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In classical Lefschetz-Nielsen theory, one defines the Lefschetz invariant L( f) of an endo-
morphism f of a manifold M. The definition depends on the fundamental group of M,
and hence on choosing a base point * € M and a base path from * to f (). At times, it is
inconvenient or impossible to make these choices. In this paper, we use the fundamental
groupoid to define a base-point-free version of the Lefschetz invariant.
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1. Introduction

In classical Lefschetz fixed point theory [3], one considers an endomorphism f: M — M
of a compact, connected polyhedron M. Lefschetz used an elementary trace construc-
tion to define the Lefschetz invariant L( f) € Z. The Hopf-Lefschetz theorem states that if
L(f) # 0, then every map homotopic to f has a fixed point. The converse is false. How-
ever, a converse can be achieved by strengthening the invariant. To begin, one chooses
a base point * of M and a base path 7 from * to f(). Then, using the fundamen-
tal group and an advanced trace construction one defines a Lefschetz-Nielsen invariant
L(f,*,7), which is an element of a zero-dimensional Hochschild homology group [4].
Wecken proved that when M is a compact manifold of dimension n > 2, L(f, *,7) = 0 if
and only if f is homotopic to a map with no fixed points.

We wish to extend Lefschetz-Nielsen theory to a family of manifolds and endomor-
phisms, that is, a smooth fiber bundle p : E — B together with a map f : E — E such that
p = po f.One problem with extending the definitions comes from choosing base points
in the fibers, that is, a section s of p, and the fact that f is not necessarily fiber homotopic
to a map which fixes the base points (as is the case for a single path connected space and a
single endomorphism.) To avoid this difficulty, we reformulate the classical definitions of
the Lefschetz-Nielsen invariant by employing a trace construction over the fundamental
groupoid, rather than the fundamental group.
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2 A base-point-free definition of the Lefschetz invariant

In Section 2, we describe the classical (strengthened) Lefschetz-Nielsen invariant fol-
lowing the treatment given by Geoghegan [4] (see also Jiang [6], Brown [3] and Liick
[8]). We also introduce the Hattori-Stallings trace, which will replace the usual trace in
the construction of the algebraic invariant.

In Section 3, we develop the background necessary to explain our base-point-free def-
initions. This includes the general theory of groupoids and modules over ringoids, as well
as our version of the Hattori-Stallings trace.

In Section 4, we present our base-point-free definitions of the Lefschetz-Nielsen in-
variant, and show that they are equivalent to the classical definitions.

2. The classical theory

2.1. The geometric invariant. In this section, M" is a compact, connected manifold of
dimension n, and f : M — M is a continuous endomorphism.

The concatenation of two paths a: I — X and 8 : I — X such that a(1) = $(0) is defined
by

a2)  if0st<,
a-B(t) = | (2.1)
p2t—1) 1f§stsl
The fixed point set of f is
Fix(f) ={xe M| f(x) =x}. (2.2)

Note that Fix(f) is compact. Define an equivalence relation ~ on Fix(f) by letting x ~ y
if there is a path v in M from x to y such that » - (f o »)™! is homotopic to a constant
path.

Choose a base point * € M and a base path 7 from * to f (). Let m = (M, *). Given
these choices, f induces a homomorphism

b:m—m (2.3)
defined by
¢(Iwl) =[z-(fow)-77'], (2.4)

where [w] is the homotopy class of a path w rel endpoints. Define an equivalence relation
on 7 by saying g,h € 7 are equivalent if there is some w € 7 such that h = wg¢(w) L.
The equivalence classes are called semiconjugacy classes; denote the set of semiconjugacy
classes by .

Define a map

D :Fix(f) — 7y (2.5)
by

x—[u-(fow™-77'], (2.6)
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where x € Fix(f) and p is a path in M from * to x. This map is well-defined and induces
an injection

O Fix(f)/ ~— my. (2.7)

It follows that Fix(f)/ ~ is compact and discrete, and hence finite. Denote the fixed point
classes by Fy,...,F;.

Next, assume that the fixed point set of f is finite. Let x be a fixed point. Let U be an
open neighborhood of x in M and i : U — R" a chart. Let V be an open n-ball neighbor-
hood of x in U such that f(V) C U. Then the fixed point index of f at x, i(f,x), is the
degree of the map of pairs

(id=hfh™') : (h(V),h(V) = {h(x)}) — (R",R" — {0}). (2.8)
For a fixed point class F, define

i(f,Fo)= D> i(f,x) €L (2.9)

xEFk

Definition 2.1. The classical geometric Lefschetz invariant of f with respect to the base
point *x and the base path 7 is

N

L&°(f,%,7) = > i(f,Fx)®(Fy) € Zmy, (2.10)
k=1

where Zmy is the free abelian group generated by the set 7g.

2.2. The algebraic invariant. To construct the classical algebraic Lefschetz invariant, let
M be a finite connected CW complex and f : M — M a cellular map. Again, choose a
base point * € M (a vertex of M) and a base path 7 from * to f(). Also, choose an
orientation on each cell in M.

