THE LEFSCHETZ-HOPF THEOREM AND AXIOMS FOR THE LEFSCHETZ NUMBER

MARTIN ARKOWITZ AND ROBERT F. BROWN

Received Received 28 August 2003

The reduced Lefschetz number, that is, $L(\cdot)-1$ where $L(\cdot)$ denotes the Lefschetz number, is proved to be the unique integer-valued function λ on self-maps of compact polyhedra which is constant on homotopy classes such that $(1) \lambda(fg) = \lambda(gf)$ for $f: X \to Y$ and $g: Y \to X$; (2) if (f_1, f_2, f_3) is a map of a cofiber sequence into itself, then $\lambda(f_1) = \lambda(f_1) + \lambda(f_3)$; (3) $\lambda(f) = -(\deg(p_1fe_1) + \cdots + \deg(p_kfe_k))$, where f is a self-map of a wedge of k circles, e_r is the inclusion of a circle into the rth summand, and p_r is the projection onto the rth summand. If $f: X \to X$ is a self-map of a polyhedron and I(f) is the fixed-point index of f on all of f, then we show that $f(\cdot) = 1$ satisfies the above axioms. This gives a new proof of the normalization theorem: if $f: X \to X$ is a self-map of a polyhedron, then f(f) equals the Lefschetz number f(f) of f(f). This result is equivalent to the Lefschetz-Hopf theorem: if $f: X \to X$ is a self-map of a finite simplicial complex with a finite number of fixed points, each lying in a maximal simplex, then the Lefschetz number of f(f) is the sum of the indices of all the fixed points of f(f).

1. Introduction

Let X be a finite polyhedron and denote by $\widetilde{H}_*(X)$ its reduced homology with rational coefficients. Then the *reduced Euler characteristic* of X, denoted by $\tilde{\chi}(X)$, is defined by

$$\tilde{\chi}(X) = \sum_{k} (-1)^k \dim \widetilde{H}_k(X). \tag{1.1}$$

Clearly, $\tilde{\chi}(X)$ is just the Euler characteristic minus one. In 1962, Watts [13] characterized the reduced Euler characteristic as follows. Let ϵ be a function from the set of finite polyhedra with base points to the integers such that (i) $\epsilon(S^0) = 1$, where S^0 is the 0-sphere, and (ii) $\epsilon(X) = \epsilon(A) + \epsilon(X/A)$, where A is a subpolyhedron of X. Then $\epsilon(X) = \tilde{\chi}(X)$.

Let $\mathscr C$ be the collection of spaces X of the homotopy type of a finite, connected CW-complex. If $X \in \mathscr C$, we do not assume that X has a base point except when X is a sphere or a wedge of spheres. It is not assumed that maps between spaces with base points are based. A map $f: X \to X$, where $X \in \mathscr C$, induces trivial homomorphisms $f_{*k}: H_k(X) \to H_k(X)$

of rational homology vector spaces for all $j > \dim X$. The *Lefschetz number* L(f) of f is defined by

$$L(f) = \sum_{k} (-1)^{k} \operatorname{Tr} f_{*k}, \tag{1.2}$$

where Tr denotes the trace. The reduced Lefschetz number \widetilde{L} is given by $\widetilde{L}(f) = L(f) - 1$ or, equivalently, by considering the rational, reduced homology homomorphism induced by f.

Since $\widetilde{L}(\mathrm{id}) = \widetilde{\chi}(X)$, where $\mathrm{id}: X \to X$ is the identity map, Watts's Theorem suggests an axiomatization for the reduced Lefschetz number which we state below in Theorem 1.1.

For $k \ge 1$, denote by $\bigvee^k S^n$ the wedge of k copies of the n-sphere S^n , $n \ge 1$. If we write $\bigvee^k S^n$ as $S_1^n \vee S_2^n \vee \cdots \vee S_k^n$, where $S_j^n = S^n$, then we have inclusions $e_j : S_j^n \to \bigvee^k S^n$ into the jth summand and projections $p_j : \bigvee^k S^n \to S_j^n$ onto the jth summand, for $j = 1, \ldots, k$. If $f : \bigvee^k S^n \to \bigvee^k S^n$ is a map, then $f_j : S_j^n \to S_j^n$ denotes the composition $p_j f e_j$. The degree of a map $f : S^n \to S^n$ is denoted by $\deg(f)$.

