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FOR A FAMILY OF NONEXPANSIVE MAPPINGS
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Given a finite family of nonexpansive self-mappings of a Hilbert space, a particular qua-
dratic functional, and a strongly positive selfadjoint bounded linear operator, Yamada
et al. defined an iteration scheme which converges to the unique minimizer of the qua-
dratic functional over the common fixed point set of the mappings. In order to obtain
their result, they needed to assume that the maps satisfy a commutative type condition.
In this paper, we establish their conclusion without the assumption of any type of com-
mutativity.

Finding an optimal point in the intersection F of the fixed point sets of a family of
nonexpansive maps is one that occurs frequently in various areas of mathematical sci-
ences and engineering. For example, the well-known convex feasibility problem reduces
to finding a point in the intersection of the fixed point sets of a family of nonexpan-
sive maps. (See, e.g., [3, 4].) The problem of finding an optimal point that minimizes a
given cost function ® : % — R over F is of wide interdisciplinary interest and practical
importance. (See, e.g., [2, 4, 5, 7, 14].) A simple algorithmic solution to the problem of
minimizing a quadratic function over F is of extreme value in many applications includ-
ing the set-theoretic signal estimation. (See, e.g., [5, 6, 10, 14].) The best approximation
problem of finding the projection Pr(a) (in the norm induced by the inner product of
J€) from any given point a in ¥ is the simplest case of our problem. Some papers dealing
with this best approximation problem are [2, 9, 11].

Let ¥ be a Hilbert space, C a closed convex subset of ¥, and T;, wherei=1,2,...,N,
a finite family of nonexpansive self-maps of C, with F := n_, Fix(T;) # &. Define a qua-
dratic function © : # — R by

O(u) := %(Au,u)—(b,u) Yue ¥, (1)

where b € % and A is a selfadjoint strongly positive operator. We will also assume that
B:=1— A satisfies ||B|| < 1, although this is not restrictive, since yA is strongly positive
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with [T — yAll < 1foranyu € (0,2/]|All), and minimizing @(u) = (1/2){uAu,u) — {ub,u)
over F is equivalent to the original minimization problem.

Yamada et al. [13] show that there exists a unique minimizer u* of ® over C if and
only if u™* satisfies

(Au* —byu—u*) >0 VueC (2)

In their solution of this problem, Yamada et al. [13] add the restriction that the T;
satisfy

FiX(TN' . Tl) = FIX(T1TN e T3T2) = FiX(TNflTNfz e TlTN). (3)

There are many nonexpansive maps, with a common fixed point set, that do not satisfy
(3). For example, if X = [0,1] and T; and T, are defined by Tyx = x/2 4+ 1/4 and Thx =
3x/4, then Fix(Ty, T>) = {2/5}, whereas Fix(T», T1) = {3/10}.

In our solution, we are able to remove restriction (3). We will take advantage of the
modified Wittmann iteration scheme developed by Atsushiba and Takahashi [1].

Let au1,0n2,...,ann € (0,1], n=1,2,.... Given the mappings T}, T5,...,Tn, one can
define, for each #n, new mappings Us,..., Uy by

Un =amTi+(1—an)l,
Un =anToUn+ (1—an)l,
(4)

Unn-1 = tuN-1Tn-1Unn-—2+ (1 — ann-1)],
Wn : UnN = ‘XnNTNUn,N—l + (1 — (XnN)I.

From [1, Lemmas 3.1 and 3.2], if the T; are nonexpansive, so are the Uy;, and both sets
of functions have the same fixed point set.

The iteration scheme we will use is the following. Let b € C and choose any u € C.
Define {u,} by

Ups1 = Apb+ (I = 1, A) Wyuy, (5)

where the W, are the self-maps of C generated by (4).

TaeoreM 1. Let T;: # — ¥ (i = 1,...,N) be nonexpansive with nonempty common fixed
point set F + &. Assume that {A,,} and {an;} satisfy

o<, <1,
(i1) imA,, =0,
(i) Xpz1An = oo,
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(1V) anl |An 7An71| < 0,
(V) Dot 1o — ay_1i| < oo foreachi=1,2,...,N.

Then, for any point uy € ¥, the sequence {u,} generated by (5) converges strongly to the
unique minimizer u* of the function © of (1) over F.

