αn)G(q, Jxn)
= G(q, Jxn).

(3:2)

This shows that q Î Cn+1 which implies that F ⊂ Cn+1 and hence, F ⊂ Cn for all n Î
N.

Step 3 : We show that {xn} is a Cauchy sequence in C and limn®∞ G(xn, Jx0) exist.

Since f : E ® ℝ is convex and lower semicontinuous mapping, from Lemma 2.3, we

know that there exist x* Î E* and a Î ℝ such that
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f (y) ≥ 〈y, x∗〉 + α,∀y ∈ E.

Since xn Î E, it follows that

G(xn, Jx0) = ||xn||2 − 2〈xn, Jx0〉 + ||x0||2 + 2ρf (xn)
≥ ||xn||2 − 2〈xn, Jx0〉 + ||x0||2 + 2ρ〈xn, x∗〉 + 2ρα

= ||xn||2 − 2〈xn, Jx0 − ρx∗〉 + ||x0||2 + 2ρα

≥ ||xn||2 − 2||xn||||Jx0 − ρx∗|| + ||x0||2 + 2ρα

= (||xn|| − ||Jx0 − ρx∗||)2 + ||x0||2 − ||Jx0 − ρx∗||2 + 2ρα.

(3:3)

Again since xn = �
f
Cn
x0 and from (3.3), we have

G(q, Jx0) ≥ G(xn, Jx0) ≥ (||xn|| − ||Jx0 − ρx∗||)2
+||x0||2 − ||Jx0 − ρx∗||2 + 2ρα, ∀q ∈ F .

This implies that {xn} is bounded and so are {G(xn, Jx0)}, {yn} and {un}. From the fact

that xn+1 = �
f
Cn+1

x0 ∈ Cn+1 ⊂ Cn and xn = �
f
Cn
x0, it follows by Lemma 2.5, we get

0 ≤ (||xn+1 − ||xn||)2 ≤ φ(xn+1, xn) ≤ G(xn+1, Jx0) − G(xn, Jx0). (3:4)

This implies that {G(xn, Jx0)} is nondecreasing. So, we obtain that limn®∞ G(xn, Jx0)

exist. For m > n, xn =
∏f

Cn
x0, xm =

∏f
Cm

x0 ∈ Cm ⊂ Cn and from (3.4), we have

φ(xm, xn) ≤ G(xm, Jx0) − G(xn, Jx0).

Taking m, n ® ∞, we have j(xm, xn) ® 0. From Lemma 2.2, we get ||xn - xm|| ® 0.

Hence, {xn} is a Cauchy sequence and by the completeness of E and the closedness of

C, we can assume that there exists p Î C such that xn ® p Î C as n ® ∞.

Step 4 : We will show that p ∈ F := (∩∞
n=1F(Tn))

⋂
(∩m

j=1GMEP(θj,Aj,ϕj).

(a) We show that p ∈ ∩∞
n=1F(Tn). Since j(xm, xn) ® 0 as m, n ® ∞, we obtain in par-

ticular that j(xn+1, xn) ® 0 as n ® ∞. By Lemma 2.2, we have

lim
n→∞ ||xn+1 − xn|| = 0. (3:5)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we also

have

lim
n→∞ ||Jxn+1 − Jxn|| = 0. (3:6)

From the definition of xn+1 = �
f
Cn+1

x0 ∈ Cn+1 ⊂ Cn, we have

G(xn+1, Jun) ≤ G(xn+1, Jxn), ∀n ∈ N,

is equivalent to

φ(xn+1, un) ≤ φ(xn+1, xn), ∀n ∈ N.

It follows that

lim
n→∞ φ(xn+1, un) = 0. (3:7)

By applying Lemma 2.2, we have

lim
n→∞ ||xn+1 − un|| = 0. (3:8)
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By the triangle inequality, we have

||un − xn|| = ||un − xn+1 + xn+1 − xn||
≤ ||un − xn+1|| + ||xn+1 − xn||

It follows from (3.5) and (3.8), that

lim
n→∞ ||un − xn|| = 0. (3:9)

Since J is uniformly norm-to-norm continuous on bounded subsets of E, we also

have

lim
n→∞ ||Jun − Jxn|| = 0. (3:10)

From xn+1 = �
f
Cn+1

x0 ∈ Cn+1 ⊂ Cn and the definition of Cn+1, we get

G(xn+1, Jyn) ≤ G(xn+1, Jxn)

is equivalent to

φ(xn+1, yn) ≤ φ(xn+1, xn).