We characterize the reduced Lefschetz number as follows.

Theorem 1.1. The reduced Lefschetz number \widetilde{L} is the unique function λ from the set of self-maps of spaces in $\mathscr C$ to the integers that satisfies the following conditions.

- (1) (Homotopy axiom) If $f,g:X\to X$ are homotopic maps, then $\lambda(f)=\lambda(g)$.
- (2) (Cofibration axiom) If A is a subpolyhedron of X, $A \rightarrow X \rightarrow X/A$ is the resulting cofiber sequence, and there exists a commutative diagram

$$\begin{array}{cccc}
A & \longrightarrow X & \longrightarrow X/A \\
f' & f & \bar{f} & \\
A & \longrightarrow X & \longrightarrow X/A,
\end{array} (1.3)$$

then $\lambda(f) = \lambda(f') + \lambda(\bar{f})$.

- (3) (Commutativity axiom) If $f: X \to Y$ and $g: Y \to X$ are maps, then $\lambda(gf) = \lambda(fg)$.
- (4) (Wedge of circles axiom) If $f: \bigvee^k S^1 \to \bigvee^k S^1$ is a map, $k \ge 1$, then

$$\lambda(f) = -(\deg(f_1) + \dots + \deg(f_k)), \tag{1.4}$$

where $f_j = p_j f e_j$.

In an unpublished dissertation [10], Hoang extended Watts's axioms to characterize the reduced Lefschetz number for basepoint-preserving self-maps of finite polyhedra. His list of axioms is different from, but similar to, those in Theorem 1.1.

One of the classical results of fixed-point theory is the following theorem.

THEOREM 1.2 (Lefschetz-Hopf). If $f: X \to X$ is a map of a finite polyhedron with a finite set of fixed points, each of which lies in a maximal simplex of X, then L(f) is the sum of the indices of all the fixed points of f.

The history of this result is described in [3], see also [8, page 458]. A proof that depends on a delicate argument due to Dold [4] can be found in [2] and, in a more condensed form, in [5]. In an appendix to his dissertation [12], McCord outlined a possibly more direct argument, but no details were published. The book of Granas and Dugundji [8, pages 441-450] presents an argument based on classical techniques of Hopf [11]. We use the characterization of the reduced Lefschetz number in Theorem 1.1 to prove the Lefschetz-Hopf theorem in a quite natural manner by showing that the fixed-point index satisfies the axioms of Theorem 1.1. That is, we prove the following theorem.

Theorem 1.3 (normalization property). If $f: X \to X$ is any map of a finite polyhedron, then L(f) = i(X, f, X), the fixed-point index of f on all of X.

The Lefschetz-Hopf theorem follows from the normalization property by the additivity property of the fixed-point index. In fact, these two statements are equivalent. The Hopf construction [2, page 117] implies that a map f from a finite polyhedron to itself is homotopic to a map that satisfies the hypotheses of the Lefschetz-Hopf theorem. Thus, the homotopy and additivity properties of the fixed-point index imply that the normalization property follows from the Lefschetz-Hopf theorem.

2. Lefschetz numbers and exact sequences

In this section, all vector spaces are over a fixed field F, which will not be mentioned, and are finite dimensional. A graded vector space $V = \{V_n\}$ will always have the following properties: (1) each V_n is finite dimensional and (2) $V_n = 0$, for n < 0 and for n > N, for some nonnegative integer N. A map $f: V \to W$ of graded vector spaces $V = \{V_n\}$ and $W = \{W_n\}$ is a sequence of linear transformations $f_n: V_n \to W_n$. For a map $f: V \to V$, the Lefschetz number is defined by

$$L(f) = \sum_{n} (-1)^n \operatorname{Tr} f_n.$$
 (2.1)

The proof of the following lemma is straightforward, and hence omitted.

LEMMA 2.1. Given a map of short exact sequences of vector spaces

$$0 \longrightarrow U \longrightarrow V \longrightarrow W \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

then $\operatorname{Tr} g = \operatorname{Tr} f + \operatorname{Tr} h$.

