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We discuss convergence theorems of modified Ishikawa and Mann iterative sequences
with errors for asymptotically pseudocontractive and asymptotically nonexpansive map-
pings in Banach spaces, and the boundedness of the domain and range can be dropped,
generalizing theorems of Chang.
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1. Introduction and preliminaries

Throughout this paper, we assume that E is a real Banach space, E∗ is the topological dual
space of E, 〈·,·〉 is the dual between E and E∗, D(T) and F(T) denote the domain of T
and the set of all fixed points of T , respectively, and J : E→ 2E

∗
is the normalized duality

mapping defined by

J(x)= { f ∈ E∗ : 〈x, f 〉 = ‖x‖ · ‖ f ‖, ‖ f ‖ = ‖x‖}, x ∈ E. (1.1)

Definition 1.1. Let T :D(T)⊂ E→ E be a mapping.
(1) T is said to be asymptotically nonexpansive if there exists a sequence {kn} in (0,∞)

with limn→∞ kn = 1 such that

∥
∥Tnx−Tny

∥
∥≤ kn‖x− y‖ (1.2)

for all x, y ∈D(T) and n= 1,2, . . . .
(2) T is said to be asymptotically pseudocontractive if there exists a sequence {kn}

in (0,∞) with limn→∞ kn = 1, and for any x, y ∈ D(T) there exists j(x − y) ∈ J(x − y)
such that

〈
Tnx−Tny, j(x− y)

〉≤ kn‖x− y‖2 (1.3)

for all n= 1,2, . . . .
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(3) T is said to be uniformly L-Lipschitzian if there exists L > 0 such that

∥
∥Tnx−Tny

∥
∥≤ L‖x− y‖ (1.4)

for all x, y ∈D(T) and n= 1,2, . . . .

The following proposition follows from Definition 1.1 immediately.

Proposition 1.2. (1) If T : D(T) ⊂ E → E is nonexpansive, then T is an asymptocially
nonexpansive mapping with a constant sequence {1}.

(2) If T : D(T) ⊂ E → E is asymptotically nonexpansive, then T is a uniformly L-Lip-
schitzian, where L= supn≥1{kn} and asymptotically pseudocontractive mapping.

Definition 1.3. (1) Let T : D(T)⊂ E→ E be a mapping, let D(T) be a nonempty convex
subset of E, let x0 ∈ D(T) be a given point, and let {αn}, {βn}, {γn}, and {δn} be four
sequences in [0,1]. Then the sequence {xn} defined by

xn+1 =
(
1−αn− γn

)
xn +αnT

nyn + γnun,

yn =
(
1−βn− δn

)
xn +βnT

nxn + δnvn,
∀n≥ 0, (1.5)

is called the modified Ishikawa iterative sequence with errors of T , where {un} and {vn}
are two bounded sequences in D(T).

(2) In (1.5) if βn = 0 and δn = 0, n= 0,1,2, . . . , then yn = xn. The sequence {xn} defined
by

xn+1 =
(
1−αn− γn

)
xn +αnT

nxn + γnun, ∀n≥ 0, (1.6)

is called the modified Mann iterative sequence with errors of T .

In this paper, we discuss convergence theorems of modified Ishikawa and Mann itera-
tive sequences with errors for asymptotically pseudocontractive and asymptotically non-
expansive mappings in Banach spaces, and the boundedness of the domain and range can
be dropped, generalizing theorems of Chang [1].

Lemma 1.4 [4]. Let {An}, {Bn}, and {Cn} be sequences of nonnegative real numbers satis-
fying the inequality

An+1 ≤
(
1+Bn

)
An +Cn, ∀n≥ 0. (1.7)

If
∑∞

n=0Bn < +∞ and
∑∞

n=0Cn < +∞, then limn→∞An exists.