Using Lemma 2.2, we have

lim
n→∞ ||xn+1 − yn|| = 0. (3:11)

Since J is uniformly norm-to-norm continuous, we obtain

lim
n→∞ ||Jxn+1 − Jyn|| = 0. (3:12)

Noticing that

||Jxn+1 − Jyn|| = ||Jxn+1 − αnJxn − (1 − αn)JTnxn||
= ||(1 − αn)Jxn+1 − (1 − αn)JTnxn + αnJxn+1 − αnJxn||
≥ (1 − αn)||Jxn+1 − JTnxn|| − αn||Jxn − Jxn+1||,

(3:13)

we have

||Jxn+1 − JTnxn|| ≤ 1
(1 − αn)

(||Jxn+1 − Jyn|| + αn||Jxn − Jxn+1||), (3:14)

since lim infn®∞(1 - an) > 0, (3.6) and (3.12), one has

lim
n→∞ ||Jxn+1 − JTnxn|| = 0. (3:15)

Since J-1 is uniformly norm-to-norm continuous, we obtain

lim
n→∞ ||xn+1 − Tnxn|| = 0. (3:16)

Using the triangle inequality, we have

||xn − Tnxn|| ≤ ||xn − xn+1|| + ||xn+1 − Tnxn||.

From (3.5) and (3.16), we have

lim
n→∞ ||xn − Tnxn|| = 0. (3:17)

Since xn ® p it follows from the (*)-condition that p ∈ F = ∩∞
n=0F(Tn).
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(b) We show that p ∈ ∩m
j=1GMEP(θj,Aj,ϕj).

For q ∈ F, we have

φ(q, xn) − φ(q, un) = ||xn||2 − ||un||2 − 2〈q, Jxn − Jun〉
≤ ||xn − un||(||xn|| + ||un||) + 2||q|| ||Jxn − Jun||.

From ||xn - un|| ® 0 and ||Jxn - Jun|| ® 0, that

φ(q, xn) − φ(q, un) → 0 as n → ∞. (3:18)

Let un = Km
n yn; when Kj

n = T
Fj
rj,nT

Fj−1
rj−1,n , . . . ,T

F2
r2,nT

F1
r1,n
, j = 1, 2, 3, ..., m and K0

n = I, we

obtain that

φ(q, un) = φ(q,Km
n yn)

≤ φ(q,Km−1
n yn)

≤ φ(q,Km−2
n yn)

...

≤ φ(q,Kj
nyn).

(3:19)

By Lemma 2.8(5), we have for j = 1, 2, 3, ..., m

φ(Kj
nyn, yn) ≤ φ(q, yn) − φ(q,Kj

nyn)

≤ φ(q, xn) − φ(q,Kj
nyn)

≤ φ (q, xn) − φ(q, un).

(3:20)

By (3.18), we have φ(Kj
nyn, yn) → 0 as n ® ∞, for j = 1, 2, 3, ..., m. By Lemma 2.2, we

obtain

lim
n→∞ ||Kj

nyn − yn|| = 0, ∀j = 1, 2, 3, . . . ,m. (3:21)

Since ||xn - yn|| ≤ ||xn - xn+1|| + ||xn+1 - yn||. From (3.11) and (3.5), we get

lim
n→∞ ||xn − yn|| = 0. (3:22)

Again by using the triangle inequality, we have for j = 1, 2, 3, ..., m

||Kj
nyn − p|| ≤ ||Kj

nyn − yn|| + ||yn − p||.

Since xn ® p and ||xn - yn|| ® 0, then yn ® p as n ® ∞. From (3.21), we get

lim
n→∞ ||Kj

nyn − p|| = 0, ∀j = 1, 2, 3, . . . ,m. (3:23)

Using the triangle inequality, we obtain

||Kj
nyn − Kj−1

n yn|| ≤ ||Kj
nyn − p|| + ||p − Kj−1

n yn||.

