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The reduced Lefschetz number, that is, L(-) — 1 where L(-) denotes the Lefschetz num-
ber, is proved to be the unique integer-valued function A on self-maps of compact poly-
hedra which is constant on homotopy classes such that (1) A(fg) = A(gf) for f: X =Y
and g: Y — X; (2) if (fi, 2, f3) is a map of a cofiber sequence into itself, then A(f;) =
A fi) +A(f3); (3) A(f) = —(deg(p1fer) + - - - +deg(px fex)), where f is a self-map of a
wedge of k circles, e, is the inclusion of a circle into the rth summand, and p, is the pro-
jection onto the rth summand. If f : X — X is a self-map of a polyhedron and I(f) is
the fixed-point index of f on all of X, then we show that I(-) — 1 satisfies the above ax-
ioms. This gives a new proof of the normalization theorem: if f : X — X is a self-map of
a polyhedron, then I(f) equals the Lefschetz number L(f) of f. This result is equivalent
to the Lefschetz-Hopf theorem: if f: X — X is a self-map of a finite simplicial complex
with a finite number of fixed points, each lying in a maximal simplex, then the Lefschetz
number of f is the sum of the indices of all the fixed points of f.

1. Introduction

Let X be a finite polyhedron and denote by H, (X) its reduced homology with rational
coefficients. Then the reduced Euler characteristic of X, denoted by y(X), is defined by

F(X) = > (~1)*dim Hi(X). (1.1)
k

Clearly, §(X) is just the Euler characteristic minus one. In 1962, Watts [13] characterized
the reduced Euler characteristic as follows. Let € be a function from the set of finite poly-
hedra with base points to the integers such that (i) €(S°) = 1, where S° is the 0-sphere,
and (ii) €(X) = €(A) + €(X/A), where A is a subpolyhedron of X. Then €(X) = y(X).

Let € be the collection of spaces X of the homotopy type of a finite, connected CW-
complex. If X € €, we do not assume that X has a base point except when X is a sphere or
a wedge of spheres. It is not assumed that maps between spaces with base points are based.
A map f:X — X, where X € 6, induces trivial homomorphisms fix : Hx(X) — Hi(X)
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2 Lefschetz number

of rational homology vector spaces for all j > dimX. The Lefschetz number L(f) of f is
defined by

L(f) = > (-D*Tr fux, (1.2)

k

where Tr denotes the trace. The reduced Lefschetz number I is given by i( fi=L(f)-1
or, equivalently, by considering the rational, reduced homology homomorphism induced
by f. N

Since L(id) = ¥(X), where id : X — X is the identity map, Watts’s Theorem suggests an
axiomatization for the reduced Lefschetz number which we state below in Theorem 1.1.

For k > 1, denote by \VF 8" the wedge of k copies of the n-sphere §”, n > 1. If we write
VES as STV STV -l v S> where 8} = §", then we have inclusions ¢; : §} — VEs into
the jth summand and projections p; : VEsn - S} onto the jth summand, for j = 1,...,k.
If £ : \/* 8" — \/*$" is a map, then fj 8} — S; denotes the composition p; fe;. The degree
ofamap f: 8" — §" is denoted by deg( f).

We characterize the reduced Lefschetz number as follows.

TueoreM 1.1. The reduced Lefschetz number L is the unique function A from the set of
self-maps of spaces in € to the integers that satisfies the following conditions.

(1) (Homotopy axiom) If f,g : X — X are homotopic maps, then A(f) = A(g).

(2) (Cofibration axiom) If A is a subpolyhedron of X, A — X — X/A is the resulting cofiber
sequence, and there exists a commutative diagram

A X X/A
f fl ft (1.3)
A X X/A,

then \(f) = A(f") +A(f).
(3) (Commutativity axiom) If f : X — Y and g: Y — X are maps, then A(g f) = A(fg).
(4) (Wedge of circles axiom) If f : VESt - \ESlisa map, k > 1, then

A(f) = —(deg(fi) +- - - +deg(fx)), (1.4)

where f; = pife;.

In an unpublished dissertation [10], Hoang extended Watts’s axioms to characterize
the reduced Lefschetz number for basepoint-preserving self-maps of finite polyhedra. His
list of axioms is different from, but similar to, those in Theorem 1.1.

One of the classical results of fixed-point theory is the following theorem.