Theorem 2.2. Let A, B, and C be graded vector spaces with maps $\alpha: A \to B$, $\beta: B \to C$ and self-maps $f: A \to A$, $g: B \to B$, and $h: C \to C$. If, for every n, there is a linear transformation

4 Lefschetz number

 $\partial_n: C_n \to A_{n-1}$ such that the following diagram is commutative and has exact rows:

$$0 \longrightarrow A_{N} \xrightarrow{\alpha_{N}} B_{N} \xrightarrow{\beta_{N}} C_{N} \xrightarrow{\partial_{N}} A_{N-1} \xrightarrow{\alpha_{N-1}} \cdots$$

$$f_{N} \downarrow \qquad g_{N} \downarrow \qquad h_{N} \downarrow \qquad f_{N-1} \downarrow$$

$$0 \longrightarrow A_{N} \xrightarrow{\alpha_{N}} B_{N} \xrightarrow{\beta_{N}} C_{N} \xrightarrow{\partial_{N}} A_{N-1} \xrightarrow{\alpha_{N-1}} \cdots$$

$$\cdots \xrightarrow{\partial_{1}} A_{0} \xrightarrow{\alpha_{0}} B_{0} \xrightarrow{\beta_{0}} C_{0} \longrightarrow 0$$

$$\cdots \xrightarrow{\partial_{1}} A_{0} \xrightarrow{\alpha_{0}} B_{0} \xrightarrow{\beta_{0}} C_{0} \longrightarrow 0,$$

$$(2.3)$$

then

$$L(g) = L(f) + L(h).$$
 (2.4)

Proof. Let Im denote the image of a linear transformation and consider the commutative diagram

$$0 \longrightarrow \operatorname{Im} \longrightarrow C_{n} \longrightarrow \operatorname{Im} \partial_{n} \longrightarrow 0$$

$$\downarrow h_{n} | \operatorname{Im} \beta_{n} | f_{n-1} | \operatorname{Im} \partial_{n} | (2.5)$$

$$0 \longrightarrow \operatorname{Im} \beta_{n} \longrightarrow C_{n} \longrightarrow \operatorname{Im} \partial_{n} \longrightarrow 0.$$

By Lemma 2.1, $\text{Tr}(h_n) = \text{Tr}(h_n | \text{Im} \beta_n) + \text{Tr}(f_{n-1} | \text{Im} \partial_n)$. Similarly, the commutative diagram

$$0 \longrightarrow \operatorname{Im} \partial_{n} \longrightarrow A_{n-1} \longrightarrow \operatorname{Im} \alpha_{n-1} \longrightarrow 0$$

$$f_{n-1} | \operatorname{Im} \partial_{n} | \qquad f_{n-1} | \qquad g_{n-1} | \operatorname{Im} \alpha_{n-1} | \qquad (2.6)$$

$$0 \longrightarrow \operatorname{Im} \partial_{n} \longrightarrow A_{n-1} \longrightarrow \operatorname{Im} \alpha_{n-1} \longrightarrow 0$$

yields $\operatorname{Tr}(f_{n-1}|\operatorname{Im}\partial_n) = \operatorname{Tr}(f_{n-1}) - \operatorname{Tr}(g_{n-1}|\operatorname{Im}\alpha_{n-1})$. Therefore,

$$\operatorname{Tr}(h_n) = \operatorname{Tr}(h_n | \operatorname{Im} \beta_n) + \operatorname{Tr}(f_{n-1}) - \operatorname{Tr}(g_{n-1} | \operatorname{Im} \alpha_{n-1}). \tag{2.7}$$

Now consider

$$0 \longrightarrow \operatorname{Im} \alpha_{n-1} \longrightarrow B_{n-1} \longrightarrow \operatorname{Im} \beta_{n-1} \longrightarrow 0$$

$$g_{n-1} | \operatorname{Im} \alpha_{n-1} | \qquad g_{n-1} | \qquad h_{n-1} | \operatorname{Im} \beta_{n-1} | \qquad (2.8)$$

$$0 \longrightarrow \operatorname{Im} \alpha_{n-1} \longrightarrow B_{n-1} \longrightarrow \operatorname{Im} \beta_{n-1} \longrightarrow 0.$$