From (3.23), we have

lim
n→∞ ||Kj

nyn − Kj−1
n yn|| = 0, ∀j = 1, 2, 3, . . . ,m. (3:24)
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Since {rj,n} ⊂ [d, ∞), so

lim
n→∞

||Kj
nyn−Kj−1

n yn||
rj,n

= 0, ∀j = 1, 2, 3, . . . ,m. (3:25)

From Lemma 2.8, we get for j = 1, 2, 3, ..., m

Fj(K
j
nyn, y) +

1
rj,n

〈y − Kj
nyn, JK

j
nyn − JKj−1

n yn〉 ≥ 0, ∀y ∈ C.

From the condition (A2) that

1
rj,n

〈y − Kj
nyn, JK

j
nyn − JKj−1

n yn〉 ≥ Fj(y,K
j
nyn),

∀y ∈ C, ∀j = 1, 2, 3, . . . ,m.

From (3.23) and (3.25), we have

0 ≥ Fj(y, p), ∀y ∈ C, ∀j = 1, 2, 3, . . . ,m. (3:26)

For t with 0 < t ≤ 1 and y Î C, let yt = ty + (1 - t)p. Then, we get that yt Î C. From

(3.26), it follows that

Fj(yt, p) ≤ 0, ∀yt ∈ C, ∀j = 1, 2, 3, . . . ,m. (3:27)

By the conditions (A1) and (A4), we have for j = 1, 2, 3, ..., m

0 = Fj(yt, yt)
≤ tFj(yt, y) + (1 − t)Fj(yt, p)
≤ tFj(yt, y)
≤ Fj(yt, y).

(3:28)

From the condition (A3) and letting t ® 0, This implies that p Î GMEP(θj, Aj, �j)

for all j = 1, 2, 3, ..., m. Therefore, p ∈ ∩m
j=1GMEP(θj,Aj,ϕj). Hence, from (a) and (b),

we obtain p ∈ F.

Step 5: We show that p = �
f
Fx0. Since F is closed and convex set from Lemma 2.4,

we have �
f
Fx0 is single value, denoted by v. From xn = �

f
Cn
x0 and v ∈ F ⊂ Cn, we also

have

G(xn, Jx0) ≤ G(v, Jx0), ∀n ≥ 1.

By definition of G and f, we know that, for each given x, G(ξ, Jx) is convex and lower

semicontinuous with respect to ξ. So

G(p, Jx0) ≤ lim inf
n→∞ G(xn, Jx0) ≤ lim sup

n→∞
G(xn, Jx0) ≤ G(v, Jx0).

From definition of �f
Fx0 and p ∈ F, we can conclude that v = p = �

f
Fx0 and xn ® p as

n ® ∞. This completes the proof. □
Setting Tn ≡ T in Theorem 3.1, then we obtain the following result:

Corollary 3.2. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E. Let T be a relatively quasi-nonexpansive map-

ping of C into E and f : E ® ℝ be a convex lower semicontinuous mapping with C ⊂
int(D(f)). For each j = 1, 2, ..., m let θj be a bifunction from C × C to ℝ which satisfies

conditions (A1)-(A4), Aj : C ® E* be a continuous and monotone mapping and �j : C

® ℝ be a lower semicontinuous and convex function. Assume that
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x1 = �
f
C1
x0. For an initial point x0 Î E with x1 = �

f
C1
x0and C1 = C, we define the

sequence {xn} as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yn = J−1(αnJxn + (1 − αn)JTxn),
un = TFm

rm,nT
Fm−1
rm−1,n , . . . ,T

F2
r2,nT

F1
r1,n yn,

Cn+1 = {z ∈ Cn : G(z, Jun) ≤ G(z, Jyn) ≤ G(z, Jxn)},
xn+1 = �

f
Cn+1

x0, n ≥ 1,

(3:29)

where J is the duality mapping on E, {an} is a sequence in [0, 1] and

{rj,n}∞n=1 ⊂ [d,∞)for some d >0 (j = 1, 2, ..., m). If lim infn®∞(1 - an) >0, then {xn} con-

verges strongly to p ∈ F, where p = �
f
Fx0.

Remark 3.3. Corollary 3.2 extends and improves the result of Li et al. [26].

