FIXED POINT THEORY ON EXTENSION-TYPE SPACES
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We present several new fixed point results for admissible self-maps in extension-type
spaces. We also discuss a continuation-type theorem for maps between topological spaces.

1. Introduction

In Section 2, we begin by presenting most of the up-to-date results in the literature [3,
5, 6, 7, 8, 12] concerning fixed point theory in extension-type spaces. These results are
then used to obtain a number of new fixed point theorems, one concerning approximate
neighborhood extension spaces and another concerning inward-type maps in extension-
type spaces. Our first result was motivated by ideas in [12] whereas the second result is
based on an argument of Ben-El-Mechaiekh and Kryszewski [9]. Also in Section 2 we
present a new continuation theorem for maps defined between Hausdorff topological
spaces, and our theorem improves results in [3].

For the remainder of this section we present some definitions and known results which
will be needed throughout this paper. Suppose X and Y are topological spaces. Given a
class & of maps, (X,Y) denotes the set of maps F: X — 2¥ (nonempty subsets of Y)
belonging to &, and &, the set of finite compositions of maps in &. We let

F(X) = {Z:FixF + @ VF € ¥(Z,Z)}, (1.1)

where Fix F denotes the set of fixed points of F.
The class 94 of maps is defined by the following properties:

(i) o contains the class 6 of single-valued continuous functions;
(ii) each F € o, is upper semicontinuous and closed valued;
(iii) B" € F(A.) forall n € {1,2,...}; here B" = {x e R" : ||x|| < 1}.

Remark 1.1. The class o is essentially due to Ben-El-Mechaiekh and Deguire [7]. It in-
cludes the class of maps U of Park (U is the class of maps defined by (i), (iii), and (iv) each
F € 9. is upper semicontinuous and compact valued). Thus if each F € s, is compact
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valued, the classes sl and AU coincide and this is what occurs in Section 2 since our maps
will be compact.

The following result can be found in [7, Proposition 2.2] (see also [11, page 286] for a
special case).

THEOREM 1.2. The Hilbert cube I* (subset of I consisting of points (x1,%2,...) with |x;| <
1/2 for all i) and the Tychonoff cube T (Cartesian product of copies of the unit interval) are
in F(sde).

We next consider the class UX(X,Y) (resp., A*(X,Y)) of maps F: X — 27 such that
for each F and each nonempty compact subset K of X, there exists a map G € U(K,Y)
(resp., G € A(K,Y)) such that G(x) < F(x) for all x € K.

TaeoreM 1.3. The Hilbert cube I® and the Tychonoff cube T are in F(A¥) (resp., F(UFK)).

Proof. Let F € sA¥(I*,I*). We must show that Fix F # &. Now, by definition, there exists
G e A (I°,I*) with G(x) < F(x) for all x € I, so Theorem 1.2 guarantees that there
exists x € I with x € Gx. In particular, x € Fx so FixF # @. Thus [* € F(A¥). |

Notice that U¥ is closed under compositions. To see this, let X, Y, and Z be topological
spaces, F; € UX(X,Y), F, € UX(Y,Z), and K a nonempty compact subset of X. Now
there exists G; € U (K, Y) with G;(x) < F;(x) for all x € K. Also [4, page 464] guarantees
that G;(K) is compact so there exists G, € UX(G,(K),Z) with Gy(y) € F,(y) forall y €
G1(K). As a result,

GGy (X) cFGp (x) c FKhFi(x) VxeK (1.2)

and G,G; € OILC(X,Z)

For a subset K of a topological space X, we denote by Covx (K) the set of all coverings
of K by open sets of X (usually we write Cov(K) = Covx(K)). Given a map F: X —
2% and « € Cov(X), a point x € X is said to be an a-fixed point of F if there exists a
member U € a such that x € U and F(x) n U # @. Given two maps F,G: X — 2¥ and
a € Cov(Y), F and G are said to be a-close if for any x € X there exists Uy € a, y €
F(x)n U, and w € G(x) N U,.