TaeoreM 1.2 (Lefschetz-Hopf). If f : X — X is a map of a finite polyhedron with a finite
set of fixed points, each of which lies in a maximal simplex of X, then L( f) is the sum of the
indices of all the fixed points of f.
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The history of this result is described in [3], see also [8, page 458]. A proof that depends
on a delicate argument due to Dold [4] can be found in [2] and, in a more condensed
form, in [5]. In an appendix to his dissertation [12], McCord outlined a possibly more
direct argument, but no details were published. The book of Granas and Dugundji [8,
pages 441-450] presents an argument based on classical techniques of Hopf [11]. We
use the characterization of the reduced Lefschetz number in Theorem 1.1 to prove the
Lefschetz-Hopf theorem in a quite natural manner by showing that the fixed-point index
satisfies the axioms of Theorem 1.1. That is, we prove the following theorem.

TuEOREM 1.3 (normalization property). If f : X — X is any map of a finite polyhedron,
then L(f) = i(X, f,X), the fixed-point index of f on all of X.

The Lefschetz-Hopf theorem follows from the normalization property by the additiv-
ity property of the fixed-point index. In fact, these two statements are equivalent. The
Hopf construction [2, page 117] implies that a map f from a finite polyhedron to itself
is homotopic to a map that satisfies the hypotheses of the Lefschetz-Hopf theorem. Thus,
the homotopy and additivity properties of the fixed-point index imply that the normal-
ization property follows from the Lefschetz-Hopf theorem.

2. Lefschetz numbers and exact sequences

In this section, all vector spaces are over a fixed field F, which will not be mentioned, and
are finite dimensional. A graded vector space V = {V,} will always have the following
properties: (1) each V,, is finite dimensional and (2) V,, = 0, for n < 0 and for n > N, for
some nonnegative integer N. A map f : V — W of graded vector spaces V = {V,} and
W = {W,} is a sequence of linear transformations f,: V, — W,. Foramap f:V =V,
the Lefschetz number is defined by

L(f) = D (=1)"Tx f. (2.1)

n

The proof of the following lemma is straightforward, and hence omitted.

LemMa 2.1. Given a map of short exact sequences of vector spaces

0 U |4 w 0
fl gl hl (2.2)
0 U \%4 w 0,

then Trg = Tr f + Trh.

THEOREM 2.2. Let A, B, and C be graded vector spaces with maps «: A — B, f: B — C and
self-maps f :A — A,g:B — B,and h: C — C. If, for every n, there is a linear transformation
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0n : Cy — Ay—1 such that the following diagram is commutative and has exact rows:

0 Ay —= By & Oy —2s Ay~
0 Ay —2 > By i Cn & Ay — e
(2.3)
b B 0
fol gol hol
d A —2—> By b Co 0,
then
L(g) = L(f) +L(h). (2.4)

Proof. Let Im denote the image of a linear transformation and consider the commutative
diagram

0 Im Cn Imoa, 0
hnlmﬁnl hnk fnllmanl (2-5)
0 —— Imp, Cy Imo, 0.

By Lemma 2.1, Tr(h,) = Tr(h,| Imf,) + Tr(f,-11Im9,). Similarly, the commutative dia-
gram

0 Imo, A, ——Ima, 1 —=0
fnl|1manl fnll gnllmanll (2.6)
0 Imo, A, Ima, 1 —=0

yields Tr(f,—11Im,) = Tr(fu—1) — Tr(gs—1| Ima,_1). Therefore,
Tt (hn) = Tt (hy | ImBy) +Tr (fum1) = Tr (guor [ Imaty—y). (2.7)
Now consider
0—— Ima,_; B,y ImpB, 1 —0

gnllm’xnlJ 8n—1 k hnlllmﬁnll (2.8)

0——Ima, B, Imﬁn—l —0.
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So Tr(gn—11Imay,—1) = Tr(gn—1) — Tr(hy—11 Im B,—1). Putting this all together, we obtain
Tr () = Tr (o | TmBa) + T (o) = Tr (guet) + T (Bt | ImBoct). (29)
We next look at the left end of diagram (2.3) and get
0=Tr(hn+1) =Tr (fy) — Tr(gn) + Tr (hy | ImBy), (2.10)
and at the right end which gives
Tr (1) = Tr (b | ImBy) +Tr (fo) — Tr (go) +Tr (ho). (2.11)

A simple calculation now yields (where a homomorphism with a negative subscript is the
zero homomorphism)

M=

(=1)"Tr (hn)

n=0

Z "(Tr (hy | ImBy) + Tr (fu=1) = Tr (gn—1) + Tt (hy—1 | ImB,y))  (2.12)
n_N N
Z )" Tr (fu) + Z (—=1)"Tr (gn)-
n=0 n=0
Therefore, L(h) = —L(f) + L(g). O

A more condensed version of this argument has recently been published, see [8, page
420].