Proof. From [15], u* exists and is unique. We will first assume that

[|b— Au*||
. | < T AR
Uy € Cyx : {xe%l”x u*|| < T (6)

where A and B are as previously defined.
Foranyx € # and 0 < A < 1, define

Th(x) =Ab+ (I —AA)W(x). (7)
Then, for any y € ¥, since W is nonexpansive,
ITh () = Ta)l| = [T = AA) (W (x) = W ()| = [1=A(1 = IBIN]llx =yl (8)
Also, since u* € F,
1T (™) = u*[] = Allb - Au*]]. 9)
Thus,

T2 ) = || < [[Ta(x) = T () [+ ]| Ta (™) — ]

. b—Au*
s[l—x\(l—llBH)]Hx—”||+/\(1—||B”)||1_7||B||” (10)
lx—Aw|
= 1-BI

If, in (7), we make the substitution A = A,,, T\ (x) = u,+1, and W(x) = W, u,, then it
follows from (9) and (10) that u, and W,u, belong to C,+ for each n. Thus, {u,} and
{W,u,} are bounded. Since ||B|| < 1, {BW,u,} is also bounded.

Let K denote the diameter of C,«.

We may write (5) in the form

Upi1 = Ab+ (I = A,(I—B)) W,u,

11
=Ab+ (I = 2A,) Wouy + A, BW,u,,. (1)

We will first show that

lim ||ty11 — ua|| = 0. (12)
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Using (11), since each W, is nonexpansive and ||B]| < 1,

||Un+1_un||

= [Aub+ (1 = Ay) Wytty + A,BWyuy, — Ay 1 b
- (1 _An—l)Wn—lun—l _An—lBWn—lun—ln
< |/1n _/\n—l | ”b” + (1 _An)HWnun - Wn—l”n”

+ | A = At | | Wamr st ||+ (1= A0) || Wi ttn = Wisq 11| (13)
+ Al BI[ Wty = Wooyun|| + An I BI[Wo—rtn = Wiyt |
+ | An = Au1 | [[BWyo1tdy ||
<3| Ao |[K+ (1= A+ A41IBI)
X [|[Watty = Wi yutn| |+ (1 = A + An I BID [[ Wi 114w = Wy []].
From (4), since Ty and U, y-; are nonexpansive,
Wt — Wi 1|
= [N TN UnN-1ttn + (1 = €N ) thy — 6 i N TN U110 — (1 = @18 )t
< oy = an 1N | |tnl | + |y TN U v -1t — @ 1 NTN U181t
< |aun — an—1,n | ||tn]| + oty (T Unn—10tn — TN Up—1,8n-14n) || (14)
+ oty — a1 N | TN U1 N1 14|
< N = @1 N ||| + @un || Unn—1t4n = Unoin -1tk [ + | €y — cta-15 | K
<2K|oun — @p 1.8 | + oun || Unn-16n = Up- 18- 1.
Again, from (4),
|UnN-1tn = Un- 1N 184n]|
= lJotn N1 TN 1 UpN-2ttn + (1 = ttyn 1) Un
—y 1N 1IN 1 Ui N2ty = (1= @1 n 1) ||
< onn-1 = an-1n-1 ] |[unl]
+||otnn—1 -1 UnN—2un — 0tn—1,N—1 Tn-1 Un—1,8—2n|| (15)

< lann-1—n-1.n-1|||tn]|
+ anN-1||TN-1UnN-2tn — Tn-1Un—1,N—2tn|]
+ N1 — a1 N1 | K
<2K | O N-1— Opn—1,N-1 | +0‘n,N71||Un,N*2”" - U"*I’N’Zu"H

< 2K |ann-1— tn-1.n-1| + ||UnN-2tn — Un—1,N-2Un]|.
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Therefore,

||Un,N—lun - Un—l,N—lun”
< 2K |ann-1— @n-1n-1| + 2K | apn_2 — Qn-1,n—2

+ ||Un,N—3un - Un—l,N—Sun”

N-1
<2K Z |05m‘ - (xn—l,i| + ||Unlun - Un—l,l“n”
i=2
= ||otw Trutn + (1 — atn1) vty — ctn—1,1 Trtky — (1 — dt—1,1) thn| (16)
N-1
+ 2K z |06m' —Op-1, |
i=2
< lom — an—1,1 | ||un]| + || Trten — cn—1,1 Ty thn|
N-1
+ 2K Z |06m' —Qp-1,i |
i=2
N-1
<2K Z |0‘m'_0‘n71,i|-
i=1
Substituting (16) into (14),
N-1
||Wnun - Wn—l”n” < 2K|(an — &y—1,N | +2(anK Z |‘xm' - (xn—l,i|
= (17)