Let p: M — M be the universal cover of M. The CW structure on M lifts to a CW
structure on M. Choose a lift of the base point * to a base point ¥ € M, and lift the base
path T to a path ¥ such that 7(0) = %. Then f lifts to a cellular map f : M — M such that
F®) =7, N

The group 7 = m;(M, *) acts on M on the left by covering transformations. For each
cell o in M, choose a lift ¢ in M and orient it compatibly with ¢. Take the cellular chain
complex C(M) of M. The action of 7 on M makes Cx(M) into a finitely generated free
left Zrm-module with basis given by the chosen lifts of the oriented k-cells of M.

As in the geometric construction, f and 7 induce a homomorphism ¢ : 7 — 7. Since
f is cellular, it induces a chain map ﬁ : Ck(f\\/f ) — Ck(M ) which is ¢-linear, namely if &
is a k-cell of M and g € 7 then fk(chf) = gb(g)fk(g). Classically, one represents fk by a
matrix over Zm whose (i, j) entry is the coefficient of 6; in the chain fk(ﬁi), where 0; and
3]- are k-cells. For each k, one can now take the trace of fk, that is, the sum of the diagonal
entries of the matrix which represents fk
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Definition 2.2. The classical algebraic Lefschetz invariant of f with respect to the base
point *x and the base path 7 is

L%(f,%,7) = > (=1)*q(trace (fi)) € Zny, (2.11)
k=0

where g : Zrm — Zmg is the map sending g € 7 to its semiconjugacy class.

2.3. Hattori-Stallings trace. In the classical algebraic construction of the Lefschetz in-
variant above, Reidemeister viewed fk as a matrix and took its trace, the sum of the
diagonal entries, to define LA8( f). In our generalizations, we will need to use a more
sophisticated trace map, namely the Hattori-Stallings trace. Since on finitely generated
free modules, the Hattori-Stallings trace agrees with the usual trace of a matrix, we could
use it in the classical case as well. We introduce the classical Hattori-Stallings trace here.
(For the special case when M = R, see [1, 2, 9].)

Let R be a ring, M an R-bimodule, and P a finitely generated projective left R-module.
Let P* = Homg(P,R) be the dual of P. Let [R,M] denote the abelian subgroup of M
generated by elements of the form rm — mr, for r € R and m € M. The Hattori-Stallings
trace map, tr is given by the following composition:

Homg (P,M ® P) <—— P* @ M ®x P ——> M/[R,M]

\ (2.12)

HHy(R; M)

The map P* ®x M ®r P — Homp(P,M ®r P) is givenby a @ m® p — (p1 = a(p))(m ®
p)). The map P* @ g M ®@r P — M/[R,M] is given by a @ m ® p — a(p)m.
The fact that the first map is an isomorphism is an application of the following lemma.

LEmMA 2.3. Let R be a ring, P a finitely generated projective right R-module, and N a
left R-module. Define fp:P* g N — Homg(P,N) by fp(a,n)(p) = a(p)n. Then fp is an
isomorphism of groups.

Proof. Notethat fg: R* ®g N — Hompg(R,N) is an isomorphism with inverse given by (g :
R — N) — idr ®rg(1g). The result follows from the fact that f_): (—)* ®x N — Homg(—,
N) preserves finite direct sums. O

3. Background on groups and ringoids

In this section, we generalize to the “oid” setting the basic algebraic definitions and re-
sults which we will need for our constructions. This treatment is based on [7, Section 9],
though we have developed additional material as needed. In particular, in Section 3.2, we
generalize the Hattori-Stallings trace.

We use the following notation. If C is a category, denote the collection of objects in C
by Ob(C). If x and y are objects in C, denote the collection of maps from x to y in C by
C(x, y). The category of sets will be denoted Sets, the category of abelian groups will be
denoted Ab, and the category of left R-modules will be denoted R-mod.

Throughout, “ring” will mean an associative ring with unit.



Vesta Coufal 5

3.1. General definitions and results

3.1.1. Groupoids and ringoids. Let G be a group. We may view G as a category, denoted
by G, in which there is one object *, and for which all of the maps are isomorphisms.
Each map corresponds to an element of G with composition of maps corresponding to
the multiplication in the group. This idea generalizes to define a groupoid.

Definition 3.1. A groupoid G is a small category (the objects form a set) such that all
maps are isomorphisms.

The analogous game can be played with rings in order to define a ringoid, also known
as a linear category or as a small category enriched in the category of abelian groups.

Definition 3.2. A ringoid R is a small category such that for each pair of objects x and y,
R(x, y) is an abelian group and the composition function R(y,z) X R(x,y) — R(x,z) is
bilinear.

Example 3.3. Recall that if H is a group, then the group ring ZH is the free abelian group
generated by H. This group ring construction can be generalized to a “groupoid ringoid”
(though we will call it the group ring): let G be a groupoid and R a ring. The group ring
of G with respect to R, denoted RG, is the category with the same objects as G, but with
maps given by RG(x, y) = R(G(x, y)), the free R-module generated by the set G(x, y).

3.1.2. Modules. For the remainder of this paper, unless otherwise noted, let G be a group-
oid and let R be a commutative ring. While much of the following can be done in terms
of a ringoid R, we will restrict our attention to group rings RG.

Definition 3.4. A left RG-module is a (covariant) functor M : G — R-mod. A right RG-
modules is a (covariant) functors G°? — R-mod.

