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This paper concerns a formula which relates the Lefschetz number L( f ) for a map f :
M →M′ to the fixed point index I( f ) summed with the fixed point index of a derived
map on part of the boundary of ∂M. HereM is a compact manifold andM′ isM with a
collar attached.
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1. Introduction

This paper represents the first third of a Ph.D. thesis [2] written by the first author under
the direction of the second author at Purdue University in 1990. The thesis is entitled
“Fixed Point Indices and Transfers, and Path Fields” and it contains, in addition to the
contents of this manuscript, a formula analogous to (1.1), which relates to Dold’s fixed
point transfers and a study of path fields of differential manifolds in order to relate the
formula in this manuscript with an analogous formula involving indices of vector fields.
These results are related to the papers [1, 3, 4, 7, 8, 14, 16]

LetM be a compact differentiable manifold with or without boundary ∂M. Assume V
is a vector field on M with only isolated zeros. If M is with boundary ∂M and V points
outward at all boundary points, then the index of the vector field V equals Euler char-
acteristic of the manifold M. This is the classical Poincaré-Hopf index theorem. (A 2-
dimensional version of this theorem was proven by Poincaré in 1885; in full generality
the theorem was proven by Hopf [13] in 1927). In particular, the index is a topological
invariant ofM; it does not depend on the particular choice of a vector field onM.

Morse [15] extended this result to vector fields under more general boundary condi-
tions, namely, to any vector field without zeros on the boundary ∂M; he discovered the
following formula:

Ind(V) + Ind
(
∂ V

)= χ(M), (1.1)
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where χ(M) denotes the Euler characteristic ofM and ∂ V is defined as follows. Let ∂ M
be the open subset of the boundary ∂M containing all the pointsm for which the vectors
V(m) point inward, and let ∂V be the vector field on the boundary ∂M obtained by first
restricting V to the boundary and then projecting V |∂M to its component field tangent to
the boundary. Then ∂ V = ∂V |∂ M . Furthermore, in the same paper, Morse generalized
his result to indices of vector fields with nonisolated zeros. This is the formula (1.1). Now
(1.1) was rediscovered by Gottlieb [10] and Pugh [17]. Gottlieb further found further
interesting applications in [9, 11, 12]. Throughout this paper, we will call formula (1.1)
the Morse formula for indices of vector fields.

We consider maps f :M →M′ from a compact topological manifoldM toM′, where
M′ is obtained by attaching a collar ∂M × [0,1] to M. If f has no fixed points on the
boundary ∂M, we prove Theorem 3.1 which is the fixed point version of the Morse for-
mula:

I( f ) + I
(
r ◦ f |∂ M

)= L(r ◦ f ), (1.2)

where I denotes the fixed point index, r is a retraction of M′ onto M which maps the
collar ∂M × I onto the boundary ∂M, ∂ M is an open subset of ∂M containing all the
points x ∈ ∂M mapped outside of M under f , and L(r ◦ f ) is the Lefschetz number of
the composite map r ◦ f .

In particular, if the map r ◦ f is homotopic to the identity map, we have

I( f ) + I
(
r ◦ f |∂ M

)= χ(M), (1.3)

which is similar to the Morse formula; and the map r ◦ f | ∂ M is analogous to the vector
field ∂ V .

Formula (1.3) was independently obtained by A. Dold (private letter to D. Gottlieb).
This paper is organized as follows: in Section 2, we list some properties of fixed point

indices; our first main result, Theorem 3.1, is proven in Section 3.

2. Fixed point index and its properties

In this section, we use the definition of fixed point index and some well-known results
on fixed point index given by Dold in [5] or [6, Chapter 7] to obtain an equation for
fixed point indices (Theorem 3.1) analogous to theMorse equation for vector field indices
described in the introduction.

Let X be an Euclidean neighborhood retract (ENR). Consider maps f from an open
subset V of X into X whose fixed point set F( f )= {x ∈ V | f (x)= x} is compact. Dold
[5] defined the fixed point index I( f ) and proved the following properties.