So $\text{Tr}(g_{n-1}|\text{Im }\alpha_{n-1}) = \text{Tr}(g_{n-1}) - \text{Tr}(h_{n-1}|\text{Im }\beta_{n-1})$. Putting this all together, we obtain

$$\operatorname{Tr}(h_n) = \operatorname{Tr}(h_n \mid \operatorname{Im}\beta_n) + \operatorname{Tr}(f_{n-1}) - \operatorname{Tr}(g_{n-1}) + \operatorname{Tr}(h_{n-1} \mid \operatorname{Im}\beta_{n-1}).$$
 (2.9)

We next look at the left end of diagram (2.3) and get

$$0 = \operatorname{Tr}(h_{N+1}) = \operatorname{Tr}(f_N) - \operatorname{Tr}(g_N) + \operatorname{Tr}(h_N \mid \operatorname{Im}\beta_N), \tag{2.10}$$

and at the right end which gives

$$\operatorname{Tr}(h_1) = \operatorname{Tr}(h_1 \mid \operatorname{Im}\beta_1) + \operatorname{Tr}(f_0) - \operatorname{Tr}(g_0) + \operatorname{Tr}(h_0). \tag{2.11}$$

A simple calculation now yields (where a homomorphism with a negative subscript is the zero homomorphism)

$$\sum_{n=0}^{N} (-1)^{n} \operatorname{Tr}(h_{n})$$

$$= \sum_{n=0}^{N+1} (-1)^{n} (\operatorname{Tr}(h_{n} | \operatorname{Im} \beta_{n}) + \operatorname{Tr}(f_{n-1}) - \operatorname{Tr}(g_{n-1}) + \operatorname{Tr}(h_{n-1} | \operatorname{Im} \beta_{n-1}))$$

$$= -\sum_{n=0}^{N} (-1)^{n} \operatorname{Tr}(f_{n}) + \sum_{n=0}^{N} (-1)^{n} \operatorname{Tr}(g_{n}).$$
(2.12)

Therefore, L(h) = -L(f) + L(g).

A more condensed version of this argument has recently been published, see [8, page 420].

We next give some simple consequences of Theorem 2.2.

If $f:(X,A) \to (X,A)$ is a self-map of a pair, where $X,A \in \mathcal{C}$, then f determines $f_X:X \to X$ and $f_A:A \to A$. The map f induces homomorphisms $f_{*k}:H_k(X,A) \to H_k(X,A)$ of relative homology with coefficients in F. The relative Lefschetz number L(f;X,A) is defined by

$$L(f;X,A) = \sum_{k} (-1)^{k} \operatorname{Tr} f_{*k}.$$
 (2.13)

Applying Theorem 2.2 to the homology exact sequence of the pair (X,A), we obtain the following corollary.

COROLLARY 2.3. If $f:(X,A) \to (X,A)$ is a map of pairs, where $X,A \in \mathcal{C}$, then

$$L(f;X,A) = L(f_X) - L(f_A).$$
 (2.14)

This result was obtained by Bowszyc [1].

COROLLARY 2.4. Suppose $X = P \cup Q$, where $X, P, Q \in \mathcal{C}$ and (X; P, Q) is a proper triad [6, page 34]. If $f: X \to X$ is a map such that $f(P) \subseteq P$ and $f(Q) \subseteq Q$, then, for f_P , f_Q , and $f_{P \cap Q}$ being the restrictions of f to P, Q, and $P \cap Q$, respectively, there exists

$$L(f) = L(f_P) + L(f_O) - L(f_{P \cap O}). \tag{2.15}$$

Proof. The map f and its restrictions induce a map of the Mayer-Vietoris homology sequence [6, page 39] to itself, so the result follows from Theorem 2.2.

A similar result was obtained by Ferrario [7, Theorem 3.2.1].

Our final consequence of Theorem 2.2 will be used in the characterization of the reduced Lefschetz number.

COROLLARY 2.5. If A is a subpolyhedron of X, $A \rightarrow X \rightarrow X/A$ is the resulting cofiber sequence of spaces in $\mathscr C$ and there exists a commutative diagram

$$\begin{array}{cccc}
A & \longrightarrow X & \longrightarrow X/A \\
f' & & f & & \bar{f} \\
A & \longrightarrow X & \longrightarrow X/A,
\end{array} (2.16)$$

then

$$L(f) = L(f') + L(\bar{f}) - 1.$$
 (2.17)

Proof. We apply Theorem 2.2 to the homology cofiber sequence. The "minus one" on the right-hand side arises because such sequence ends with

$$\longrightarrow H_0(A) \longrightarrow H_0(X) \longrightarrow \tilde{H}_0(X/A) \longrightarrow 0.$$
 (2.18)

3. Characterization of the Lefschetz number

Throughout this section, all spaces are assumed to lie in \mathscr{C} .