N
SzKZ |(xni_(xn—1,i|-

i=1
Using (17) in (13),

||un+1 _un” = (l_)‘n(l - ”B”))||un_un71||+3K|/\n_An—l\

N 18
+2(1= A (1= IBIN)K D i — a1 | e

i-1
Thus, since0<1—21,(1—||B||) < 1 for all n,

n+m

st = thnaml| < TT (1 =X (1 = IIBID|uti1 — wa])

i=m

n+m n+m N
+3K( Z !Ai—li_1| +2K z Z |“ij_‘xi—l,j|>-

i=m i=m j=1

(19)
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From (iii), since the product diverges to zero,

limsup ||tn+1 — ta|| = imsup ||ty ms1 — |
n n

[ © N
<2K > [hi=dima | 42K D0 D i — aia |

i=m i=m j:1
Therefore, taking the limsup,, of both sides and using (iv) and (v),

limsup||une1 — un|| =0,
n

and (12) is satisfied.
Now, for any nonexpansive self-map T of C,+, define G, : C,;» — C,+ by

Gi(x) =tb+ (1 — t)TGe(x) + tBTG,(x)

(20)

(21)

(22)

for each t € (0,1]. Using an argument similar to the proof of [8, Theorem 12.2, page
45], we will now show that if T has a fixed point, then, for each x in C,+, the strong

limit,—.o G;(x) exists and is a fixed point of T.
Define y(t) = G¢(x) and let w be a fixed point of T

y(t)—w=tb—w)+ (1 —1t)(Ty(t) —w) +tBTy(t).
Since T is nonexpansive,

|y (t) = w|| < tllb = wll + (1= || Ty(t) — w||+ tIBII|| Ty(2)|]
< tlb—wll+ @ =1)ly®) —wl|+ Bl Ty@)|,
tlly(®) — wl| < tlb—wll + Bl Ty(t) — w[+ ¢l Bl Iwll,

or
[ly(®) = wl| < 11— wll + IBIl[[y(t) — w|| + IBIl I,
which, since [|B|| < 1, yields

(16— wll +[IBlIwll],

1
t)—wl| < ——
Iy =il = =57

and y(t) remains bounded as t — 0.
Also,

BTy < ITyOll < [Ty () = Twll+ llwll < [|y(£) = wl| + llwll,

and both BT y(t) and T y(t) remain bounded as ¢ — 0.
Hence,

ly(t) = Ty(®)]| = t|[b = Ty(t) + BTy(t)|| — 0 ast— 0.

(23)

(24)

(25)

(26)

(27)

(28)
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Define y, = y(t,) and let t, — 0. Let 4, be a Banach limit and f : C,» — R* defined by
2

£@ =wa{llyn =2} (29)

Since f is continuous and convex, f(z) — o as ||z|]| — oo. Since J€ is reflexive, f attains

it infimum over C,«.
Let M be the set of minimizers of f over Cy«. If u € Cy+, then

FCTu) = pnllyn = Tull*} = {1 Tyn = Tull’} < piu{lly—ull} = f@). (30)

Therefore, M is invariant under T'. Since it is also bounded, closed, and convex, it must
contain a fixed point of T. Denote this fixed point by v. Then,

=Ty yn—=V) = In=Vsn = V) + (V= Ty, yu —v)

=l ol Ty Ty ). .
But
Ty = Ty yu =) | < 1TV =Tyl [y = vl < llyu =, (32)
so that
(Yn—=TYnsyn—v) = 0. (33)
Since
Yn=tab+ (1 —t,) Ty, +t,BTy,,
yn=b=(1-1t,)(Tyn—b) +t,BTy, (34)
= (1=tu)(Tyn—yn) + (1 =t2) (yu —b) + t.BT yy,
thus,
t(yn—0) = (1= t4) (Tyn— yn) + taBT yn (35)
or
yn_b_BV:%(Tyn_yn)"’BTyn—BV. (36)

n

Therefore, from (33),

(yn—b—Bv,y,—v)
1—-1¢,
= ; <T}/n — Vs Yn _V> + (BT)/,, —B%)’n _V> (37)

n

<(BTy,—Bv,y, —v).
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For any z € Cyx,
||y,,—v||2 =|lyn— (1 =ty)v—tuz+t,(z—v) —t,b— tnBv+t,,(b+Bv)||2
(38)

