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We obtain common fixed point results for generalized I-nonexpansive C;-commuting
maps. As applications, various best approximation results for this class of maps are de-
rived in the setup of certain metrizable topological vector spaces.
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1. Introduction and preliminaries

Let X be a linear space. A p-norm on X is a real-valued function on X with0< p <1,
satistying the following conditions:
(i) lIxll, =0and [lx]l, =0 ¢ x =0,

(i) laxllp = lal?llxIl s

(iid) llx+yllp < lixllp+1yllp,
for all x,y € X and all scalars «. The pair (X, || - [|,) is called a p-normed space. It is a
metric linear space with a translation invariant metric d, defined by d,(x,y) = [Ix — yll,
for all x,y € X. If p = 1, we obtain the concept of the usual normed space. It is well
known that the topology of every Hausdorff locally bounded topological linear space
is given by some p-norm, 0 < p <1 (see [7, 13] and references therein). The spaces [,
and Ly, 0 < p <1, are p-normed spaces. A p-normed space is not necessarily a locally
convex space. Recall that dual space X* (the dual of X) separates points of X if for each
nonzero x € X, there exists f € X* such that f(x) # 0. In this case the weak topology on
X is well defined and is Hausdorff. Notice that if X is not locally convex space, then X*
need not separate the points of X. For example, if X = L,[0,1], 0 < p < 1, then X* = {0}
[17, pages 36-37]. However, there are some nonlocally convex spaces X (such as the p-
normed spaces [,, 0 < p < 1) whose dual X* separates the points of X. In the sequel, we
will assume that X* separates points of a p-normed space X whenever weak topology is
under consideration.
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2 Cy-commuting maps and invariant approximations

Let X be a metric linear space and M a nonempty subset of X. The set Py(u) = {x €
M :d(x,u) = dist(u, M)} is called the set of best approximations to u € X out of M, where
dist(u,M) = inf {d(y,u) : y € M}. Let f : M — M be a mapping. A mapping T: M — M
is called an f-contraction if there exists 0 < k < 1 such that d(Tx,Ty) < k d(fx, fy) for
anyx,y € M. If k = 1, then T is called f-nonexpansive. The set of fixed points of T' (resp.,
f)isdenoted by F(T') (resp., F(f)). A pointx € M is a common fixed (coincidence) point
of fand Tifx = fx = Tx (fx = Tx). The set of coincidence points of f and T is denoted
by C(f,T). Amapping T: M — M is called

(1) hemicompact if any sequence {x,} in M has a convergent subsequence whenever
d(x,, Tx,) — 0as n — oo;

(2) completely continuous if {x,} converges weakly to x which implies that {Tx,}
converges strongly to Tx;

(3) demiclosed at 0 if for every sequence {x,} € M such that {x,} converges weakly
tox and {Tx,} converges strongly to 0, we have Tx = 0.

The pair {f, T} is called

(4) commuting if T fx = fTx for all x € M;

(5) R-weakly commuting if for all x € M there exists R >0 such that d(fTx, T fx) <
Rd(fx,Tx).1f R = 1, then the maps are called weakly commuting;

(6) compatible [10] iflim, d(T fx,, f Tx,) = 0 whenever {x,} is a sequence such that
lim, Tx, = lim, fx, = t for some ¢ in M;

(7) weakly compatible [2, 11] if they commute at their coincidence points, that is, if
fTx =Tfx whenever fx = Tx. The set M is called g-starshaped with g € M if
the segment [g,x] = {(1 —k)g+kx:0 <k < 1} joining g to x is contained in M
for all x € M. Suppose that M is g-starshaped with g € F(f) and is both T- and
f-invariant. Then T and f are called

(8) R-subcommuting on M (see [19, 20]) if for all x € M, there exists a real number
R>0suchthatd(fTx, T fx) < (R/k)d((1—-k)q+kTx, fx) for each k € (0,1];

(9) R-subweakly commuting on M (see [7, 21]) if for all x € M, there exists a real
number R >0 such that d(fTx, T fx) < Rdist(fx, [q, Tx]);

(10) C4-commuting [2] if fTx = T fx for all x € Cy(f, T), where Cy(f,T) = U{C(f,
Tx):0 <k <1} and Tyx = (1 — k)g + kTx. Clearly, C;-commuting maps are
weakly compatible but not conversely in general. R-subcommuting and R-sub-
weakly commuting maps are C;-commuting but the converse does not hold in
general [2].