The following results can be found in [5, Lemmas 1.2 and 4.7].

THEOREM 1.4. Let X be a regular topological space and F : X — 2% an upper semicontinuous

map with closed values. Suppose there exists a cofinal family of coverings 8 < Covx (F(X))
such that F has an a-fixed point for every a € 6. Then F has a fixed point.

TaeoreM 1.5. Let T be a Tychonoff cube contained in a Hausdor{f topological vector space.
Then T is a retract of span(T).

Remark 1.6. From Theorem 1.4 in proving the existence of fixed points in uniform spaces
for upper semicontinuous compact maps with closed values, it suffices [6, page 298] to
prove the existence of approximate fixed points (since open covers of a compact set A
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admit refinements of the form {U[x] : x € A} where U is a member of the uniformity
[14, page 199], so such refinements form a cofinal family of open covers). Note also that
uniform spaces are regular (in fact completely regular) [10, page 431] (see also [10, page
434]). Note in Theorem 1.4 if F is compact valued, then the assumption that X is regular
can be removed. For convenience in this paper we will apply Theorem 1.4 only when the
space is uniform.

2. Extension-type spaces

We begin this section by recalling some results we established in [3]. By a space we mean
a Hausdorff topological space. Let Q be a class of topological spaces. A space Y is an
extension space for Q (written Y € ES(Q)) if for all X € Q and all K = X closed in X, any
continuous function f; : K — Y extends to a continuous function f : X — Y.

Using (i) the fact that every compact space is homeomorphic to a closed subset of the
Tychonoff cube and (ii) Theorem 1.3, we established the following result in [3].

TaeoreM 2.1. Let X € ES(compact) and F € UK(X,X) a compact map. Then F has a fixed
point.

Remark 2.2. If X € AR (an absolute retract as defined in [11]), then of course X €
ES(compact).

A space Y is an approximate extension space for Q (written Y € AES(Q)) if for all
a € Cov(Y),all X € Q, all K € X closed in X, and any continuous function fy: K — Y,
there exists a continuous function f : X — Y such that f|x is a-close to fp.

TaEOREM 2.3. Let X € AES(compact) be a uniform space and F € UX(X,X) a compact
upper semicontinuous map with closed values. Then F has a fixed point.

Remark 2.4. This result was established in [3]. However, we excluded some assumptions
(X uniform and F upper semicontinuous with closed values) so the proofin [3] has to be
adjusted slightly.

Proof. Let a € Covx(K) where K = F(X). From Theorem 1.4 (see Remark 1.6), it suffices
to show that F has an a-fixed point. We know (see [13]) that K can be embedded as
a closed subset K* of T; let s: K — K* be a homeomorphism. Also let i: K — X and
j:K* = T be inclusions. Next let ' = o U {X\K} and note that «’ is an open covering of
X. Let the continuous map h: T — X be such that h|g+ and s™! are &’ -close (guaranteed
since X € AES(compact)). Then it follows immediately from the definition (note that
o« =aU{X\K}) that hs: K — X and i: K — X are a-close. Let G = jsFh and notice
that G € UX(T, T). Now Theorem 1.3 guarantees that there exists x € T with x € Gx.
Let y = h(x), and so, from the above, we have y € hjsF(y), that is, y = hjs(q) for some
q € F(y). Now since hs and i are a-close, there exists U € a with hs(q) € U and i(q) € U,
that is, g € U and y = hjs(q) = hs(q) € U since s(q) € K*. Thus g€ U and y € U, so
y€Uand F(y) nU # & since g € F(y). As a result, F has an a-fixed point. O

Definition 2.5. Let V be a uniform space. Then V is Schauder admissible if for every com-
pact subset K of V and every covering « € Covy (K), there exists a continuous function
(called the Schauder projection) 7, : K — V such that



16  Fixed point theorems

(i) my and i: K — V are a-close;
(ii) 714 (K) is contained in a subset C < V with C € AES(compact).