Definition 3.5. Let M and N be RG-modules. An RG-module homomorphism from M to
N is a natural transformation from M to N. The set of all RG-module homomorphisms
from M to N is denoted by Homgg(M,N).

Let RG-mod denote the category of left RG-modules, and let mod-RG denote the cat-
egory of right RG-modules.

Definition 3.6. Let M and N be RG-modules. The direct sum M @ N of M and N is the left
RG-module defined on an object x by (M & N)(x) = M(x) ® N(x) andonamapg:x — y
by (M@ N)(g) = M(g) @ N(g).

Definition 3.7. Let N be a left RG-module and M a right RG-module. Define the tensor
product over RG of M and N to be the abelian group

M @GN = P/Q, (3.1)
where P is the abelian group

P= P M(x)erN(x), (3.2)
x€0b(G)
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and Q is the subgroup of P generated by
{M(f)(m)en—meN(f)(n) | me M(y), n€ N(x), f € RG(x,y)}. (3.3)
ProrosITION 3.8. Let M, N, and P be RG-modules. Then
Hompgg(M @ N, P) = Homgg(M, P) ® Homgg(N,P). (3.4)
ProprosITION 3.9. Let M, N, and P be RG-modules. Then
(M®N)®rgP = (M®pgP)® (N ®rcP). (3.5)

Definition 3.10. Given an RG-bimodule M, define M/[RG, M] to be the R-module

( @ M(x,x))/{m—M(g,gl)(m) lg:x— y, me M(x,x)}. (3.6)
x€O0b(G)

Call this the zero dimensional Hochschild homology of RG with coefficients in M, de-
noted by

HHy(RG;M). (3.7)

Next, we define free RG-modules. First, we need the following notions.

Given a category C, we can view Ob(C) as the subcategory of C whose objects are the
same as the objects of C, but whose maps are only the identity maps. A covariant (con-
travariant) functor Ob(C) — Sets will be called a left (right) Ob(C)-set. A map of Ob(C)-
sets is a natural transformation. Let Ob(C)- Sets denote the category of left Ob(C)-sets,
and let Sets- Ob(C) denote the category of right Ob(C)-sets.

Given either a left or right Ob(C)-set B, let

B= || Bk, (3.8)

x€0b(C)

where | | denotes disjoint union, and let
B:%B — Ob(C) (3.9)

send b to x if b € B(x). Given Ob(C)-sets B and B’, we say B is an Ob(C)-subset of B if
for every x € Ob(C), B(x) C B'(x).

Suppose C is a small category and D is a category equipped with a “forgetful functor”
D — Sets. For a functor F: C — D, let |F|: Ob(C) — Sets be the composition Ob(C) —
C — D — Sets, where the functor D — Sets is the forgetful functor. In particular, || :
RG-mod — Ob(C)-Sets and |—| : mod-RG — Sets- Ob(G).

Definition 3.11. For each x € Ob(G), define a left RG-module RG, = RG(x,—) by
RG,(y) = RG(x,y). Foramap g: y — z in G, let RG,(g) = g o (—). Define a right RG-
module RG' = RG(—,x) similarly.
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Definition 3.12. Define a functor RG(- : Ob(G)-Sets — RG-mod by

RGp = D RGp) = B RG(B(b), ). (3.10)

beR be®R

Similarly, define RG ) : Sets- Ob(G) — mod-RG by

RG" = PRG" = PRG(-,Bb)). (3.11)
beR beR
ProposITION 3.13. The functor RG(_) is a left adjoint to the functor |—| : RG-mod —

Ob(G)-Sets. The functor RG isa left adjoint to | -1 : mod-RG — Sets-Ob(G).

Proof. For an Ob(G)-set B and a left RG-module M, define a set map v = Y :
RG-mod(RGg, M) — Ob(G)-Sets(B,|M|) by y(n),(b) = n,(id,) € |IM(y)|, where 7 :
RGg — M is a natural transformation and b € B(y). Then v is a bijection whose inverse
is defined in the most obvious way. O

Notice that for each Ob(G)-set B, we get a natural transformation #p = ¥ (idgg,) : B —
IRGg| which is universal. This leads to the following definition of a free RG-module with
base B.

Definition 3.14. An RG-module M is free with base an Ob(G)-set B C |[M] if for each
RG-module N and natural transformation f : B — |N]| there is a unique natural transfor-
mation F: M — N with |F| oi = f, where i is the inclusion B — |[M]|.

Example 3.15. The RG-module RG, is a free left RG-module with base B, : Ob(G) — Sets
given by

3 {x} ify=x,
Bx(y)_{g if y # x. (3.12)

If B is any Ob(G)-set, RGp = @peqp RGa(s) = By RG(B(b),—) is a free RG-module with
base B.

Let M be an RG-module. Let S be an Ob(G)-subset of |[M| and let Span(S) be the
smallest RG-submodule of M containing S,

Span(S) = N{N | N is an RG-submodule of M, S C N}. (3.13)

Definition 3.16. Say that M is generated by S if M = Span(S), and M is finitely generated
if S is finite.