Meinardus [14] employed the Schauder fixed point theorem to prove a result regarding
invariant approximation. Singh [22] proved the following extension of “Meinardus’s”
result.

THEOREM 1.1. Let T be a nonexpansive operator on a normed space X, M a T-invariant
subset of X, and u € F(T). If Py (u) is nonempty compact and starshaped, then Py (1) N
F(T) + @.

Sahab et al. [18] established an invariant approximation result which contains Theo-
rem 1.1. Further generalizations of the result of Meinardus are obtained by Al-Thagafi [1],
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Shahzad [19-21], Hussain and Berinde [7], Rhoades and Saliga [16], and O’Regan and
Shahzad [15].

The aim of this paper is to establish a general common fixed point theorem for C;-
commuting generalized I-nonexpansive maps in the setting of locally bounded topolog-
ical vector spaces, locally convex topological vector spaces, and metric linear spaces. We
apply a new theorem to derive some results on the existence of best approximations. Our
results unify and extend the results of Al-Thagafi [1], Al-Thagafi and Shahzad [2], Dot-
son [3], Guseman and Peters [4], Habiniak [5], Hussain [6], Hussain and Berinde [7],
Hussain and Khan [8], Hussain et al. [9], Jungck and Sessa [12], Khan and Khan [13],
O’Regan and Shahzad [15], Rhoades and Saliga [16], Sahab et al. [18], Shahzad [19-21],
and Singh [22].

2. Common fixed point and approximation results

The following result extends and improves [2, Theorem 2.1}, [21, Theorem 2.1], and [15,
Lemma 2.1].

THEOREM 2.1. Let M be a subset of a metric space (X,d), and let I and T be weakly com-
patible self-maps of M. Assume that cI(T(M)) C I(M), cl(T(M)) is complete, and T and 1
satisfy forall x,y € M and 0 < h< 1,

d(Tx,Ty) <hmax{d(Ix,1y),d(Ix,Tx),d(Iy,Ty),d(Ix,Ty),d(I1y,Tx)}. (2.1)

Then F(I) N F(T) is a singleton.

Proof. As T(M) C I(M), one can choose x,, in M for n € N, such that T'x, = Ix,4;. Then
following the arguments in [15, Lemma 2.1], we infer that {Tx,} is a Cauchy sequence.
It follows from the completeness of cl(T(M)) that Tx, — w for some w € M and hence
Ix, — wasn — o. Consequently, lim, Ix, = lim, Tx, = w € cl(T(M)) C I(M). Thus w =
Iy for some y € M. Notice that for all n > 1, we have

d(w,Ty) <d(w,Tx,) +d(Tx,, Ty) <d(w,Txy)

2.2
+hmax{d(Ix,,Iy),d(Txn,1x,),d(Ty,1y),d(Ty,Ix,),d(Txu,1y)}. (2:2)

Letting n — oo, we obtain Iy = w = T'y. We now show that T'y is a common fixed point of
I'and T. Since I and T are weakly compatible and Iy = Ty, we obtain by the definition of
weak compatibility that ITy = TIy. Thus we have T?y = TIy = ITy and so by inequality
2.1,

d(TTy,Ty) < hmax {d(ITy,Ty),d(ITy, TTy),d(Iy,Ty),d(ITy, Ty),d(Iy, TTy)}
<hd(ITy,Ty).
(2.3)

Hence TTy =Ty ash € (0,1) and so Ty = TTy = ITy. This implies that Ty is a com-
mon fixed point of T and I. Inequality (2.1) further implies the uniqueness of the com-
mon fixed point T'y. Hence F(I) N F(T) is a singleton. O