2. Main results

Lemma 2.1. Let E be an arbitrary real Banach space, let D be a nonempty closed convex
subset of E, let T : D→ D be a uniformly L-Lipschitzian asymptotically pseudocontractive
mapping with a sequence {kn} ⊂ [1,∞),

∑∞
n=0(kn − 1) < +∞. Let {αn}, {βn}, {γn}, and
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{δn} be four sequences in [0,1] satisfying the following conditions:
(i) αn + γn ≤ 1, βn + δn ≤ 1;
(ii) βn ≤ αn, δn ≤ γn, for all n≥ 0;
(iii)

∑∞
n=0 γn < +∞;

(iv)
∑∞

n=0α2n < +∞.

Let x0 ∈ D be any given point and let {xn} and {yn} be the modified Ishikawa iter-
ative sequence with errors defined by (1.5). If F(T) = ∅, then for any given q ∈ F(T),
limn→∞‖xn− q‖ exists.
Proof. SetM =max{supn≥0‖un− q‖, supn≥0‖vn− q‖}.

Since T is asymptotically pseudocontractive, for all x, y ∈ D, there exists j(x− y) ∈
J(x− y) such that

〈
Tnx−Tny, j(x− y)

〉≤ kn‖x− y‖2. (2.1)

Then from inequality (2.1), we obtain

〈(
knI −Tn

)
x− (knI −Tn

)
y, j(x− y)

〉= kn‖x− y‖2− 〈Tnx−Tny, j(x− y)
〉≥ 0,

(2.2)

and it follows from Kato [2] that

‖x− y‖ ≤ ∥∥x− y + λ
[(
knI −Tn

)
x− (knI −Tn

)
y
]∥∥, ∀x, y ∈D, λ > 0. (2.3)

Set an := αn + γn. Then from the recursive formula (1.5), we have xn+1 = (1− an)xn +
anTnyn− γn(Tnyn−un). It follows that

xn =
(
1+ an

)
xn+1 + an

(
knI −Tn

)
xn+1− anknxn + a2n

(
1+ kn

)(
xn−Tnyn

)

+ an
(
Tnxn+1−Tnyn

)
+ γn

[
1+ an

(
1+ kn

)](
Tnyn−un

)
.

(2.4)

Observe that

q = (1+ an
)
q+ an

(
knI −Tn

)
q− anknq. (2.5)

So that

xn− q = (1+ an
)(
xn+1− q

)
+ an

[(
knI −Tn

)
xn+1−

(
knI −Tn

)
q
]− ankn

(
xn− q

)

+ a2n
(
1+ kn

)(
xn−Tnyn

)
+ an

(
Tnxn+1−Tnyn

)
+ γn

[
1+ an

(
1+ kn

)](
Tnyn−un

)
.

(2.6)
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Hence

∥
∥xn− q

∥
∥≥ (1+ an

)
∥
∥
∥
∥xn+1− q+

an
1+ an

[(
knI −Tn

)
xn+1−

(
knI −Tn

)
q
]
∥
∥
∥
∥− ankn

∥
∥xn− q

∥
∥

− a2n
(
1+ kn

)∥∥xn−Tnyn
∥
∥− an

∥
∥Tnxn+1−Tnyn

∥
∥

− γn
[
1+ an

(
1+ kn

)]∥∥Tnyn−un
∥
∥

≥ (1+ an
)∥∥xn+1− q

∥
∥− ankn

∥
∥xn− q

∥
∥− a2n

(
1+ kn

)∥∥xn−Tnyn
∥
∥

− an
∥
∥Tnxn+1−Tnyn

∥
∥− γn

[
1+ an

(
1+ kn

)]∥∥Tnyn−un
∥
∥.

(2.7)

So

∥
∥xn+1− q

∥
∥≤

[
1+

an
1+ an

(
kn− 1

)
]∥
∥xn− q

∥
∥+ a2n

(
1+ kn

)∥∥xn−Tnyn
∥
∥

+ an
∥
∥Tnxn+1−Tnyn

∥
∥+ γn

[
1+ an

(
1+ kn

)]∥∥Tnyn−un
∥
∥.