THEOREM 2.6. Let V be a uniform space and Schauder admissible and F € UX(V,V) a
compact upper semicontinuous map with closed values. Then F has a fixed point.

Proof. Let K = F(X) and let & € Covy (K). From Theorem 1.4 (see Remark 1.6), it suf-
fices to show that F has an a-fixed point. There exists 77, : K — V (as described in Defini-
tion 2.5) and a subset C = V with C € AES(compact) such that (here F, = 7, F)

Fo(V) =m F(V) < C. (2.1)

Notice that F, € Uf(C,C) is a compact upper semicontinuous map with closed (in fact
compact) values. So Theorem 2.3 guarantees that there exists x € C with x € m,F(x), that
is, x = 7m,q for some q € F(x). Now Definition 2.5(i) guarantees that there exists U € «
with 7,(q) € U and i(q) € U, thatis,x € Uand g € U. Thus x € U and F(x) N U # &
since g € F(x), so F has an a-fixed point. O

A space Y is a neighborhood extension space for Q (written Y € NES(Q)) if for all
X € Q, all K € X closed in X, and any continuous function fy: K — Y, there exists a
continuous extension f : U — Y of f; over a neighborhood U of K in X.

Let X € NES(Q) and F € U¥(X,X) a compact map. Now let K, K*, s, and i be as in
the proof of Theorem 2.3. Let U be an open neighborhood of K* in T and lethy : U — X
be a continuous extension of is™! : K* — X on U (guaranteed since X € NES(compact)).
Let juy : K* = U be the natural embedding, so hyju = is™!. Now consider span(T) in a
Hausdorff locally convex topological vector space containing T. Now Theorem 1.5 guar-
antees that there exists a retraction r : span(T) — T. Let i* : U — r~!(U) be an inclusion
and consider G = i* jysFhyr. Notice that G € US(r~1(U),r 1 (U)). We now assume that

G € U*(r~1(U),r1(U)) has a fixed point. (2.2)

Now there exists x € r~1(U) with x € Gx. Let y = hyr(x), so y € hyri* jysF(y), that is,
y = hyri* jus(q) for some q € F(y). Since hy(z) = is ! (z) for z € K*, we have

hyri* jus(q) = (huri*ju)s(q) = i(q), (2.3)

soy € F(y).

TaeoreM 2.7. Let X € NES(compact) and F € UX(X,X) a compact map. Also assume that
(2.2) holds with K, K*, s, i, i*, ju, hy, and r as described above. Then F has a fixed point.

Remark 2.8. Theorem 2.7 was also established in [3]. Note that if F is admissible in the
sense of Gorniewicz and the Lefschetz set A(F) # {0}, then we know [11] that (2.2) holds.
Note that if X € ANR (see [11]), then of course X € NES(compact).

A space Y is an approximate neighborhood extension space for Q (written Y € ANES(Q))
if for all @ € Cov(Y), all X € Q, all K < X closed in X, and any continuous function f :
K — Y, there exists a neighborhood U, of K in X and a continuous function f,: Uy = Y
such that fy|x and f; are a.
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Let X € ANES(compact) be a uniform space and F € U¥(X, X ) a compact upper semi-
continuous map with closed values. Also let « € Covx (K) where K = F(X). To show that
F has a fixed point, it suffices (Theorem 1.4 and Remark 1.6) to show that F has an a-fixed
point. Let ' = a U {X\K} and let K*, s, and i be as in the proof of Theorem 2.3. Since
X € ANES(compact), there exists an open neighborhood U, of K* in T and f, : Uy — X
a continuous function such that fy|x+ and s™! are a’-close and as a result fys: K — X and
i:K — X are a-close. Let jy, : K* — U, be the natural imbedding. We know (see [5, page
426]) that U, € NES(compact). Also notice that Gy = ju,SF f« € UK (Uy, Uy) is a compact
upper semicontinuous map with closed values. We now assumie that

Gu = ju,SF fo € WE(Uy, Uy) has a fixed point for each a € Covy (F(X)). (2.4)