We can prove now the following.
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TaEOREM 2.2. Let I and T be self-maps on a q-starshaped subset M of a p-normed space
X. Assume that I(T(M)) C I(M), q € F(I), and I is affine. Suppose that T and I are Cy-
commuting and satisfy

IIx — Iyl ,, dist (Ix,[Tx,q]), dist (Iy,[Ty,ql), (2.4)
dist (Ix, [Ty,q]), dist (Iy,[Tx,q]) ’

ITx—Tyll, < max{

for all x,y € M. If T is continuous, then F(T) N F(I) # @, provided one of the following
conditions holds:
(1) (T (M)) is compact and I is continuous;
(ii) M is complete, F(I) is bounded, and T is a compact map;
(iii) M is bounded, and complete, T is hemicompact and I is continuous;
(iv) X is complete, M is weakly compact, I is weakly continuous, and I — T is demiclosed
at 0;
(v) X is complete, M is weakly compact, T is completely continuous, and I is continuous.

Proof. Define T,,: M — M by
Tox = (1—-ky)q+k,Tx (2.5)

for some g and all x € M and a fixed sequence of real numbers k, (0 < k, < 1) converging
to 1. Then, for each n, (T, (M)) C I(M) as M is g-starshaped, c[(T(M)) c I(M), I is
affine, and Iq = q. AsI and T are C;-commuting and [ is affine with Iq = g, then for each
x € Cy(I,T),

ITyx=(1—kn)q+kaTx=(1—kn)q+kaTIx = T,Ix. (2.6)

Thus IT,x = T,Ix foreachx € C(I,T,) C C4(I, T). Hence I and T, are weakly compatible
for all n. Also by (2.4),
| Twx = Tuyll, = (ko) "I Tx = Tyl
< (k,,)pmax{lllx—lyllp, dist (Ix,[Tx,q]), dist(Iy,[Ty.q]),
dist (Ix,[Ty,q]), dist (Iy,[Tx,q])} (2.7)

< (k,,)pmax{lllx—lyllp, Ix = Tux||,» 1Ty = Tuyll,»

[11x = Tyl 1y = Tuxl,

for each x,y € M.
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(i) Since cl(T(M)) is compact, cl(T,(M)) is also compact. By Theorem 2.1, for each
n = 1, there exists x, € M such that x, = Ix, = T,x,. The compactness of cl(T(M))
implies that there exists a subsequence {Tx,,} of {Tx,} such that Tx,, — y as m — .
Then the definition of T,x,, implies x,, — y, so by the continuity of T and I, we have
y € F(T)NnF(I). Thus F(T) N F(I) + @.

(ii) As in (i), there is a unique x,, € M such that x, = Ty,x,, = Ix,. As T is compact and
{x,} being in F(I) is bounded, so {Tx,} has a subsequence {Tx,,} such that {Tx,,} — y
as m — oo, Then the definition of T},x,, implies x,, — y, so by the continuity of T and I,
we have y € F(T) N F(I). Thus F(T) N F(I) + &.

(ii1) As in (i), there exists x,, € M such that x,, = Ix,, = T,x,, and M is bounded, so
Xn — Txp = (1= (kn) ') (x4 —q) = 0 as n — oo and hence d, (x,,, Tx,,) — 0 as n — co. The
hemicompactness of T implies that {x,,} has a subsequence {x;} which converges to some
z € M. By the continuity of T and I we have z € F(T) N F(I). Thus F(T)n F(I) + .

(iv) As in (i), there exists x, € M such that x, = Ix, = T,x,. Since M is weakly com-
pact, we can find a subsequence {x,,} of {x,} in M converging weakly to y € M asm — co
and as I is weakly continuous so Iy = y. By (iii) Ix,, — Tx,, — 0 as m — oo. The demi-
closedness of I — T at 0 implies that [y = T'y. Thus F(T) N F(I) # &.