ProrositioN 3.17. If M is a left RG-module, and B is an Ob(G)-subset of |M|, then
Span(B) is the image of the unique natural transformation 7 : RGg — M extendingid: B —
B C |M]|. Furthermore, M is generated by B if T is surjective.

ProposiTiON 3.18. Let B be an Ob(G)-set. If M is a free left RG-module with base B, then
M is generated by B. In particular, there is a natural equivalence T : RGg — M.
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Proof. Define 7: RGg — M. For x € Ob(G), let
7. : RGp(x) = @ RG(B(b),x) — M(x) (3.14)

beR

be given by (g : f(b) — x) — M(g)(b). To construct an inverse natural transformation,
define #: B — |RGg| by setting 7, (b) = id,. Since M is free with base B, # extends to a

unique natural transformation M — RGp. O

Definition 3.19. An RG-module P is projective if it is the direct summand of a free RG-
module.

3.1.3. Bimodules.

Definition 3.20. An RG-bimodule is a (covariant) functor
M : GX G — R-mod. (3.15)

Denote the category of RG-bimodules by RG-bimod.

Example 3.21. Let RG be RG with the following RG-bimodule structure. For (x,y) €
G X G, set RG(x,y) = RG(y,x). Notice the change in the order of x and y. For maps
g:x—x'inGandh:y— y in G, set RG(g,h) = go () o h: RG(y,x) — RG(y',x).

We would like to be able to view an RG-bimodule N as either a right or a left RG-
module. However, there is no canonical way to do so as each choice of object in G pro-
duces a different left and a right RG-module structure on N. Instead, we define two func-
tors: (—)ad and ad(—). In essence, N ad encapsulates all of the right RG-module struc-
tures on N induced by objects of G, and adN encapsulates all of the left RG-module
structure on N.

Definition 3.22. Define a covariant functor
(—)ad : RG-bimod — (mod-RG)® (3.16)
as follows. Let N be an RG-bimodule. For x € Ob(G), let
Nad(x) = N(x,—). (3.17)
For g amap in G, let
Nad(g) = N(g,—). (3.18)

Explicitly, Nad(x) : G° — R-mod is given by Nad(x)(y) = N(x,y) and Nad(x)(h) =
N(idy,h) for h: y — z a map in G°P.

Definition 3.23. Define a covariant functor

ad(-) : RG-bimod — (RG-mod)¢” (3.19)



Vesta Coufal 9
as follows. Let N be an RG-bimodule. For x € Ob(G°P), let
adN(x) = N(—,x). (3.20)
For ¢ a map in G°P, let
adN(g) =N(-,9). (3.21)
Explicitly, ad N(x) : G — R-mod is given by ad N (x)(y) = N(y,x) and ad N (x)(h) = N(h,
idy) forh:y — zamapin G.

Example 3.24. Apply the ad functors to the RG-bimodule RG. For instance, if x € Ob(G),
then adRG(x) = RG(x,—) = RG,. Hence, ad RG(x) : G — R-mod, with adRG(x)(y) =
RG(x,y) and adRG(x)(h) =ho (-) for h: y — z a map in G. Also, for g: x — x" a map
in G°, adRG(g) = RG(—,g) : RG(x,—) — RG(x',—) is the natural transformation of left
RG-modules given by ad RG(g), = (=) o g : RG(x, y) — RG(x', y).

Next, if N is an RG-bimodule and M is an RG-module, we define Hompgg(N, M),
Hompgg(M,N), N ®rg M; and M, ®rg N in such a way that they are also RG-modules,
as one would expect. Let M; (resp., M,) denote a left (resp., right) RG-module.

Definition 3.25. Let N be an RG-bimodule. Homgg(M;, N) is defined to be the right RG-
module given by the composition

Gor 2N RGimod —eme M) b od, (3.22)

Homgg (N, M;) is defined to be the left RG-module given by the composition

Gor 2N RGomod oM od, (3.23)

Hompgg(M,,N) is defined to be the left RG-module given by the composition

a Hompg(M;,—)
G Nad mod-RG e ety R-mod. (3.24)

Hompgg(N,M,) is defined to be the right RG-module given by the composition

Homgg(—,M;

a )
G Nad mod-RG R-mod. (3.25)

Definition 3.26. Let N be an RG-bimodule. Define N ®rg M; to be the left RG-module
given by the composition

G L“l) mod-RG M) R-mod. (3.26)
Define M, ®rg N to be the right RG-module given by the composition

G°P 2N RG-mod —>M7®RG(7) R-mod. (3.27)
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Applying the above definitions to the RG-bimodule RG, we get the results for Hom
and tensor product which we would expect from algebra. These next three propositions
justify viewing RG as “the free rank-one” RG-module. Notice that it is not, however, a
free RG-module. The proofs are straightforward and left to the reader.

PROPOSITION 3.27. Given an RG-module M, Hompg(RG, M) = M as RG-modules.

PROPOSITION 3.28. Given a left RG-module M, RG ®rg M = M as left RG-modules.

PROPOSITION 3.29. Given right RG-module M, M ®gg RG = M as right RG-modules.
In particular, we can now define the dual of an RG-module.

Definition 3.30. Let M be a left (right) RG-module. The dual of M is the right (left) RG-
module M* = Homgg(M,RG).