Taking f(x) = 0 for all x Î E, we have G(ξ, Jx) = j(ξ, x) and �
f
Cx = �Cx. By Theorem

3.1, then we obtain the following Corollaries:

Corollary 3.4. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E. Let {Tn}∞n=1be a countable family of relatively

quasi-nonexpansive mappings of C to E satisfy the (*) condition. For each j = 1, 2, ..., m

let θj be a bifunction from C × C to ℝ which satisfies conditions (A1)-(A4), Aj : C ® E*

be a continuous and monotone mapping, and �j : C ® ℝ be a lower semicontinuous

and convex function. Assume that F := (∩∞
n=1F(Tn))

⋂
(∩m

j=1GMEP(θj,Aj,ϕj)) �= ∅. For
an initial point x0 Î E with x1 = �C1x0and C1 = C, we define the sequence {xn} as fol-

lows: ⎧⎪⎪⎨
⎪⎪⎩
yn = J−1(αnJxn + (1 − αn)JTnxn),
un = TFm

rm,nT
Fm
rm−1,n , . . . ,T

F2
r2,nT

F1
r1,n yn,

Cn+1 = {z ∈ Cn : φ(z, un) ≤ φ(z, Jyn) ≤ φ(z, xn)},
xn+1 = �Cn+1x0, n ≥ 1,

(3:30)

where J is the duality mapping on E, {an} is a sequence in [0, 1] and

{rj,n}∞n=1 ⊂ [d,∞)for some d >0 (j = 1, 2, ..., m). If lim infn®∞(1 - an) >0, then {xn} con-

verges strongly to p ∈ F, where p = �Fx0.

Remark 3.5. Corollary 3.4 extends and improves the result of Shehu [[45], Theorem

3.1] form finite family of relatively quasi-nonexpansive mappings to a countable family

of relatively quasi-nonexpansive mappings.

4 Applications
4.1 A zero of B-monotone mappings

Let B be a mapping from E to E*. A mapping B is said to be

1. monotone if 〈Bx − By, x − y〉 ≥ 0 for all x, y Î E;

2. strictly monotone if B monotone and 〈Bx − By, x − y〉 = 0 if and only if x = y;

3. b-Lipschitz continuous if there exist a constant b ≥ 0 such that

||Bx − By|| ≤ β||x − y|| for all x, y Î E.

Let M be a set-valued mapping from E to E* with domain D(M) = {z Î E : Mz ≠ 0}

and range R(M) = ∪{Mz : z Î D(M)}. A set value mapping M is said to be

Saewan and Kumam Fixed Point Theory and Applications 2011, 2011:104
http://www.fixedpointtheoryandapplications.com/content/2011/1/104

Page 16 of 21



(i) monotone if 〈x1-x2, y1-y2〉 ≥ 0 for each xi Î D(M) and yi Î Mxi, i = 1, 2;

(ii) r-strongly monotone if 〈x1-x2, y1-y2〉 ≥ r||x1-x2|| for each xi Î D(M) and yi Î
Mxi, i = 1, 2;

(iii) maximal monotone if M is monotone and its graph G(M) = {(x, y) : y ∈ Mx} is
not properly contained in the graph of any other monotone mapping;

(iv) general B-monotone if M is monotone and (B + λM)E = E∗ holds for every l
>0, where B is a mapping from E to E*.

We consider the problem of finding a point x* Î E satisfying 0 Î Mx*. We denote by

M-10 the set of all points x* Î E such that 0 Î Mx*, where M is maximal monotone

operator from E to E*.

Lemma 4.1. [26]Let E be a Banach space with the dual space E*, B : E → E∗be a

strictly monotone mapping, and M : E ® 2E* be a general B-monotone mapping. Then

M is maximal monotone mapping.

Remark 4.2. [26] Let E be a Banach space with the dual space E*, B : E → E∗ be a

strictly monotone mapping, and M : E ® 2E* be a general B-monotone mapping.

Then M is a maximal monotone mapping. Therefore, M-10 = {z Î D(M) : 0 Î Mz} is

closed and convex.

Lemma 4.3. [17]Let E be a uniformly convex and uniformly smooth Banach space, δE
(ε) be the modulus of convexity of E, and rE(t) be the modulus of smoothness of E; then

the inequalities

8d2δE(||x − ξ ||/4d) ≤ φ(x, ξ) ≤ 4d2ρE(4||x − ξ ||/d)

hold for all x and ξ in E, where d =
√
(||x||2 + ||ξ ||2)/2.