We let λ be a function from the set of self-maps of spaces in \mathscr{C} to the integers that satisfies the homotopy axiom, cofibration axiom, commutativity axiom, and wedge of circles axiom of Theorem 1.1 as stated in the introduction.

We draw a few simple consequences of these axioms. From the commutativity and homotopy axioms, we obtain the following lemma.

LEMMA 3.1. If $f: X \to X$ is a map and $h: X \to Y$ is a homotopy equivalence with homotopy inverse $k: Y \to X$, then $\lambda(f) = \lambda(hfk)$.

LEMMA 3.2. If $f: X \to X$ is homotopic to a constant map, then $\lambda(f) = 0$.

Proof. Let * be a one-point space and *: * \rightarrow * the unique map. From the map of cofiber sequences

and the cofibration axiom, we have $\lambda(*) = \lambda(*) + \lambda(*)$, and therefore $\lambda(*) = 0$. Write any constant map $c: X \to X$ as c(x) = *, for some $* \in X$, let $e: * \to X$ be inclusion and $p: X \to *$ projection. Then c = ep and pe = *, and so $\lambda(c) = 0$ by the commutativity axiom. The lemma follows from the homotopy axiom.

If X is a based space with base point *, that is, a sphere or wedge of spheres, then the cone and suspension of X are defined by $CX = X \times I/(X \times 1 \cup * \times I)$ and $\Sigma X = CX/(X \times I)$ 0), respectively.

LEMMA 3.3. If X is a based space, $f: X \to X$ is a based map, and $\Sigma f: \Sigma X \to \Sigma X$ is the suspension of f, then $\lambda(\Sigma f) = -\lambda(f)$.

Proof. Consider the maps of cofiber sequences

$$X \longrightarrow CX \longrightarrow \Sigma X$$

$$f \downarrow \qquad Cf \downarrow \qquad \Sigma f \downarrow$$

$$X \longrightarrow CX \longrightarrow \Sigma X.$$

$$(3.2)$$

Since CX is contractible, Cf is homotopic to a constant map. Therefore, by Lemma 3.2 and the cofibration axiom,

$$0 = \lambda(Cf) = \lambda(\Sigma f) + \lambda(f). \tag{3.3}$$

LEMMA 3.4. For any $k \ge 1$ and $n \ge 1$, if $f: \bigvee^k S^n \to \bigvee^k S^n$ is a map, then

$$\lambda(f) = (-1)^n \left(\deg \left(f_1 \right) + \dots + \deg \left(f_k \right) \right), \tag{3.4}$$

where $e_j: S^n \to \bigvee^k S^n$ and $p_j: \bigvee^k S^n \to S^n$, for j = 1, ..., k, are the inclusions and projections, respectively, and $f_i = p_i f e_i$.

Proof. The proof is by induction on the dimension n of the spheres. The case n = 1 is the wedge of circles axiom. If $n \ge 2$, then the map $f: \bigvee^k S^n \to \bigvee^k S^n$ is homotopic to a based map $f': \bigvee^k S^n \to \bigvee^k S^n$. Then f' is homotopic to Σg , for some map $g: \bigvee^k S^{n-1} \to \mathbb{R}$ $\bigvee^k S^{n-1}$. Note that if $g_i: S_i^{n-1} \to S_i^{n-1}$, then Σg_i is homotopic to $f_i: S_i^n \to S_i^n$. Therefore, by Lemma 3.3 and the induction hypothesis,

$$\lambda(f) = \lambda(f') = -\lambda(g) = -(-1)^{n-1} (\deg(g_1) + \dots + \deg(g_k))$$

= $(-1)^n (\deg(f_1) + \dots + \deg(f_k)).$ (3.5)