ProrosITION 3.31. Let M and N be RG-modules. Then there is a natural equivalence (M &
N)* = M* e N*.

3.1.4. Chain complexes.

Definition 3.32. An RG-chain complex is a (covariant) functor C.: G — Ch(R), where
Ch(R) is the category of chain complexes over the ring R.

LemMA 3.33. The following are equivalent:
(i) C.is an RG-chain complex;
(ii) there exist a family {C,} of RG-modules together with a family of natural transfor-
mations {d, : C, — Cn_1}, called differentials, such that d,_, o d, = 0.

Using the second characterization of RG-chain complexes, we can now define finitely
generated projective chain complexes, chain maps and chain homotopies in the usual
manner.

Definition 3.34. An RG-chain complex P. is said to be a finitely generated projective if
each P, is a finitely generated projective RG-module and P. is bounded (i.e., P, = 0 for
all but a finite number of n). Let ?(RG) denote the subcategory of finitely generated
projective RG-chain complexes.

Definition 3.35. An RG-chain map f : C. — D.isa family { f, : C, — D,} of natural trans-
formations such that d, o f, = f,_1 o d, for all n, where the d, are the differentials of C.
and the d;, are the differentials of D..

Definition 3.36. Two RG-chain maps f : C. — D. and g : C. — D. are RG-chain homo-
topic, denoted by f ~, g, if there exists a family {s, : C, — D,_,} of natural transforma-
tions such that

Jo = &n=dpi1 05p+ 501 0 dy. (3.28)
Definition 3.37. Two RG-chain complexes C. and D. are chain homotopy equivalent if

there exist RG-chain maps f : C. — D. and g : D. — C. such that f o g ~¢, idp, and g o
f ~ch idc.. In this case, f is said to be a chain homotopy equivalence.
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3.1.5. Everything a-twisted. For the remainder of the paper, let & : G — G be a functor.
We can use « to create an “a-twisted” version of many of our algebraic objects.

Definition 3.38. Define an RG-bimodule oRG : G X G°? — R-mod by

«RG(x,y) = RG(y,a(x)) (3.29)
for x, y € Ob(G), and

«RG(g,h) = a(g)e(=)oh (3.30)

for g a map in G and h a map in G°. This is the RG-bimodule RG, but with the left
module structure twisted by a.

Definition 3.39. Let M and N be RG-modules. An a-linear homomorphism M — N is
defined to be a natural transformation #: M — N o a. A chain map f : C. — D. of RG-
chain complexes is called a-linear if for each n, f, is a-linear.

LEmMa 3.40. Given left RG-modules P and Q, there is an isomorphism
Hompg(P,Q o &) = Homgg (P, «RG ®rc Q). (3.31)
Definition 3.41. Let M be an RG-module. The a-dual of M is
M® = Homgg (M, «RG). (3.32)

ProprosITION 3.42. Let P and Q be RG-modules and N an RG-bimodule. Then there is a
natural equivalence of RG-modules

Hompg(P & Q,N) = HomR(;(P,N) ® Hompg(Q,N). (333)
CoROLLARY 3.43. Let P and Q be left RG-modules. Then there is a natural equivalence

(PoQ)*=P*a Q™ (3.34)

3.2. Generalized Hattori-Stallings trace. In this section, we define an a-twisted Hattori-
Stallings trace for RG-modules. One can define a more general Hattori-Stallings trace for
RG-modules, in the same manner as the classical definition given in Section 2.3. However,
as we will not need this more general form, we will concern ourselves only with the special
a-twisted case. We also extend the trace to RG-chain complexes.

3.2.1. Definition and commutativity. Given left RG-modules N and P, define an R-module
homomorphism

¢p = ¢p N : P* ®rg N — Hompg(P,N o ) (3.35)
by letting: ¢p(7 ® n) : P — N o « be the natural transformation given by
dp(z@n),(p) = N(,(p)) (n), (3.36)
where 7 € P*(x), m € N(x), p € P(y), and x, y € Ob(G).
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ProrosriTioN 3.44. If P is a finitely generated projective RG-module, then ¢p is an isomor-
phism.

The proof will use the following three lemmas.
LEMMA 3.45. Given x € Ob(G), then ¢gg, is an isomorphism.

Proof. Write ¢ for ¢, . Define

v Hompgg (EX,N o 0() — Ef: ®rc N (3.37)

n— @@ n,(idy), (3.38)

where 77: RG, — N o a is a natural transformation. Here, @ € P%(x) is the natural trans-
formation induced by a, that is, @,(f) = a(f) for y € Ob(G) and f € RG(x, y).
It is easy to show that ¢ o y = id and y o ¢ = id. O

LemMa 3.46. If P and Q are left RG-modules, then ¢pag = dp & ¢q.

Proof. Consider the following diagram:

Preq

(PoQ)*®rc N Hompg(P ® Q,N o a)

zi

(P*® Q%) ®rg N = (3.39)

w

(P*®rcN) ® (Q*®rg N) vete Homgg(P,N o a) ® Hompg(Q,N o a)
P Q

The vertical isomorphisms are as in Propositions 3.8 and 3.9 and Corollary 3.43. Using
those isomorphism, one can see that the diagram commutes. O

LemMa 3.47. Let P and Q be left RG-modules and let N = P & Q. If ¢y is an isomorphism,
then ¢p is an isomorphism also.