Lemma 4.4. [49]Let E be a Banach space with the dual space E*, B : E → E∗be a

strictly monotone mapping, and M : E ® 2E* be a general B-monotone mapping. Then

1. (B + λM)−1is single value;

2. if E is reflexive and M : E ® 2E* a r-strongly monotone mapping, then

(B + λM)−1is Lipschitz continuous with constant 1
λr, where r >0.

From Lemma 4.4 we note that let E be a Banach space with the dual space E*,

B : E → E∗ a strictly monotone mapping, and M : E ® 2E* a general B-monotone

mapping, for every l >0 and x* Î E*; then there exists a unique x Î D(M) such that

x = (B + λM)−1x∗. We can define a single-valued mapping Tl : E ® D(M) by

Tλx = (B + λM)−1Bx. It is easy to see that M-10 = F(Tl) for all l >0. Indeed, we have

z ∈ M−10 ⇔ 0 ∈ Mz
⇔ 0 ∈ λMz
⇔ Bz ∈ (B + λM)z
⇔ z = (B + λM)−1Bz = Tλz
⇔ z ∈ F(Tλ),∀λ > 0.

(4:1)

Motivated by Li et al. [26] we obtain the following result:

Theorem 4.5. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E with δE(ε) ≥ kε2 and rE(t) ≤ ct2 for some c, k >0,

and E* be the dual space of E. Let B : E → E∗be a strictly monotone and b-Lipschitz
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continuous mapping, and let M : E ® 2E* be a general B-monotone and r-strongly

monotone mapping with r >0. Let {Tλn} = (B + λnM)−1Bsatisfy the (*)-condition and f :

E ® ℝ be a convex lower semicontinuous mapping with C ⊂ int(D(f)) and suppose that

for each n ≥ 0 there exists ln >0 such that 64cβ2 ≤ min{ 12kλ2
nr

2}. For each j = 1, 2, ...,

m let θj be a bifunction from C × C to ℝ which satisfies conditions (A1)-(A4), Aj : C ®
E* be a continuous and monotone mapping, and �j : C ® ℝ be a lower semicontinuous

and convex function. Assume that F := M−10
⋂

(∩m
j=1GMEP(θj,Aj,ϕj)) �= ∅. For an

initial point x0 Î E with x1 = �
f
C1
x0and C1 = C, we define the sequence {xn} as follows:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
yn = J−1(αnJxn + (1 − αn)JTλnxn),
un = TFm

rm,nT
Fm−1
rm−1,n , . . . ,T

F2
r2,nT

F1
r1,n yn,

Cn+1 = {z ∈ Cn : G(z, Jun) ≤ G(z, Jyn) ≤ G(z, Jxn)},
xn+1 = �

f
Cn+1

x0, n ≥ 1,

(4:2)

where J is the duality mapping on E and {an} is a sequence in [0, 1], and

{rj,n}∞n=1 ⊂ [d,∞)for some d >0 (j = 1, 2, ..., m). If lim infn®∞(1 - an) >0, then {xn} con-

verges strongly to p ∈ Fwhere p = �
f
Fx0.

Proof We show that {Tλn} is a family of relatively quasi-nonexpansive mappings with

common fixed point ∩∞
n=1F(Tλn) = M−10. We only show that φ(p,Tλnq) ≤ φ(p, q), ∀q Î

E, p ∈ F(Tλn), n ≥ 1. From Lemma 4.3, and B is a b-Lipschitz continuous mapping, we

have

φ(p,Tλnq) = φ(Tλnp,Tλnq)
≤ 4d2ρE(

4||Tλn p−Tλn q||
d )

≤ 64c||Tλnp − Tλnq||2
= 64c||(B + λnM)−1Bp − (B + λnM)−1Bq||2
≤ 64c

λ2
nr2

||Bp− Bq||2
≤ 64cβ2

λ2
nr2

||p − q||2

(4:3)

and we also have

φ(p, q) ≥ 8d2δE(
||p−q||
4d ) ≥ 1

2k||p − q||2. (4:4)

Since

64cβ2 ≤ 1
2
kλ2

nr
2,

it follows from (4.3) and (4.4) that φ(p,Tλnq) ≤ φ(p, q) for all q Î E, p ∈ F(Tλn), n ≥

1. Therefore, {Tλn} is a family of relatively quasi-nonexpansive mapping. It follows from

Theorem 3.1, so the desired conclusion follows. □

4.2 A zero point of maximal monotone operators

In this section, we apply our results to find zeros of maximal monotone operator. Such

a problem contains numerous problems in optimization, economics, and physics. The

following result is also well known.