2

> ||lyn— (1= ty)v—t,b—t,Bv||
+2ty(z—=v+b+Bv,y, — (1 —t,)v — tyz — t,b — t,Bv).
Let € > 0 be given. Since ¥ is uniformly smooth, there exists a #, > 0 such that, for all

ty, < to,
(39)

[ (z=v+b+Bv, (3, —v) = (ya— (1= t,)v—taz— t,b—t,Bv)) | <€

Thus, from (38),

(z=v+b+Bv,y,—v)
<€+({z—v+b+Bv,y,— (1 —t,)v —tuz — t,b —t,B) (40)

1 2 2
<(—:+Z[||yn—v|| —|lyn— (1 = t,)v —t,b—t,Bv|| ]

Since the Gateaux derivative exists in #¢, we obtain
(41)

pn{{z=v+b+Bv,y,—v)} <0.

Setting z = 6 in (41) and adding (37) and (41) yields
tn{{yn = vs¥n =)} < pu{(BTy, — Bv,yn —v)} (42)

.‘"n{”)’n _V”z} S#n{||BTyn _BVH ||yn _VH}
(43)

< un{IBINTyn = To|[|[yn — vII}
< IBllgn {1130 — VI ]

Therefore, pyll y, — vII* = 0. Thus, there is a subsequence of {y,} converging strongly

to v. Suppose that limy_., y(t,) = v1 and limg_« ¥(t,,,) = v2. From (37), we have

<V1 -b- Bvy,vi — Vz) < (BTV] — Bvy, vy — V2>,
(44)
<V2 -b- Bvy,vy — V1> < <BTV2 — Bvi,vy — V1>.
Adding these inequalitites, we obtain
<V1—BTV1+BTV2—V2,V1—V2> <0 (45)
(46)

or
<V1 — V2, V1 — Vz) < <BTV1 — BTvy,v; — Vz);
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that is,
|lvi = val|” < ||BTv2 = BTwi]|[[v1 — v2]]
< IBII||Tv> = T [ = a]| (47)

< IBIl||v, = w|I%,

which, since ||Bl| < 1, implies that v; = v,, and thus lim y, = v.
Now, setting z = 6 in (41), we obtain

pn{b—(I—=B)v,y,—v) <0 (48)
or
pn{b—Av,y, —v) <0, (49)

which, from (2), implies that v = u*.
Let uqx denote the unique element of C,+ such that

Upk = %b+<l—%)wnunk+%BWnunk. (50)

From what we have just proved, limy u,x — u*. Using (11),

[thnt1 = Wiirtbnir k]|
= [[Aub+ (1 = Ay + AnB) Wotty = Wittt
< Aallb = Wit il + (1= A) [ Wty = Wit 4|
+ Al BI [ Wity = Wi th k|| + Au| [BWoirttns1 k]|

(51)
<3KA,+ (1 —An +An”BH) [||Wnun - Wn“nk” + ||Wnunk - Wnunﬂ,k”
+ ||Wnun+l,k - Wn+1un+1,k||]
=< 3K)‘n + (1 _An +An”B”) [||un - unk” + H”nk - Z"n-*—l,k“
+ HWn”nH,k - Wn+1un+1,k||]-
Asin (17),
N
||Wnun+1,k - Wn+1un+1,k|| =< ZKZ | Xp+1,i — Kni |- (52)
i=1
From the definition of u,,
u —lb+<1—l)W u +lBW u
nk = k k nUnk k nUnk>
u —1b+(1—1>W u +lBW u (53)
n+l,k = k k n+1Un+1,k k n+1Un+1,k>

1 1
Up+1,k — Unk = (1 - E) (Wn+1un+l,k - Wnunk) + EB(WI’H’luf’H’l,k - Wnunk)-
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Therefore, since W11 is nonexpansive,