Proof. By the previous lemma, ¢n = ¢p @ ¢q. The result follows immediately. g

Proof of Proposition 3.44. The proof is in two steps.
Step 1. Suppose that P is a finitely generated free RG-module. Then P is naturally equiv-
alent to RGg = @ e RGp(p) for some Ob(G)-set B. By Lemma 3.46, ¢p = Djcy PRGyy>
and by Lemma 3.45, it is an isomorphism.
Step 2. Suppose that P is a finitely generated projective RG-modules and so P is a direct
summand of a finitely generated free RG-module. Combining Step 1 and Lemma 3.47 we
see that ¢p is an isomorphism.

]



Vesta Coufal 13
For P a left RG-module, define an R-module homomorphism
P*®pg P — 4RG/[RG, RG] (3.40)

by 7 ® p — 7(p) where 7 € P*(x) and p € P(x).
Definition 3.48. Let P be a finitely generated projective left RG-module. The Hattori-

Stallings trace, denoted by tr, is the composition

Homgg(P,P o @) <—— P* ®pg P —> 4RG/[RG, RG]

\ (3.41)

HH() (RG, aRG)

where the isomorphism is the map ¢p and the unadorned arrow is the homomorphism
described above.

ProposITION 3.49 (commutativity). Let P and Q be finitely generated projective left RG-
modules. If f € Hompg(P,Q o &) and g € Hompg(Q, P), then

tr(fog) =tr(goao f). (3.42)

Proof. The result follows from commutativity of three diagrams.
The first diagram is

Hompg(P,Q o @) x Hompg(Q,P) =—— (P* ®@rg Q) X (Q* ®rg P)
iB (3.43)
HomRG(P,P o (X) or p* ®RrG p

where Bis given by (1 ® p) X (t® q) — (a0 1) ® Q(1,(p))(q), the unlabelled vertical map
is given by (f,g) — g o ao f and the unlabelled horizontal map is ¢pe g X dq,p.
The second diagram is gotten by transposing the products in the first diagram.
The third diagram is
Q*®rcQ
B
(Q* ®rg P) X (P*®r Q)

(P*®prc Q) X (Q* ®rg P) ———— HHy(RG;4RG)

B /

P*®pg P
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where the unlabelled arrow is transposition, B” is analogous to B, and the other maps are
defined in the obvious ways. O

3.2.2. For connected groupoids. Consider the following setup. Let G be a connected group-
oid, that is, one for which there exists a map between any two objects. Let «: G — G be a
functor and let P be a finitely generated projective left RG-module. Choose an object *
of G and choose amap 7: % — a(x) in G.

Let RG() be the subcategory of RG with a single object, *, and with maps given
by the maps in RG from * to *. Then the inclusion RG(*) — RG is an equivalence of
categories. The proof amounts to choosing a map u, : * — x for each x € Ob(G). For
each x, we fix a choice of y,.

The functor « induces a functor «; : RG(*) — RG(*) which maps the object * to
itself. If g : % — , let a;(g) = 77! o a(g) o 7. In the obvious way, the RG-module P in-
duces a finitely generated projective left RG()-module, denoted P(). A natural trans-
formation 8 € Hompg(P,P o ) induces a natural transformation B, = P(77!) o B4 €
Hompgg(x)(P(*),P(%) o a;).

LemMma 3.50. There is an isomorphism of groups
A HHy(RG(*);o RG(%)) — HHy(RG;4RG) (3.45)

given by A(m) = 7 om for m € HHy(RG( );o, RG()).

ProrosriTioN 3.51. The Hattori-Stallings trace of B, and 8 are equivalent, that is,

A(te(By)) = tr(B). (3.46)

Proof. Given 5 € P*(x) for some x € Ob(G), define 77 : P(*) — RG(*,*) € P(*)* by
7(p) = 171 o 4 (p) © px, where p € P(). This gives us a map P* — P()%.
Define a map B : P* ®gg P — P()% ® RG(*)P(x) by n® p — 77 ® P(u;')(p), where
n € P¥x) and p € P(x) for some x € Ob(G). Define a map C: Hompg(P,P o o) —
Hompgg(x)(P(k),P() o a;) by y = yr = P(t71) o y4 for y € Hompg(P, P o a).
Commutativity of the following two diagrams implies that A(tr(f;)) = tr(p).

dp(x
Homgg(x) (P(%),P(%) o &) <—————— P(%)% @rg(x) P(%)

k W ]

[3pt] Hompg(P,P o «) P*®pg P
(3.47)
P(%)% ®rg(x) P(%) ——————— HHy(RG(*);4, RG())
k |
[3pt]P* @G P HH,(RG;4RG) -

Notice that A(tr(f;)) is independent of the choices of maps .



Vesta Coufal 15

3.2.3. For chain complexes. We begin with the general case.

Definition 3.52. Let P. be a finitely generated projective RG-chain complex. Define the
Hattori-Stallings trace

Tr : Homg(gg)(Pw P 0at) — HHy(RG;oRG) (3.48)
by
f— Z(—l)itr (fi) (3.49)

where f : P. — P.oa is given by the family { f; € Hompg(P;, Pi o a)}.