Lemma 4.6. [50]Let E be a reflexive strictly convex and smooth Banach space and let

M be a monotone operator from E to E*. Then M is maximal if and only if R(J + lM)

= E* for all l >0.
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Let E be a reflexive strictly convex and smooth Banach space, B = J and let M be a

maximal monotone operator from E to E*. Using Lemma 4.6 and strict convexity of E,

we obtain that for every l >0 and x Î E, there exists a unique xl such that Jx Î (Jxl +

lMxl). Then we can defined a single-valued mapping Jl : E ® D(M) by Jl = (J + lM)-

1J and Jl is called the resolvent of M. We know that M-10 = F(Jl) [21,51].

Theorem 4.7. Let C be a nonempty closed and convex subset of a uniformly convex

and uniformly smooth Banach space E with the dual space E*. Let M ⊂ E × E* be a

maximal monotone mapping and D(M) ⊂ C ⊂ J−1(∩λn>0R(J + λnM). Let

{Jλn} = (J + λnM)−1Jsatisfy the (*)-condition where ln >0 be the resolvement of M and f :

E ® ℝ be a convex lower semicontinuous mapping with C ⊂ int(D(f)). For each j = 1,

2, ..., m let θj be a bifunction from C × C to ℝ which satisfies conditions (A1)-(A4), Aj :

C ® E* be a continuous and monotone mapping, and �j : C ® ℝ be a lower semicon-

tinuous and convex function. Assume that F = M−10
⋂

(∩m
j=1GMEP(θj,Aj,ϕj)) �= ∅. For

an initial point x0 Î E with x1 = �
f
C1
x0and C1 = C, we define the sequence {xn} as fol-

lows: ⎧⎪⎪⎪⎨
⎪⎪⎪⎩
yn = J−1(αnJxn + (1 − αn)JJλnxn),
un = TFm

rm,nT
Fm−1
rm−1,n , . . . ,T

F2
r2,nT

F1
r1,n yn,

Cn+1 = {z ∈ Cn : G(z, Jun) ≤ G(z, Jyn) ≤ G(z, Jxn)},
xn+1 = �

f
Cn+1

x0, n ≥ 1,

(4:5)

where J is the duality mapping on E and {an} is a sequence in [0, 1] and

{rj,n}∞n=1 ⊂ [d,∞)for some d >0 (j = 1, 2, ..., m). If lim infn®∞(1 - an) >0, then {xn} con-

verges strongly to p ∈ F, where p = �
f
Fx0.

Proof First, we have ∩∞
n=1F(Jλn) = M−10 �= ∅. Second, from the monotonicity of M, let

p ∈ ∩∞
n=1F(Jλn) and q Î E; we have

φ(p, Jλnq) = ||p||2 − 2〈p, JJλn q〉 + ||Jλnq||2
= ||p||2 + 2〈p, Jq − JJλnq − Jq〉 + ||Jλnq||2
= ||p||2 + 2〈p, Jq − JJλnq〉 − 2〈p, Jq〉 + ||Jλnq||2
= ||p||2 − 2〈Jλnq − p − Jλnq, Jq − JJλnq〉 − 2〈p, Jq〉 + ||Jλnq||2
= ||p||2 − 2〈Jλnq − p, Jq − JJλnq〉 + 2〈Jλnq, Jq − JJλn q〉 − 2〈p, Jq〉 + ||Jλnq||2
≤ ||p||2 + 2〈Jλnq, Jq − JJλn q〉 − 2〈p, Jq〉 + ||Jλnq||2
= ||p||2 − 2〈p, Jq〉 + ||q||2 − ||Jλnq||2 + 2〈Jλnq, Jq〉 − ||q||2
= φ(p, q) − φ(Jλnq, q)

≤ φ(p, q)

for all n ≥ 1. Therefore, {Jλn} is a family of relatively quasi-nonexpansive mapping for

all ln >0 with the common fixed point set ∩∞
n=1F(Jλn) = M−10. Hence, it follows from

Theorem 3.1, the desired conclusion follows: □
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