(v) As in (iv), we can find a subsequence {x,} of {x,} in M converging weakly to
y €M as m — oo. Since T is completely continuous, Tx,, — Ty as m — co. Since k, —
L, xXm = TiwXm = kmTxm + (1 — kyy)q — Ty as m — oo, Thus Tx,, — T?y as m — o and
consequently T2y = Ty implies that Tw = w, where w = Ty. Also, since Ix, = X, —
Ty = w, using the continuity of I and the uniqueness of the limit, we have Iw = w. Hence
F(T)NnF() + <. O

The following corollary improves and generalizes [2, Theorem 2.2] and [7, Theorem
2.2].

COROLLARY 2.3. Let M be a g-starshaped subset of a p-normed space X, and I and T contin-
uous self-maps of M. Suppose that I is affine with g € F(I), I(T(M)) C I(M), and [(T(M))
is compact. If the pair {1, T} is R-subweakly commuting and satisfies (2.4) for all x,y € M,
then F(T) N F(I) + &.

Remark 2.4. Theorem 2.2 extends and improves Al-Thagafi’s [1, Theorem 2.2], Dotson’s
[3, Theorem 1], Habiniak’s [5, Theorem 4], Hussain and Berinde’s [7, Theorem 2.2],
O’Regan and Shahzad’s [15, Theorem 2.2], Shahzad’s [21, Theorem 2.2], and the main
result of Rhoades and Saliga [16].

The following provides the conclusion of [13, Theorem 2] without the closedness of
M.

COROLLARY 2.5. Let M be a nonempty q-starshaped subset of a p-normed space X. If T is
nonexpansive self-map of M and cl(T(M)) is compact, then F(T) + <.

The following result contains properly Theorem 1.1, [18, Theorem 3], and improves
and extends [2, Theorem 3.1], [5, Theorem 8], [13, Theorem 4], and [19, Theorem 6].
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THEOREM 2.6. Let M be a subset of a p-normed space X and let I,T : X — X be mappings
such that u € F(T) N F(I) for some u € X and T(0M N M) C M. Assume that I(Pp(u)) =
Py(u) and the pair {I,T} is Cy-commuting and continuous on Py (u) and satisfies for all
x € Py(u) U {u},

11 — Tull, ify=u,
ITx — Tyll, < { max {|[Ix —Iyll,, dist (Ix, [g, Tx]), dist (Iy, (g, Ty]),
dist (Ix,[q, Ty]), dist (Iy,[q, Tx])} if y € Py(u).
(2.8)

Suppose that Py (u) is closed, q-starshaped with q € F(I), I is affine, and cI(T(Py(u))) is
compact. Then Py (u) NF(I) N F(T) #+ @.

Proof. Letx € Py(u). Then ||x — ull, = dist(u, M). Note that for any k € (0,1), [[ku+ (1 —
K)x—ull, = (1= k)P llx —ull, < dist(u, M).

It follows that the line segment {ku+ (1 —k)x:0 < k < 1} and the set M are disjoint.
Thus x is not in the interior of M and so x € dM N M. Since T(0M N M) C M, Tx must
be in M. Also since Ix € Py(u), u € F(T) N F(I) and T, and I satisfy (2.8), we have

1 Tx—ullp = Tx — Tull, < [Ix —Tull, = [Ix — ull, = dist(u, M). (2.9)
Thus Tx € Py (u). Theorem 2.2(i) further guarantees that Py (u) N F(I) N F(T) # @. O

Let D = Py (u) N CL,(u), where CL,(u) = {x € M : Ix € Py(u)}.

The following result contains [1, Theorem 3.2], extends [2, Theorem 3.2], and pro-
vides a nonlocally convex space analogue of [8, Theorem 3.3] for more general class of
maps.