We still have a« € Covy (K) fixed and we let x be a fixed point of G,. Now let y, = fy(x),
so0 ¥ = faju,sF(y), thatis, y = fyju,s(q) for some g € F(y). Now since f,s and i are a-
close, there exists U € a with f,s(q) € Uandi(q) € U, thatis,q € U and y = fyju,s(q) =
fas(q) € Usince s(q) € K*. Thusqe€ U and y € U, so

yeU, F(y)nU+ @ sinceqe F(y). (2.5)

TaEOREM 2.9. Let X € ANES(compact) be a uniform space and F € WUX(X,X) a compact
upper semicontinuous map with closed values. Also assume that (2.4) holds with K, s, Uy,
ju,, and fy as described above. Then F has a fixed point.

Next we present continuation results for multimaps. Let Y be a completely regular
topological space and U an open subset of Y. We consider a subclass & of U¥. This sub-
class must have the following property: for subsets X, X,, and X3 of Hausdorff topologi-
cal spaces, if F € 9(X5,X3) is compact and f € €(X,Xz), then Fo f € D(X;,X3).

Definition 2.10. The map F € Doy (U,Y) if F € 9(U,Y) with F compact and x ¢ Fx for
x € oU; here U (resp., 0U) denotes the closure (resp., the boundary) of U in Y.

Definition 2.11. Amap F € Dyy(U,Y) is essential in Dy (U, Y) if for every G€ Doy (U, Y)
with Glau = Flau, there exists x € U with x € Gx.

TaEOREM 2.12 (homotopy invariance). Let Y and U be as above. Suppose F € %oy (U,Y)
is essential in Dy (U,Y) and H € D(U x [0,1],Y) is a closed compact map with H(x,0) =
F(x) for x € U. Also assume that

x & Hy(x) foranyx € dU, te€ (0,1] (H,(+) = H(-,1)). (2.6)
Then H, has a fixed point in U.
Proof. Let

B={xe€ U:x € Hx) for some t € [0,1]}. (2.7)

Whent =0, H; = F,and since F € @5y(U,Y) is essential in @5y (U, Y), there exists x € U
with x € Fx. Thus B # @ and note that B is closed, in fact compact (recall that H is
a closed, compact map). Notice also that (2.6) implies B N dU = <. Thus, since Y is
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completely regular, there exists a continuous function g : U — [0,1] with u(3U) = 0 and
#(B) = 1. Define a map R by R(x) = H(x,u(x)) for x € U. Let j: U — U x [0,1] be given
by j(x) = (x,u(x)). Note that j is continuous, so R = H o j € 9(U, Y) (see the description
of the class 9 before Definition 2.10). In addition, R is compact, and for x € dU, we
have R(x) = Hy(x) = F(x). As a result, R € %35(U,Y) with R|3u = Flay. Now since F is
essential in @y (U, Y), there exists x € U with x € R(x), that is, x € Hyx)(x). Thus x € B
and so u(x) = 1. Consequently, x € H (x). O

Next we give an example of an essential map.

THEOREM 2.13 (normalization). Let Y and U be as above with 0 € U. Suppose the follow-
ing conditions are satisfied:

for any map 6 € Doy (U,Y) with Olyy = {0}, the map J is in US(Y,Y);

0(x), xeU, (2.8)
J(x) = —
{0}, xeY\U,
and
J € UE(Y,Y) has a fixed point. (2.9)

Then the zero map is essential in Doy (U, Y).

Remark 2.14. Note that examples of spaces Y for (2.9) to be true can be found in Theo-
rems 2.1, 2.3, 2.6, 2.7, and 2.9 (notice that ] is compact).

Proof of Theorem 2.13. Let 6 € 9,y (U, Y) with 6/5p = {0}. We must show that there ex-
ists x € U with x € 8(x). Define a map J as in (2.8). From (2.8) and (2.9), we know that
there exists x € Y with x € J(x). Now if x € U, we have x € J(x) = {0}, which is a contra-
diction since 0 € U. Thus x € U so x € J(x) = 0(x). O

Remark 2.15. Other homotopy and essential map results in a topological vector space
setting can be found in [1, 2].