Proof of Theorem 1.1. Since $\tilde{L}(f) = L(f) - 1$, Corollary 2.5 implies that \tilde{L} satisfies the cofibration axiom. We next show that \tilde{L} satisfies the wedge of circles axiom. There is an isomorphism $\theta: \bigoplus^k H_1(S^1) \to H_1(\bigvee^k S^1)$ defined by $\theta(x_1, \dots, x_k) = e_{1*}(x_1) + \dots + e_{k*}(x_k)$, where $x_i \in H_1(S^1)$. The inverse $\theta^{-1}: H_1(\bigvee^k S^1) \to \bigoplus^k H_1(S^1)$ is given by $\theta^{-1}(y) =$ $(p_{1*}(y),...,p_{k*}(y))$. If $u \in H_1(S^1)$ is a generator, then a basis for $H_1(\bigvee^k S^1)$ is $e_{1*}(u),...,$ $e_{k*}(u)$. By calculating the trace of $f_{*1}: H_1(\bigvee^k S^1) \to H_1(\bigvee^k S^1)$ with respect to this basis, we obtain $\tilde{L}(f) = -(\deg(f_1) + \cdots + \deg(f_k))$. The remaining axioms are obviously satisfied by \tilde{L} . Thus \tilde{L} satisfies the axioms of Theorem 1.1.

Now suppose λ is a function from the self-maps of spaces in \mathscr{C} to the integers that satisfies the axioms. We regard X as a connected, finite CW-complex and proceed by induction on the dimension of X. If X is 1-dimensional, then it is the homotopy type of a wedge of circles. By Lemma 3.1, we can regard f as a self-map of $\bigvee^k S^1$, and so the wedge of circles axiom gives

$$\lambda(f) = -\left(\deg\left(f_1\right) + \dots + \deg\left(f_k\right)\right) = \tilde{L}(f). \tag{3.6}$$

Now suppose that X is n-dimensional and let X^{n-1} denote the (n-1)-skeleton of X. Then f is homotopic to a cellular map $g: X \to X$ by the cellular approximation theorem [9, Theorem 4.8, page 349]. Thus $g(X^{n-1}) \subseteq X^{n-1}$, and so we have a commutative diagram

Then, by the cofibration axiom, $\lambda(g) = \lambda(g') + \lambda(\bar{g})$. Lemma 3.4 implies that $\lambda(\bar{g}) = \tilde{L}(\bar{g})$. So, applying the induction hypothesis to g', we have $\lambda(g) = \tilde{L}(g') + \tilde{L}(\bar{g})$. Since we have seen that the reduced Lefschetz number satisfies the cofibration axiom, we conclude that $\lambda(g) = \tilde{L}(g)$. By the homotopy axiom, $\lambda(f) = \tilde{L}(f)$.

4. The normalization property

Let X be a finite polyhedron and $f: X \to X$ a map. Denote by I(f) the fixed-point index of f on all of X, that is, I(f) = i(X, f, X) in the notation of [2] and let $\tilde{I}(f) = I(f) - 1$.

In this section, we prove Theorem 1.3 by showing that, with rational coefficients, I(f) = L(f).

Proof of Theorem 1.3. We will prove that \tilde{I} satisfies the axioms, and therefore, by Theorem 1.1, $\tilde{I}(f) = \tilde{L}(f)$. The homotopy and commutativity axioms are well-known properties of the fixed-point index (see [2, pages 59–62]).

To show that \tilde{I} satisfies the cofibration axiom, it suffices to consider A a subpolyhedron of X and $f(A) \subseteq A$. Let $f': A \to A$ denote the restriction of f and $\tilde{f}: X/A \to X/A$ the map induced on quotient spaces. Let $r: U \to A$ be a deformation retraction of a neighborhood of A in X onto A and let L be a subpolyhedron of a barycentric subdivision of X such that $A \subseteq \operatorname{int} L \subseteq L \subseteq U$. By the homotopy extension theorem, there is a homotopy $H: X \times I \to X$ such that H(x,0) = f(x) for all $x \in X$, H(a,t) = f(a) for all $x \in A$, and H(x,1) = fr(x) for all $x \in L$. If we set g(x) = H(x,1), then, since there are no fixed points of g on $X \in A$, the additivity property implies that

$$I(g) = i(X, g, \text{int } L) + i(X, g, X - L).$$
 (4.1)

We discuss each summand of (4.1) separately. We begin with i(X,g, int L). Since $g(L) \subseteq A \subseteq L$, it follows from the definition of the index (see [2, page 56]) that i(X,g, int L) = i(L,g, int L). Moreover, i(L,g, int L) = i(L,g,L) since there are no fixed points on L - int L (the excision property of the index). Let $e: A \to L$ be inclusion, then, by the commutativity property [2, page 62], we have

$$i(L,g,L) = i(L,eg,L) = i(A,ge,A) = I(f')$$
 (4.2)

because f(a) = g(a) for all $a \in A$.