Localization 2.1. Let f : V → X be a map such that F( f ) is compact, then I( f )= I( f |W )
for any open neighborhoodW of F( f ) in V .
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Additivity 2.2. Given a map f :V → X and V is a union of open subsets Vj , j = 1,2, . . . ,n,
such that the fixed point sets F j = F( f )∩Vj , are mutually disjoint. Then for each j,
I( f |Vj ) is defined and

I( f )=
n∑

j=1
I
(
f |Vj

)
. (2.1)

Units 2.3. Let f :V → X be a constant map. Then

I( f )= 1 if f (V)= p ∈V ,

I( f )= 0 if f (V)= p /∈V.
(2.2)

Normalization 2.4. If f is a map from a compact ENR X to itself, then I( f )= L( f ), where
L( f ) is the Lefschetz number of the map f .

Multiplicativity 2.5. Let f : V → X and f ′ : V ′ → X ′ be maps such that the fixed point
sets F( f ) and F( f ′) are compact, then fixed point index of the product f × f ′ :V ×V ′ →
X ×X ′ is defined and

I( f × f ′)= I( f ) · I( f ′). (2.3)

Commutativity Axiom 2.6. If f : U → X ′ and g : U ′ → X are maps where U ⊆ X and
U ′ ⊆ X ′ are open subsets, then the two composites g f : V = f −1(U ′)→ X and f g : V ′ =
g−1(U)→ X ′ have homeomorphic fixed point sets. In particular, I( f g) is defined if and
only if I(g f ) is defined, in that case,

I( f g)= I(g f ). (2.4)

Homotopy Invariance 2.7. Let H :V × I → X be a homotopy between the maps f0 and f1.
Assume the set F = {x ∈V |H(x, t)= x for some t} is compact, then

I
(
f0
)= I

(
f1
)
. (2.5)

For our purposes, it is useful to reformulate the properties of Additivity 2.2 and
Homotopy Invariance 2.7 in the form of the following propositions. These reformula-
tions are found in Brown’s book [4], and they form part of an axiom system for the fixed
point index. The five axioms are a subset of Dold’s properties. They consist of localiza-
tion, homotopy invariance , addititvity, normalization, and commutivity. We will show
that the main formula will follow from these axioms. We will give an alternate proof in
Section 3.

Proposition 2.8. Assume X is compact and V is an open subset of X . Let f : V → X be a
map without fixed points on Bd(V). If {Vj}, j = 1,2, . . . ,n are mutually disjoint open subsets
of V and whose union

⋃n
j=1Vj contains all the fixed points of f , then

I
(
f |V
)=

n∑

j=1
I
(
f |Vj

)
. (2.6)
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Proposition 2.9. Assume X is compact and V is an open subset of X . Let H : V × I → X
be a homotopy from f 0 and f 1, where f 0 and f 1 are maps from V , the closure of V to X . If
H(x, t) �= x for all x ∈ Bd(V) and for all t, then

I
(
f0
)= I

(
f1
)

where f0 = f 0 |V , f1 = f 1 |V. (2.7)

Proof. Since H =H|V×I is a homotopy from f0 to f1, it suffices to verify that the set F =
{x ∈ V | H(x, t) = x for some t} is compact. Let {xj} be a sequence in F converging to
x ∈V =V ∪Bd(V). There exists a subsequence {t j} of those t’s in I such thatH(xj , t j)=
xj . Since I is compact, a subsequence of {t j} converges to a point t ∈ I . By the continuity
ofH , we haveH(x, t)= x. On the other hand, we know thatH(x, t) �= x for all x ∈ Bd(V);
thus, x ∈ V and H(x, t) = x. Consequently, x ∈ F. Therefore, F is a closed subset of a
compact space, hence F is compact. This proves the proposition. �

3. The main formula

Consider a compact topological manifoldM with boundary ∂M. We attach a collar toM
and call the resulting manifold M′ :M′ =M∪∂M∼∂M×{0} ∂M× [0,1]. Let f :M →M′ be
a map such that f (x) �= x for all x ∈ ∂M. Since M is compact, the fixed point set F( f ) is

a compact set contained in
◦
M =M\∂M. For such f :M →M′, we define the index of f ,

denoted by I( f ), to be the fixed point index of the map f | ◦
M
given in Section 1.