(2.8)

Furthermore, set bn := βn + δn. Then from recursive formula (1.5), we have yn = (1−
bn)xn + bnTnxn− δn(Tnxn− vn). By condition (ii), we have bn ≤ an, for all n≥ 0.Wemake
the following estimates:

∥
∥yn− q

∥
∥= ∥∥(1− bn

)(
xn− q

)
+ bn

(
Tnxn− q

)− δn
(
Tnxn− vn

)∥∥

≤ [1+ bn
(
L− 1

)]∥∥xn− q
∥
∥+ δn

∥
∥Tnxn− vn

∥
∥

≤ L
∥
∥xn− q

∥
∥+ δnL

∥
∥xn− q

∥
∥+ δnM

= L
(
1+ δn

)∥∥xn− q
∥
∥+ δnM,

(2.9)

∥
∥xn−Tnyn

∥
∥≤ ∥∥xn− q

∥
∥+L

∥
∥yn− q

∥
∥

≤ ∥∥xn− q
∥
∥+L2

(
1+ δn

)∥∥xn− q
∥
∥+LδnM

≤ [1+L2
(
1+ δn

)]∥∥xn− q
∥
∥+LδnM,

∥
∥Tnyn−un

∥
∥≤ L

∥
∥yn− q

∥
∥+

∥
∥un− q

∥
∥

≤ L2
(
1+ δn

)∥∥xn− q
∥
∥+

(
1+Lδn

)
M,

∥
∥Tnxn+1−Tnyn

∥
∥≤ L

∥
∥xn+1− yn

∥
∥

= L
∥
∥xn− yn + an

(
Tnyn− xn

)− γn
(
Tnyn−un

)∥∥

≤ L
∥
∥xn− yn

∥
∥+Lan

∥
∥Tnyn− xn

∥
∥+Lγn

∥
∥Tnyn−un

∥
∥

= L
∥
∥bn
(
xn−Tnxn

)
+ δn

(
Tnxn− vn

)∥∥

+Lan
∥
∥Tnyn− xn

∥
∥+Lγn

∥
∥Tnyn−un

∥
∥
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≤ Lbn
∥
∥xn−Tnxn

∥
∥+Lδn

∥
∥Tnxn− vn

∥
∥

+Lan
∥
∥Tnyn− xn

∥
∥+Lγn

∥
∥Tnyn−un

∥
∥

≤ Lan(1+L)
∥
∥xn− q

∥
∥+L2δn

∥
∥xn− q

∥
∥

+LδnM +Lan
[
1+L2

(
1+ δn

)]∥∥xn− q
∥
∥

+L2anδnM +L3γn
(
1+ δn

)∥∥xn− q
∥
∥+Lγn

(
1+Lδn

)
M.

(2.10)

Using (2.9) and (2.10) in (2.8), we obtain the following estimation:

∥
∥xn+1− q

∥
∥≤

[
1+

an
1+ an

(
kn− 1

)
]∥
∥xn− q

∥
∥+ a2n

(
1+ kn

)[
1+L2

(
1+ δn

)]∥∥xn− q
∥
∥

+ a2n
(
1+ kn

)
LδnM +La2n

(
1+L

)∥∥xn− q
∥
∥+L2anδn

∥
∥xn− q

∥
∥+LanδnM

+La2n
[
1+L2

(
1+ δn

)]∥∥xn− q
∥
∥+L2a2nδnM +L3anγn

(
1+ δn

)∥∥xn− q
∥
∥

+Lanγn
(
1+Lδn

)
M + γn

[
1+ an

(
1+ kn

)]
L2
(
1+ δn

)∥∥xn− q
∥
∥

+ γn
[
1+ an

(
1+ kn

)](
1+Lδn

)
M

=
{
1+

an
1+ an

(
kn− 1

)
+ a2n

(
1+ kn

)[
1+L2

(
1+ δn

)]
+La2n

(
1+L

)
+L2anδn

+La2n
[
1+L2

(
1+ δn

)]
+L3anγn

(
1+ δn

)

+ γn
[
1+ an

(
1+ kn

)]
L2
(
1+ δn

)
}∥
∥xn− q

∥
∥

+
{
a2n
(
1+ kn

)
LδnM +LanδnM +L2a2nδnM

+Lanγn
(
1+Lδn

)
M + γn

[
1+ an

(
1+ kn

)](
1+Lδn

)
M
}
.