Next we consider the summand i(X,g,X-L) of (4.1). Let $\pi:X\to X/A$ be the quotient map, set $\pi(A)=*$, and note that $\pi^{-1}(*)=A$. If $\bar{g}:X/A\to X/A$ is induced by g, the restriction of \bar{g} to the neighborhood $\pi(\operatorname{int} L)$ of * in X/A is constant, so $i(X/A,\bar{g},\pi(\operatorname{int} L))=1$. If we denote the set of fixed points of \bar{g} with * deleted by $\operatorname{Fix}_*\bar{g}$, then $\operatorname{Fix}_*\bar{g}$ is in the open subset $X/A-\pi(L)$ of X/A. Let W be an open subset of X/A such that $\operatorname{Fix}_*\bar{g}\subseteq W\subseteq X/A-\pi(L)$ with the property $\bar{g}(W)\cap\pi(L)=\emptyset$. By the additivity property, we have

$$I(\bar{g}) = i(X/A, \bar{g}, \pi(\text{int } L)) + i(X/A, \bar{g}, W) = 1 + i(X/A, \bar{g}, W). \tag{4.3}$$

Now, identifying X - L with the corresponding subset $\pi(X - L)$ of X/A and identifying the restrictions of \bar{g} and g to those subsets, we have $i(X/A, \bar{g}, W) = i(X, g, \pi^{-1}(W))$. The excision property of the index implies that $i(X, g, \pi^{-1}(W)) = i(X, g, X - L)$. Thus we have determined the second summand of (4.1): $i(X, g, X - L) = I(\bar{g}) - 1$.

Therefore, from (4.1) we obtain $I(g) = I(f') + I(\bar{g}) - 1$. The homotopy property then tells us that

$$I(f) = I(f') + I(\bar{f}) - 1 \tag{4.4}$$

since f is homotopic to g and \bar{f} is homotopic to \bar{g} . We conclude that \tilde{I} satisfies the cofibration axiom.

It remains to verify the wedge of circles axiom. Let $X = \bigvee^k S^1 = S_1^1 \vee \cdots \vee S_k^1$ be a wedge of circles with basepoint * and $f: X \to X$ a map. We first verify the axiom in the case k = 1. We have $f: S^1 \to S^1$ and we denote its degree by $\deg(f) = d$. We regard $S^1 \subseteq \mathbb{C}$, the complex numbers. Then f is homotopic to g_d , where $g_d(z) = z^d$ has |d-1| fixed points for $d \neq 1$. The fixed-point index of g_d in a neighborhood of a fixed point that contains no other fixed point of g_d is -1 if $d \geq 2$ and is 1 if $d \leq 0$. Since g_1 is homotopic to

a map without fixed points, we see that $I(g_d) = -d + 1$ for all integers d. We have shown that $I(f) = -\deg(f) + 1$.

Now suppose $k \ge 2$. If f(*) = *, then, by the homotopy extension theorem, f is homotopic to a map which does not fix *. Thus we may assume, without loss of generality, that $f(*) \in S_1^1 - \{*\}$. Let V be a neighborhood of f(*) in $S_1^1 - \{*\}$ such that there exists a neighborhood U of * in X, disjoint from V, with $f(\bar{U}) \subseteq V$. Since \bar{U} contains no fixed point of f and the open subsets $S_1^1 - \bar{U}$ of X are disjoint, the additivity property implies

$$I(f) = i(X, f, S_1^1 - \bar{U}) + \sum_{j=2}^{k} i(X, f, S_j^1 - \bar{U}).$$
(4.5)