For specificity, we define the retraction r: let r :M′ →M be the retraction fromM′ to
M given by the formula,

r(m)=m form∈M,

r(b, t)= (b,0)∼ b for (b, t)∈ ∂M× [0,1].
(3.1)

Now we can formulate the main result of the section.
Now, assume r′ is any retraction fromM′ toM such that r′maps the collar ∂M× [0,1]

into the boundary ∂M. Then the following theorem is true.

Theorem 3.1. One has that

I( f ) + I
(
r′ f |∂ M

)= L(r′ f ). (3.2)

Furthermore,

L(r f )= L(r′ f ),

I
(
r f |∂ M

)= I
(
r′ f |∂ M

)
,

(3.3)

where r is the standard retraction defined above and where L(r f ) denotes the Lefschetz num-
ber of r f :M→M and ∂ M = {x ∈ ∂M | f (x) /∈M}.
Proof. First, we prove the formula I( f ) + I(r′ f |∂ M)= L(r′ f ). Let V1 = {x ∈M | f (x)∈
◦
M} and V2 = {x ∈M | f (x) ∈M′\M}, then V1 and V2 are disjoint open subsets of the
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manifold M and V1 ∪V2 contains all the fixed points of the map r′ f . Indeed, if x /∈
(V1 ∪V2), then f (x) ∈ ∂M, and hence r′ f (x) = f (x) �= x. Proposition 2.8 implies the
equation

I(r′ f )= I
(
r′ f |V1

)
+ I
(
r′ f |V2

)
. (3.4)

Since r′ f is a self-map fromM toM, so

I(r′ f )= L(r′ f ). (3.5)

We have

L(r′ f )= I
(
r′ f |V1

)
+ I
(
r′ f |V2

)
. (3.6)

Now, since r′ f |V1 = f |V1 and F( f )⊆V1, then

I
(
r′ f |V1

)= I
(
f |V1

)= I( f ). (3.7)

Let us decompose the map r′ f |V2 :

r′ f |V2 :V2
f |V2−→ ∂M× [0,1]

r′−→ ∂M
i−→M. (3.8)

The Commutativity 2.6 implies that

I
(
r′ f |V2

)= I
(
ir′ f |V2

)= I
(
r′ f i|i−1(V2)

)= I
(
r′ f |∂ M

)
. (3.9)

Combining (3.6), (3.7), and (3.9), we obtain

I( f ) + I
(
r′ f |∂ M

)= L(r′ f ). (3.10)

This completes the proof of the formula holding for any retraction r′. The following two
lemmas will show that the terms in (3.10) are the same no matter which retraction r′ is
chosen. �

Lemma 3.2. The retraction r is homotopic to r′.

Proof. Consider the homotopy Ht :M′ →M, 0≤ t ≤ 1, defined as follows:

Ht(m)=m form∈M,

Ht(b,s)= r′(b,st) for (b,s)∈ ∂M× [0,1].
(3.11)

Clearly, H0 = r and H1 = r′. So, r f and r′ f are homotopic. �

Lemma 3.3. L(r′ f )= L(r f ) and I(r f |∂ M)= I(r′ f |∂ M).

Proof. By Lemma 3.2, r f and r′ f are homotopic and, consequently,

L(r f )= L(r′ f ) (3.12)

since the Lefschetz number L is a homotopy invariant.
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Equations (3.10) and (3.12) with r replacing r′ imply that

I
(
r f |∂ M

)= I
(
r′ f |∂ M

)
. (3.13)

This concludes the proof of Theorem 3.1. �

Corollary 3.4. If f :M →M′ is a map such that f (x) /∈M for any x ∈ ∂M, then I( f )=
L(r f )−L(r f |∂M).
Corollary 3.5. If f :M →M′ is without fixed points on the boundary ∂M and f (∂M)⊂
M, then I( f )= L(r f ).

Example 3.6. Consider a map f : Dn → Rn. Here Dn is the unit ball and Sn−1 is the unit
boundary sphere, so we can think of Rn as Dn with an open collar attached.