To conclude this paper, we discuss inward-type maps for a general class of admissible
maps. The proof presented involves minor modifications of an argument due to Ben-
El-Mechaiekh and Kryszewski [9]. Let Y be a normed space and X < Y, and consider
a subclass R(X,Y) of UX(X,Y). This subclass must have the following properties: (i) if
XcZcYandifl:X < Zisan inclusion, t >0,and F € R(X,Y) with (I +tF)(X) € Z,
then I +tF € UX(X,Z), and (ii) each F € R(X,Y) is upper semicontinuous and compact
valued.

In our next result we assume that Q is a compact &-retract [9], that is,

(A) Q is a compact neighborhood retract of a normed space E = (E, || - ||) and there
exist f >0, r:B(Q,f3) — Qaretraction, and L > 0 such that ||r(x) — x|| < Ld(x;Q)
for x € B((), f3).
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As a result,
In >0, ;1<ég with ||r(x) — x|| <5 Vx € B(Q, ). (2.10)
THEOREM 2.16. Let E = (E, || - ||) be a normed space and Q as in assumption (A), and as-

sume either (i) Q) is Schauder admissible or (ii) (2.2) holds with X = Q. In addition, suppose
F € R(Q,E) with

F(x) € Cqo(x) VxeQ. (2.11)

Then there exists x € Q with 0 € Fx.

Remark 2.17. Here Cq, is the Clarke tangent cone, that is,

Ca(x) = {v€E:c(x,v) =0}, (2.12)
where
c(x,y) = limsup M (2.13)
y—x, yEQ t

110
Remark 2.18. 1f Q) is a compact neighborhood retract, then of course Q) € NES(compact).

Remark 2.19. The proof is basically due to Ben-El-Mechaiekh and Kryszewski [9] and is
based on [9, Lemma 5.1] (this lemma is a modification of a standard argument in the
literature using partitions of unity).

Proof. Now [9, Lemma 5.1] (choose ¥(x) = {x € E: ¢c(x,v) < 8} (6§ > 0 appropriately cho-
sen), ®(x) = co(F(x)) and apply the argument in [9, page 4176]) implies that there ex-
ists M > 0 such that for each x € K and each y € Fx, we have [/ y|]| < M. Choose 7 >0
with M7 < 5 (here # is as in (2.10)) and a sequence (t,)nen in (0,7] with ¢, | 0; here
N = {1,2,...}. Define a sequence of maps y,, n € N, by

Yu(x) =r(x+1t,F(x)) forxeQ; (2.14)

note that d(x +t,y;Q) < 5 forx € Qand y € F(x) since M1 < 7. Fixn € N and notice that
Yy € UE(Q, Q) is a compact map (note that Q is compact and v, is upper semicontinu-
ous with compact values). Now Theorem 2.6 or Theorem 2.7 guarantees that there exists
x, € Qand y, € Fx, with

Xp =1 (Xn + 1y Yn)- (2.15)
Also notice from (2.15) and assumption (A) (note that M7 < 5 < 3/2 < f3) that
tallyull = 1%+ tayn — 7 (xn + tayn) || < Ld (%0 + tayu; Q). (2.16)

Now Q) is compact so F(Q) is compact, and as a result, there exists a subsequence S of N
with (x,,y,) € GraphF and (x,,y,) — (X,¥) as n — o in S. Of course, since F is upper
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semicontinuous, we have y € F(x). Also from (2.11), we have F(X) < Cqo(X) and as a
result, y € F(X) < Cq(X), so c(%,¥) = 0. Note also that

A(xn + tnyns Q) < d(xn+ 6,73 Q) + bl [yn — V| (2.17)
and this together with (2.16) yields

Ld(x, + t,y;

TR . Q) _ o
1311 = timsup | < Timsup (<5585, - 5)) < c(m3) <0, @18)

s0 0 e F(X). O
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