(2.11)

Set

An :=
∥
∥xn− q

∥
∥,

Bn := an
1+ an

(
kn− 1

)
+ a2n

(
1+ kn

)[
1+L2

(
1+ δn

)]
+La2n

(
1+L

)
+L2anδn

+La2n
[
1+L2

(
1+ δn

)]
+L3anγn

(
1+ δn

)
+ γn

[
1+ an

(
1+ kn

)]
L2
(
1+ δn

)
,

Cn := a2n
(
1+ kn

)
LδnM +LanδnM +L2a2nδnM +Lanγn

(
1+Lδn

)
M

+ γn
[
1+ an

(
1+ kn

)](
1+Lδn

)
M,

(2.12)
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then inequality (2.11) is equal to

An+1 ≤
(
1+Bn

)
An +Cn. (2.13)

By conditions (ii), (iii), and (iv), we know
∑∞

n=0Bn < +∞,
∑∞

n=0Cn < +∞. By Lemma 1.4,
we know limn→∞‖xn− q‖ exists. �

Theorem 2.2. Let E be a real uniformly smooth Banach space, let D be a nonempty closed
convex subset of E, and let T : D → D be a uniformly L-Lipschitzian asymptotically pseu-
docontractive mapping with a sequence {kn} ⊂ [1,∞),

∑∞
n=0(kn− 1) < +∞. Let {αn}, {βn},

{γn}, and {δn} be four sequences in [0,1] satisfying the conditions (i)–(iv) in Lemma 2.1.

Let x0 ∈ D be any given point and let {xn}, {yn} be the modified Ishikawa iterative
sequence with errors defined by (1.5).

(1) If {xn} converges strongly to a fixed point q of T in D, then there exists a nonde-
creasing function φ : [0,∞)→ [0,∞), φ(0)= 0 such that

〈
Tnyn− q, J

(
yn− q

)〉≤ kn
∥
∥yn− q

∥
∥2−φ

(∥∥yn− q
∥
∥), (∗)

for all n≥ 0.
(2) Conversely, if there exists a strictly increasing function φ : [0,∞)→ [0,∞), φ(0)= 0

satisfying condition (∗), then xn→ q ∈ F(T).

Proof. Since E is uniformly smooth, the normalized duality mapping J : E→ E∗ is single-
valued and uniformly continous on any bounded subset of E.

(1) Let xn→ q∈F(T). From conditions (ii)–(iv) in Lemma 2.1, we have βn→ 0, δn→ 0.
Besides noticing ‖yn− q‖ ≤ L(1+ δn)‖xn− q‖+ δnM in (2.9) of Lemma 2.1, we have

yn −→ q (n−→∞). (2.14)

The rest of the proof is the same as Chang’s [1, Theorem 2.1].
(2) By Lemma 2.1, we know limn→∞‖xn − q‖ exists. So {xn} is bounded. And by the

proof of Lemma 2.1, we can also get {Tnyn− yn}, {xn−Tnxn}, {xn− vn}, and {un− yn};
all are bounded. So the rest of the proof is the same as Chang’s [1, Theorem 2.1]. �

Remark 2.3. (1) Theorem 2.2 removes the restriction on D which is bounded in Chang
[1, Theorem 2.1].

(2) Respectively, we can get Chang [1, Theorems 2.2, 2.3, and 2.4], but without the
restriction on D which is bounded.

(3) In Osilike and Akuchu [3], they discussed the common fixed points of a family of
asymptotically pseudocontractive maps. Our paper is different from it.
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