(i) If f (Sn−1)⊂Dn, then f has a fixed point.
(ii) If f (Sn−1) ⊂ Rn\Dn, then Corollary 3.4 implies that I( f ) = L(r f )− L(r f |Sn−1 ) =

1− (1+ (−1)n−1 deg(r f |Sn−1 ))= (−1)ndeg(r f |Sn−1 ).
Corollary 3.7. If f :M →M′ is homotopic to the inclusion map M↩M′, then I( f ) +
I(r f |∂ M)= χ(M), where χ(M) denotes the Euler characteristic ofM.

Proof. If f :M →M′ is homotopic to the inclusion map M↩M′, then the composite
map r f :M→M is homotopic to the identitymap. Therefore L(r f )= L(Id)= χ(M). �

Remark 3.8. Here is a more geometric proof of the main theorem (Theorem 3.1).

Proof. Let DM be the double ofM, that is, the union of two copies of M intersecting on
their boundaries. Let R : DM →M be the retraction which takes the second copy onto
the first. Now f ◦R :DM →M. Then the Lefschetz numbers L( f )= L( f ◦R) since R is a
retraction, which splits the homology of DM, so that the traces of the induced map must
be calculated only on the first copyM of DM.

Also we considerM ⊂M′ ⊂DM. Then R restricted toM′ is equal to r. Now the fixed
point set of f ◦R consists of the fixed point set of f , in the interior of M, and the fixed
point set F( f ◦R)= F( f ◦ r) contained in ∂ M. Now the index of r ◦ f calculated on the
open set ∂M is equal to the index calculated on a small open set V ofM′ containing ∂ M
which follows from the next lemma. �

Lemma 3.9. One has that

I
(
r ◦ f |∂ M

)= I
(
r ◦ f |V

)
. (3.14)

Proof. Commutativity 2.6 implies that

I
(
r ◦ f |V

)= I
(
f ◦ r|r−1(V)

)
. (3.15)

It is easy to see that the fixed point set of the map f ◦ r|r−1(V) is {(b, t) ∈ ∂M × (0,
1] | f (b) = (b, t)} and the fixed point set of the map r f |V is {b ∈ ∂M | f (b) = (b, t)
for some t}.
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We now define a homotopy Gs, 0≤ s≤ 1, as the composite of the following maps

∂ M× I
r−→ ∂ M

f−→ ∂M× I
Hs−→ ∂M× I , (3.16)

where the map Hs is defined as follows:

Hs(b, t)=
(
b,st+ (1− s)t

)
, where t is a constant, 0 < t ≤ 1. (3.17)

Since the map H0 = Identity, we have

G0(x, t)=H0
(
f r(x, t)

)= f r(x, t),

G1(x, t)=H1
(
f r(x, t)

)= (r f × g)(x, t),
(3.18)

where r ◦ f is a map from ∂ M to ∂M and g : I → I , g(t) = t, is the constant map. Fur-
thermore, the restriction Gs|Bd(∂ M×I) has no fixed points for any 0 ≤ s ≤ 1. To see this,
we look at a point x ∈ Bd(∂ M). We know then that f (x) ∈ ∂M and r f (x) = f (x) �= x,
therefore, Gs(x, t)=Hs( f r(x, t))=Hs( f (x))=Hs( f (x),0)= ( f (x),st) �= (x, t).

Now the Axioms 2.9, 2.5, and 2.3 imply that

I
(
f r|∂ M×(0,1]

)= I
(
r f |∂ M

) · I(g)= I
(
r f |∂ M

) · 1,
I
(
r f |V

)= I
(
f r|r−1(V)

)= I
(
f r|∂ M×(0,1]

)
.

(3.19)

The last equality holds because ∂ M× (0,1] contains the fixed point set of ( f r|r−1(V)).
Thus, I(r f |V )= I(r f |∂ M). �

Proof of Theorem 3.1. Consider the composite M
f→M′ r→M. Let V be the open set as

in Lemma 3.3, then V and
◦
M are two open subsets of M such that V ∪

◦
M =M. Clearly,

F(r f )∩
◦
M and F(r f )∩V are disjoint. Using Additivity 2.2 and Normalization 2.4 of the

fixed point indices, we have

I
(
r f | ◦

M

)
+ I
(
r f |V

)= I(r f )= L(r f ). (3.20)

Lemmas 3.2 and 3.3 then imply the equation

I( f ) + I
(
r f |∂ M

)= L(r f ). (3.21)
�
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