I 1
ltwense = el = (1= + 2 1B Wothnrre = Wote|

1 1
<1 -7+ _HBH) [HWnH”nH,k - Wn+lunk|| + HWnHunk - Wn”nk”]

k k
1

< (1= £+ B Uit = s+ | Wk = W1

k k

Thus, using (17),

wnuw,k — k|| = (1k+”B”)2K,Z£ | et = G
or
(k—1+1Bll)

a1,k — k|| < WZK; | Qs1,i = i |-

Substituting (56) and (52) into (51) yields

||un+1 - Wn+1un+l,k||

s3K)Lﬂ+(l—/1,,+)L,,||B||)||u,,—unk||+( ”B”) Z|(xn+1, i

Thus, using (iii) and (v), we have

#n{”un - Wnunk”z} = Hn{”unﬂ - Wn+1un+1,k||2} =< ﬂn{””n - unk”z}-

From (53),

Upk — Up =

(b - un) + (1 - %) (Wnunk - un) + %Bwnunk

| —

Hence,
(1 - l) (tn — Witknk) = thy — thnk — l (un—b) + lBW"u”k’
k k k

2
(1= ) Mt = Wt P Vst = sl = 2 s = b = BW it = )

(54)

(55)

(56)

(57)

(58)

(59)

(60)

= (1 - %)Hun - unk||2 - %(unk - b_BWnunk:un - unk)-

(61)
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Therefore, using (58) and (61),

1\ 2 1)? 2
(1-%) [’ln”un_unkH = (1_E> /"nHun_W"u”k”

> (1= 3 )l = (62)

2
- E#n(”nk —b—BW, ke, thy — unk):

which implies that

1
ﬂ#n{”un - unkHz} = ,“n{(b — Unk + BWy i, by — unk> } (63)
Since limg u,x — u™*, independent of #, it follows that

0> pp{(b—u*+Bu*,u, —u*)}
:Hn{<b_(I_B)“*’un_”*>} (64)
= pn{(b—Au*,u, —u*)}.

From (12),
lim | (b —u*,up —u™) — (b—u*,u, —u*)| =0. (65)

We need the following result from [12]. If A is a real number and {a;,a5,...} € €* such
that y,{a,} < afor all Banach limits 4, and limsup,,(an+1 — a,) < 0, then limsup,, a, < a.
Consequently,

limsup (b — u*,u, —u*) <0. (66)

Since u* € F,
| Wty — u*|| = ||[Wau, — Wou|| < ||un — u*]|. (67)
From (11),

Upsr —u* =X, (b—u*) + (1 -A,) Wyhu, — u™) + A, BW,u,
68
=L, (b—u*)+(1-21,+1,B) (Wyu, —u™) +1,Bu* (68)
or
1—A,+AB) Wou, —u™) =ty —u™ —Ay(b—u™) —A,Bu™. 69
(1=2An+A:B)( *) * = An(b—u*) = A,Bu* (69)

Therefore,

(1= A + A IBI) (Wit — t*||* = [Jtmer — || = 20 (b — u* + Bu* ey — u*),
(70)
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which implies that
l|tns1 — u"‘||2 <(1 —)Ln+/\,,||B||)2||Wnun - u*||2+2)tn(b— ¥ty — u*) 1)

+ 24, (Bu™® upp — u™).

From (ii) and the boundedness of C,«, there exists a positive integer N such that, for

allm >N,
Mdb—u* up —u*) < Z, M{Bu* upy —u™) < Z (72)
Therefore, for n > N,
s — ¥ ][> < (1= A+ A, 11BI) ||u,,—u*||2+§+§,
5 n+m 1 5
|t — u*|] << (1-X;+ Bl >||um—u I (73)
n+m-— 2
( I1 1—)ti+/\i||B||))-
i=m
Using (iii),
(74)

limsup|[uy — u*||” = imsup ||tpsm — u*||” < 0.

Thus, {u,} converges strongly to u*.
Now let uy € #. Let {s,} be another sequence generated by (11) for some sy € Cy+

Then, by what we have just proved, lims, = u*. Since W), is nonexpansive for each #,
spit]| = |[Anb+ (1 = 1,A) Wy, — b — (1 = 1,A) Ws,||

||un+1 -

< [[(1=2,4) (Watty = Wys,) |
(75)

= (1 _An +/1n||B||)||Wnun - Wn5n||
= (1 _An +/\n||B||)||un _5n||-

By induction,

i — sull = llto —sol T T {1~ A1 — 1BI)}.
k=1

(76)

Therefore, using (iii), lim |4, — s, |l = 0 and |lu, — u™* || < ||ty — sull + llsy — u™* || so that
O

limu, = u*.
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