We next give some simple consequences of Theorem 2.2.

If f:(X,A) = (X,A) is a self-map of a pair, where X,A € ¢, then f determines fx :
X — X and fa: A — A. The map f induces homomorphisms fix : Hi(X,A) — Hi(X,A)
of relative homology with coefficients in F. The relative Lefschetz number L(f;X,A) is
defined by

L(f;X,A) = > (=DFTr fur. (2.13)

k

Applying Theorem 2.2 to the homology exact sequence of the pair (X,A), we obtain
the following corollary.

CoroLLARY 2.3. If f : (X,A) — (X, A) is a map of pairs, where X,A € €, then

L(f;X,A) = L(fx) — L(fA) (2.14)

This result was obtained by Bowszyc [1].
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CoROLLARY 2.4. Suppose X = P U Q, where X,P,Q € € and (X;P,Q) is a proper triad |6,
page 34]. If f : X — X is a map such that f(P) < P and f(Q) < Q, then, for fp, fq, and
frnq being the restrictions of f to P, Q, and P N Q, respectively, there exists

L(f) = L(fp) +L(fo) — L(frnq)- (2.15)

Proof. The map f and its restrictions induce a map of the Mayer-Vietoris homology se-
quence [6, page 39] to itself, so the result follows from Theorem 2.2. O

A similar result was obtained by Ferrario [7, Theorem 3.2.1].
Our final consequence of Theorem 2.2 will be used in the characterization of the re-
duced Lefschetz number.

CoROLLARY 2.5. If A is a subpolyhedron of X, A — X — X/A is the resulting cofiber sequence
of spaces in € and there exists a commutative diagram

A X X/A
f fl f't (2.16)
A X X/A,
then
L(f) = L(f)+L(f) - 1. (2.17)

Proof. We apply Theorem 2.2 to the homology cofiber sequence. The “minus one” on the
right-hand side arises because such sequence ends with

— Hy(A) — Hy(X) — Hy(X/A) — 0. (2.18)
(]

3. Characterization of the Lefschetz number

Throughout this section, all spaces are assumed to lie in 6.

We let A be a function from the set of self-maps of spaces in € to the integers that
satisfies the homotopy axiom, cofibration axiom, commutativity axiom, and wedge of
circles axiom of Theorem 1.1 as stated in the introduction.

We draw a few simple consequences of these axioms. From the commutativity and
homotopy axioms, we obtain the following lemma.

LemMma 3.1. If f: X — X isamap and h: X — Y is a homotopy equivalence with homotopy
inversek:Y — X, then A(f) = A(hfk).

LemMma 3.2. If f: X — X is homotopic to a constant map, then A(f) = 0.
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Proof. Let * be a one-point space and * : % — * the unique map. From the map of
cofiber sequences

* * *
*L *L *L (3.1)
* * *

and the cofibration axiom, we have A(x) = A(*) + A(x), and therefore A(x) = 0. Write
any constant map c¢: X — X as c¢(x) = *, for some * € X, lete: * — X be inclusion and
p:X — * projection. Then ¢ = ep and pe = *, and so A(c) = 0 by the commutativity
axiom. The lemma follows from the homotopy axiom. O

If X is a based space with base point x*, that is, a sphere or wedge of spheres, then the
cone and suspension of X are defined by CX = X X I/(X X 1U % xI) and £X = CX/(X X
0), respectively.

Lemma 3.3. If X is a based space, f : X — X is a based map, and X f : X — EX is the
suspension of f, then M(2f) = —A(f).

Proof. Consider the maps of cofiber sequences

X CX X
fJ Cft th (3.2)
X CX zX.

Since CX is contractible, C f is homotopic to a constant map. Therefore, by Lemma 3.2
and the cofibration axiom,

0=MCf) = AZf) +A(f). (33)
O

LEMMA 3.4. Foranyk=1andn=1,if f : \/*S" — \/* $" is a map, then
Af) = (=1)"(deg(fi) +- - - +deg(f)), (3.4)

wheree;: §" — \/k S*and p; : \/k S§" — 8", for j = 1,...,k, are the inclusions and projections,
respectively, and f; = pj fe;.