Commutativity follows from commutativity of the Hattori-Stallings trace for RG-
modules.

ProrosITiON 3.53 (commutativity). Let P. and Q. be finitely generated projective RG-
chain complexes, and let f € Homgprg)(P., Q. o) and g € Homgp rg)(Q., P.). Then

Tr(fog)=Tr(goao f). (3.50)

The Hattori-Stallings trace is also invariant up to chain homotopy.

ProproSITION 3.54. Let P. be a finitely generated projective RG-chain complex. If f : P. —
P.oaandg:P.— P.oa are chain homotopic, then Tr(f) = Tr(g).

Proof. Let {s,: P, — Py41 o a} be a chain homotopy from f to g. Then
Te(f) - Tr(g) = D (- D'tr (fi— &)
=Z(—l)itr(diﬂO(XOSi+S,‘_10di) (3.51)

— Z(_l)i[tr (siodi1) +tr(sii1od;)].

The last equality comes from applying commutativity. Rearranging the terms in the last
sum gives Tr(f) — Tr(g) = 0. O

Now suppose that C. is an RG-chain complex which is chain homotopy equivalent
to a finitely generated projective RG-chain complex. Suppose further that ¢ : C. — C. o«
is a chain map. Choose a finitely generated projective RG-chain complex P., choose a
chain homotopy equivalence f : C. — P., and choose a lift ¢ : P. — P. o« of ¢. We get the
diagram

fT fT (3.52)
C. T> C.oxa

which commutes up to chain homotopy.
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Definition 3.55. The Hattori-Stallings trace of ¢ : C. — C. o« is defined to be the trace of
y:P.— P.o

Tr(¢) = Tr(y). (3.53)

We must show that Tr is independent of the choices we made. First, suppose that ¢’ is
another lift of ¢. Then ¢ ~c, f o ¢ o f~1 ~, ¥’ and by Proposition 3.54, Tr(y) = Tr(y").
Second, suppose that Q. is another finitely generated projective RG-chain complex and
g : C. — Q. is a chain homotopy equivalence. Then

Y

Tr(gogog ') =Tr(gofoflopoflofog™
¢pof ) (3.54)

:Tr(fogilogofflofo o
Te(foge ).

4. Base-point-free Lefschetz-Nielsen invariants

In this section, we present our base-point-free refinements of the classical geometric and
algebraic Lefschetz-Nielsen invariants. We begin by defining the fundamental groupoid,
and describing the way in which we think of the universal cover.

4.1. Fundamental groupoid. An important example of a groupoid is the fundamental
groupoid. Let X be a topological space.

Definition 4.1. The fundamental groupoid IIX is the category whose objects are the
points in X, whose maps are the homotopy classes rel endpoints of paths in X. Com-
position is given by concatenation of paths. To be precise, if f and g are paths in X such
that f(1) = g(0), then

[glelf1=1f-gl (4.1)

For each morphism, an inverse is given by traversing a representative path backwards.

This groupoid deserves to be called the fundamental groupoid since for a given point
x € X, the subcategory of IIX generated by x is 1 (X, x). The subcategory generated by x
is the category with one object, x, and whose morphism set is IIX (x,x). In a sense, then,
the fundamental groupoid is a way of encoding in one object the fundamental groups
with all possible choices of base point.

Let f : X — X be a continuous map. Then f induces a functor ITf : TIX — IIX given
by IIf(x) = f(x) and IIf(g) = f o g where x € X and g is a path in X.

4.2. Universal cover. Let X be a path connected, locally path connected, semilocally sim-

ply connected space. For each x € X, one can describe the universal cover [5, page 64] of
X as the space

X=X, 0)0/ ~, (4.2)
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where I is the closed unit interval and ~ is the equivalence relation given by homotopy
rel endpoints. The set (X,x)? is given the compact-open topology, and X, is given the
quotient topology. The projection map p: X, — X is given by p([y]) = p(1).

Recall ITX, the fundamental groupoid of X. Let Top be the category of topological
spaces.

Definition 4.2. The universal cover functor
U:TIX — Top (4.3)

is defined by U(x) = X, for x € Ob(I1X). For g : x — y a map in I1X, define U(g) : X, —
X, by U(@)lyl = [g~" - y], where [y] € X,.

4.3. The geometric invariant. Fix a compact, path-connected n-dimensional manifold
X and a continuous endomorphism f : X — X such that Fix( f) is finite.

Let IT be the fundamental groupoid of X. The map f induces a functor ¢ = ITf : IT —
IT defined by ¢(x) = f(x), where x € Ob(IT). Forg:x — yamapinITlet p(g) = f o g.

Let Fix(¢) be the subcategory of IT whose set of objects is Fix( f ), and whose maps are
the maps g:x — y in I1 (x, y € Fix(f)) such that f o g = g. The category Fix(¢) decom-
poses into a finite number of connected components; denote them by Fy,...,F,.