The additivity property also implies that

$$I(f_j) = i(S_j^1, f_j, S_j^1 - \bar{U}) + i(S_j^1, f_j, S_j^1 \cap U).$$
(4.6)

There is a neighborhood W_j of $(\operatorname{Fix} f) \cap S_j^1$ in S_j^1 such that $f(\overline{W}_j) \subseteq S_j^1$. Thus $f_j(x) = f(x)$ for $x \in W_j$, and therefore, by the excision property,

$$i(S_{j}^{1}, f_{j}, S_{j}^{1} - \overline{U}) = i(S_{j}^{1}, f_{j}, W_{j}) = i(X, f, W_{j}) = i(X, f, S_{j}^{1} - \overline{U}).$$

$$(4.7)$$

Since $f(\overline{U}) \subseteq S_1^1$, then $f_1(x) = f(x)$ for all $x \in \overline{U} \cap S_1^1$. There are no fixed points of f in \overline{U} , so $i(S_1^1, f_1, S_1^1 \cap U) = 0$, and thus, $I(f_1) = i(X, f, S_1^1 - \overline{U})$ by (4.6) and (4.7).

For $j \ge 2$, the fact that $f_j(U) = *$ gives us $i(S_j^1, f_j, S_j^1 \cap U) = 1$, so $I(f_j) = i(X, f, S_j^1 - \overline{U}) + 1$ by (4.6) and (4.7). Since $f_j : S_j^1 \to S_j^1$, the k = 1 case of the argument tells us that $I(f_j) = -\deg(f_j) + 1$ for j = 1, 2, ..., k. In particular, $i(X, f, S_1^1 - \overline{U}) = -\deg(f_1) + 1$, whereas, for $j \ge 2$, we have $i(X, f, S_j^1 - \overline{U}) = -\deg(f_j)$. Therefore, by (4.5),

$$I(f) = i(X, f, S_1^1 - \overline{U}) + \sum_{j=2}^k i(X, f, S_j^1 - \overline{U}) = -\sum_{j=1}^k \deg(f_j) + 1.$$
 (4.8)

This completes the proof of Theorem 1.3.

Acknowledgment

We thank Jack Girolo for carefully reading a draft of this paper and giving us helpful suggestions.

References

- [1] C. Bowszyc, Fixed point theorems for the pairs of spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968), 845–850.
- [2] R. F. Brown, The Lefschetz Fixed Point Theorem, Scott Foresman, London, 1971.
- [3] _____, Fixed point theory, History of Topology, North-Holland, Amsterdam, 1999, pp. 271–299.
- [4] A. Dold, Fixed point index and fixed point theorem for Euclidean neighborhood retracts, Topology 4 (1965), 1–8.

- [5] ______, Lectures on Algebraic Topology, 2nd ed., Grundlehren der Mathematischen Wissenschaften, vol. 200, Springer-Verlag, Berlin, 1980.
- [6] S. Eilenberg and N. Steenrod, Foundations of Algebraic Topology, Princeton University Press, New Jersey, 1952.
- [7] D. Ferrario, Generalized Lefschetz numbers of pushout maps, Topology Appl. **68** (1996), no. 1, 67–81.
- [8] A. Granas and J. Dugundji, Fixed Point Theory, Springer-Verlag, New York, 2003.
- [9] A. Hatcher, Algebraic Topology, Cambridge University Press, Cambridge, 2002.
- [10] B. Hoang, Classical and generalized Lefschetz numbers, Ph.D. thesis, UCLA, California, 1985.
- [11] H. Hopf, Über die algebraische Anzahl von Fixpunkten, Math. Z. 29 (1929), 493–524 (German).
- [12] D. McCord, The converse of the Lefschetz fixed point theorem for surfaces and higher dimensional manifolds, Ph.D. thesis, University of Wisconsin, Wisconsin, 1970.
- [13] C. E. Watts, On the Euler characteristic of polyhedra, Proc. Amer. Math. Soc. 13 (1962), 304–306.

Martin Arkowitz: Department of Mathematics, Dartmouth College, Hanover, NH 03755-1890, USA

E-mail address: martin.a.arkowitz@dartmouth.edu

Robert F. Brown: Department of Mathematics, University of California, Los Angeles, CA 90095-1555, USA

E-mail address: rfb@math.ucla.edu