Proof. The proof is by induction on the dimension # of the spheres. The case n =1 is
the wedge of circles axiom. If n > 2, then the map f : VAR VAT homotopic to a
based map f': \/k s — \/*s". Then f' is homotopic to Zg, for some map g: VEsnl -
V¥ $71. Note that if g; : §171 — 8771, then %g; is homotopic to f; : S} — S7. Therefore, by
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Lemma 3.3 and the induction hypothesis,

M) =Mf") =—=Ag) = —(=1)""'(deg(g1) + - - - +deg(gx)) (3.5)
= (=1)"(deg(fi) +---+deg(fi)). 0

Proof of Theorem 1.1. Since L(f) = L(f) — 1, Corollary 2.5 implies that L satisfies the
cofibration axiom. We next show that L satisfies the wedge of circles axiom. There is an
isomorphism 0 : P H, (S — Hi(VFSY) defined by 0(x1,...,xk) =e14 (x1)++ -+ + exx (x%),
where x; € H;(S!). The inverse 6! : H;(\V*S') — " H,(S)) is given by 67'(y) =
(P15(¥)s-- P (). If u € Hy(S') is a generator, then a basis for Hl(\/kSl) is e1 (1),...,
ek« (u). By calculating the trace of fi; cHy(\VESY — Hy(\VFS!) with respect to this ba-
sis, we obtain L(f) = —(deg(f1) + - - - + deg(fx)). The remaining axioms are obviously
satisfied by L. Thus L satisfies the axioms of Theorem 1.1.

Now suppose A is a function from the self-maps of spaces in € to the integers that
satisfies the axioms. We regard X as a connected, finite CW-complex and proceed by
induction on the dimension of X. If X is 1-dimensional, then it is the homotopy type of a
wedge of circles. By Lemma 3.1, we can regard f as a self-map of \/* 81, and so the wedge
of circles axiom gives

Mf) = —(deg(fi) +---+deg(fi)) = L(f). (3.6)

Now suppose that X is n-dimensional and let X"~ ! denote the (n — 1)-skeleton of X. Then
f is homotopic to a cellular map g : X — X by the cellular approximation theorem [9,
Theorem 4.8, page 349]. Thus g(X""!) = X"!, and so we have a commutative diagram

anl X X/xn—l — vk Sn
g’l gl g’t (3.7)
xn-1 X X/xn1 = \/Fsn,

Then, by the cofibration axiom, A(g) = A(g") + A(¢). Lemma 3.4 implies that A(¢) = L(g).
So, applying the induction hypothesis to g, we have A(g) = L(g") + L(g). Since we have
seen that the reduced Lefschetz number satisfies the cofibration axiom, we conclude that
A(g) = L(g). By the homotopy axiom, A( f) = L(f). O

4. The normalization property

Let X be a finite polyhedron and f : X — X a map. Denote by I(f) the fixed-point index
of f onall of X, thatis, I(f) = i(X, f,X) in the notation of [2] and let I(f) = I(f) — 1.
In this section, we prove Theorem 1.3 by showing that, with rational coefficients,

I(f) = L(f).

Proof of Theorem 1.3. We will prove that [ satisfies the axioms, and therefore, by Theorem
1.1, I(f) = L(f). The homotopy and commutativity axioms are well-known properties
of the fixed-point index (see [2, pages 59-62]).
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To show that I satisfies the cofibration axiom, it suffices to consider A a subpolyhedron
of X and f(A) < A.Let f': A — A denote the restriction of f and f : X/A — X/A the map
induced on quotient spaces. Let 7 : U — A be a deformation retraction of a neighborhood
of A in X onto A and let L be a subpolyhedron of a barycentric subdivision of X such that
A cintL € L € U. By the homotopy extension theorem, there is a homotopy H XxI—
X such that H(x,0) = f(x) forallx € X, H(a,t) = f(a) foralla € A,and H(x,1) = fr(x)
for all x € L. If we set g(x) = H(x, 1), then, since there are no fixed points ofg onL—A,
the additivity property implies that

I(g) =i(X,g,intL) +i(X,g, X — L). (4.1)

We discuss each summand of (4.1) separately. We begin with i(X, g,intL). Since g(L)
A c L, it follows from the definition of the index (see [2, page 56]) that i(X,g,intL) =
i(L,g,intL). Moreover, i(L,g,intL) = i(L,g, L) since there are no fixed points on L —intL
(the excision property of the index). Let e : A — L be inclusion, then, by the commutativ-
ity property [2, page 62], we have

i(L,g,L) =i(L,eg,L) = i(A,ge,A) =I(f") (4.2)

because f(a) = g(a) forall a € A.