Define an ZII-bimodule ,ZIT : II x II°? — Ab given by (x,y) — ZII(y,¢(x)), where
x,y € Ob(IT). For g:x — x’ amap in ITand h: y — y" a map in II°, let ,ZTI(g,h) =
¢(g) o (=) o h. By definition,

HHy(Z11;,211) = ,211/[ 711, ,711]
P (xex)/Q (4.4)

x€Ob(II)

where Q is generated by elements of the form o — ¢(g) o 0 o g~! for maps 0 : x — ¢(x)
andg:x — yinIL
Define

@ {Fe}y, — HHo(Z11;,211) (4.5)

by choosing an object x in Fx and mapping Fx to id, : x — x = ¢(x). One can check that
this is a well-defined injection.
Also, let

i(f,Fe)= > i(f,x) ez, (4.6)

x€Ob(Fy)
where i( f,x) is the fixed point index.

Definition 4.3. The geometric Lefschetz invariant of f : X — X is

L&o(f) = > i(f,Fx) @ (Fx) € HHy(ZIL;,211). (4.7)
k
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THEOREM 4.4. The classical geometric Lefschetz invariant and the base-point-free geometric
Lefschetz invariant correspond under an isomorphism

A Imy — HHo(Z11;,21). (4.8)

The isomorphism A is not canonical; it depends on choosing a path from * to f ()
On the other hand, HH(ZI1;,Z1I1) is canonical.

Proof. Recall that in the classical definition, we have chosen a base point * and a base path
7. The fundamental group m (X, *) is denoted by 7, the map on 7 induced by f: X — X
and the base path 7 is denoted by ¢, and the injection {F;};_; — 74 is denoted by ®.

Step 1. After appropriate reordering of the fixed point classes F,...,F;, s =r and F; =
ODb(F;). This can be seen as follows. If x and y are equivalent in Fix(f), then there exists
a path » from x to y in X such that v - (f o »)~! =~ %. But this is equivalent to saying
that » is a map in Fix(¢) from x to y, and hence that x and y are in the same connected
component of Fix(¢).

Step 2. Define an isomorphism of abelian groups

A:Zny — HHy(ZG;ZG) (4.9)

by A(w) = w - T = 7 o w, where [w] € 7.

To see that A is well defined, suppose that [w] and [w;] are equivalent in Zmy. By
definition, there exists g € 7 such that w; =g-w-7-(fog)™' - 77! Hence, 1o w; =
(g ) oTowog=10gin HH)(ZG;,ZG), and A is well-defined.

To see that A is an epimorphism, suppose that 0 : x — ¢(x) € HHy(ZG;,ZG). Choose
a path y in X from * to x, that is, a map p: % — x in G. Then 6 = ¢(y ') oo oy in
HHy(ZG;yZG),and pi- o - (f o)~ - 77! gives an element in 77 which is mapped to o by
A.

The last thing to check is that A is a monomorphism. Suppose [w] and [w,] are el-

ements of 77 such that 7 o w = 7 o w;. Then there exists g € Ob(G) such that 7o w; =
(g ) oTowog. It follows that w; =g - w-7-(fog)"!- 77! and hence that [w;] is
equivalent to [w] in Z7mg.
Step 3. Let F be a fixed point class, and F the corresponding connected component of
Fix(¢). For any choice of x € F and path y from * to x, we have that A(O(F)) = A(y -
(few™-171) =) ou=id, in HHy(ZG;,ZG).

Therefore, the image of

N
L&(f,*,7) = > i(f,Fe)®(Fx) € Zmy (4.10)
k=1
is equivalent to

.
L&°(f) = > i(f,Fx) @(Fx) € HHo(ZG;yZG). (4.11)
k=1
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4.4. The algebraic invariant. Let X be a finite CW complex and f : X — X a continuous
map. Let IT = IIX be the fundamental groupoid of X and let ¢ : IT — IT be the functor
induced by f, as above.

The map f induces a natural transformation ]7: U — U o ¢. Given an object x in II,
ﬁc X, — )?f(x) is defined by [y] — [f o y], where [y] € X.. One can check naturality.

There is a functor S: Top — Ch(Z) given by taking the singular chain complex of a
space. If f : X — Y is a continuous map, then S(f): S(X) — S(Y) is given by 6 — f o 0,
where 0 : A" — X. Here, A" is the standard n-simplex.

Let C. be the ZTI-chain complex given by the composition

11 % Top - Ch(2). (4.12)

The map f induces a natural transformation ﬁ :SU — SU¢. Given an object x in I,
let ]?*(x) : S()?x) - S()?f(x)) be given by ¢ — fx o 0, where o : A" — X,. Naturality of f*
follows from naturality of f Hence, ]7* is a ¢-linear chain map C. — C.. As usual, f* is
given by a family of ¢-linear natural transformations fn :C, — Cy.

The singular chain complex of a finite CW complex is chain homotopy equivalent to
a finitely generated projective ZII chain complex. Hence, the Hattori-Stallings trace of f*
is defined, and we can define the algebraic Lefschetz invariant as follows.

Definition 4.5. The algebraic Lefschetz invariant of f : X — X is

L%(f) =Tr(fi) = > (=1 tr (f) € HHy(Z11;,711). (4.13)
k=0

As an immediate corollary of Proposition 3.51 we get the following theorem.

THEOREM 4.6. The classical algebraic Lefschetz invariant and the base point free algebraic
Lefschetz invariant correspond under the isomorphism

A: Ty — HHy(Z11;,211). (4.14)
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