Next we consider the summand i(X,g,X — L) of (4.1). Let w : X — X/A be the quotient
map, set 7(A) = %, and note that 77! () = A. If g : X/A — X/A is induced by g, the re-
striction of ¢ to the neighborhood 7 (intL) of * in X/A is constant, so i(X/A, g, m(intL)) =
1. If we denote the set of fixed points of ¢ with * deleted by Fixy g, then Fix, g is in the
open subset X/A — (L) of X/A. Let W be an open subset of X/A such that Fix, § < W <
X/A — (L) with the property (W) n (L) = @. By the additivity property, we have

1(§) = i(X/A,g, n(intL)) +i(X/A,g, W) = 1 +i(X/A,§, W). (4.3)

Now, identifying X — L with the corresponding subset 7(X — L) of X/A and identifying
the restrictions of ¢ and g to those subsets, we have i(X/A,g, W) = i(X,g,n~}(W)). The
excision property of the index implies that i(X,g,7~'(W)) = i(X,g,X — L). Thus we have
determined the second summand of (4.1): i(X,g,X — L) = I(g) — 1.

Therefore, from (4.1) we obtain I(g) = I(f’) +1(g) — 1. The homotopy property then
tells us that

I(f)=I(f)+I(f) -1 (4.4)

since f is homotopic to g and f is homotopic to g. We conclude that I satisfies the cofi-
bration axiom.

It remains to verify the wedge of circles axiom. Let X = VESt=8lv ... v Si be a
wedge of circles with basepoint * and f: X — X a map. We first verify the axiom in
the case k = 1. We have f : S' — S! and we denote its degree by deg(f) = d. We regard
S' < C, the complex numbers. Then f is homotopic to g4, where g4(z) = z% has |d — 1|
fixed points for d # 1. The fixed-point index of g; in a neighborhood of a fixed point that
contains no other fixed point of gz is —1ifd = 2 and is 1 if d < 0. Since g; is homotopic to
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a map without fixed points, we see that I(gy) = —d + 1 for all integers d. We have shown
that I(f) = —deg(f) + L.

Now suppose k = 2. If () = *, then, by the homotopy extension theorem, f is ho-
motopic to a map which does not fix *. Thus we may assume, without loss of generality,
that f() € S} — {*}. Let V be a neighborhood of f(x)in S} — {} such that there exists
a neighborhood U of * in X, disjoint from V, with f(U) < V. Since U contains no fixed
point of f and the open subsets S} — U of X are disjoint, the additivity property implies

k
I(f) =i(X, £,81 = U) + 2 i(X, f,S] = U (4.5)

j=2
The additivity property also implies that
I(f;) = (S1 f],S1 )—H(S1 f],SlﬂU) (4.6)

There is a neighborhood W; of (Fix f) N SJI- in S} such that f(W;) = S}. Thus fj(x) = f(x)
for x € W}, and therefore, by the excision property,

i(S}, ;8 = 0) = i(S}, f;, W;) = i(X, f,W;) =i(X, f,S] - U). (4.7)

Since f(U) < S}, then fi(x) = f(x) forallx € UnS]. There are no fixed points of f
in U, s0 i(S}, f1,S] N U) =0, and thus, I(f;) = i(X, f,S{ — U) by (4.6) and (4.7).

For j > 2, the fact that f;(U) = % gives us z(S] f],S} NU) =1,s0I(f;) = i(X, f,S} -
U)+1 by (4.6) and (4.7). Since f; S} - S}, the k = 1 case of the argument tells us
that I(f;) = —deg(f;) +1 for j = 1,2,..., k. In particular, i(X,f,81 —U) = —deg(fi) +1,
whereas, for j > 2, we have i(X,f,S} —U) = —deg(f;). Therefore, by (4.5),

k k
I(f) =i(X, £,81 = U) + X i(X, £,8] = U) = = > deg (f;) +1. (4.8)
j=2 =1
This completes the proof of Theorem 1.3. O
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