THEOREM 2.7. Let M be a subset of a p-normed space X, and I and T : X — X mappings
such that u € F(T) n F(I) for some u € X and T(0M N M) C M. Suppose that D is closed
q-starshaped with q € F(I), I is affine, I(T (D)) is compact, I(D) = D, and the pair {T,I}
is Cyq-commuting and continuous on D and, for all x € D U {u}, satisfies the following in-
equality:

l1x — Tull, ify=u,
| Tx = Tyll, < {max {[lIx — Iy, dist (Ix,[g, Tx]), dist (Iy,[q,Ty]),
dist (Ix,[g, Ty]), dist(Iy,[q, Tx])} ifyeD.
(2.10)

If I is nonexpansive on Pp(u) U {u}, then Py(u) NF(I) NF(T) + <.

Proof. Let x € D, then proceeding as in the proof of Theorem 2.6, we obtain Tx € Py(u).
Moreover, since I is nonexpansive on Pys(u) U {u} and T satisfies (2.10), we obtain

IITx—ull, <ITx — Tull, < [[Ix — Tull, = dist(u, M). (2.11)

Thus ITx € Py(u) and so Tx € Cl;(u). Hence Tx € D. Consequently, cI(T(D)) C D =
I(D). Now Theorem 2.2(i) guarantees that Py (1) N F(I) N F(T) #+ &. O
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Remark 2.8. Notice that approximation results similar to Theorems 2.6-2.7 can be ob-
tained, using Theorem 2.2(ii)—(v).

3. Further remarks

(1) All results of the paper (Theorem 2.2-Remark 2.8) remain valid in the setup of a
metrizable locally convex topological vector space (TVS) (X,d), where d is translation
invariant and d(ax,ay) < ad(x, y), for each a with 0 < @ <1 and x, y € X (recall that d,,
is translation invariant and satisfies d,(ax, ay) < afd,(x, y) for any scalar « > 0).

Consequently, Hussain and Khan’s [8, Theorems 2.2-3.3] are improved and extended.

(2) Following the arguments as above, we can obtain all of the recent best approxi-
mation results due to Hussain and Berinde’s [7, Theorem 3.2—Corollary 3.4] for more
general class of C;-commuting maps I and T.

(3) A subset M of a linear space X is said to have property (N) with respect to T [7, 9]
if

1) T:M—- M,
(ii) (1 —k,)g+k,Tx € M, for some q € M and a fixed sequence of real numbers k,
(0 < k, < 1) converging to 1 and for each x € M.
A mapping I is said to have property (C) on a set M with property (N) if I((1 — k,)q +
k,Tx) = (1 —ky)Iq+k,ITx for eachx € M and n € N.

All of the results of the paper (Theorem 2.2—-Remark 2.8) remain valid, provided I is
assumed to be surjective and the g-starshapedness of the set M and affineness of I are
replaced by the property (N) and property (C), respectively, in the setup of p-normed
spaces and metrizable locally convex topological vector spaces (TVS) (X,d) where d is
translation invariant and d(ax,ay) < ad(x, y), for each & with 0 <@ < 1 and x,y € X.
Consequently, recent results due to Hussain [6], Hussain and Berinde [7], and Hussain et
al. [9] are extended to a more general class of C;-commuting maps.

(4) Let (X, d) be a metric linear space with a translation invariant metric d. We say that
the metric d is strictly monotone [4] if x # 0 and 0 < ¢ < 1 imply d(0, tx) < d(0,x). Each
p-norm generates a translation invariant metric, which is strictly monotone [4, 7].

Using [10, Theorem 3.2], we establish the following generalization of Al-Thagafi and
Shahzad’s [2, Theorem 2.2 ], Dotson’s [3, Theorem 1], Guseman and Peters’s [4, Theorem
2], and Hussain and Berinde’s [7, Theorem 3.6].

THEOREM 3.1. Let T and I be self-maps on a compact subset M of a metric linear space (X, d)
with translation invariant and strictly monotone metric d. Assume that M is q-starshaped,
c(T(M)) c I(M), q € F(I), and I is affine (or M has the property (N) with q € F(I), I satis-
fies the condition (C), and M = I(M)). Suppose that T and I are continuous, Cy-commuting
and satisfy

d(Ix,Iy), dist(Ix,[Tx,q]), dist (Iy,[Ty,q]),}
(3.1)

d(Tx,Ty) < max 1
5 [dist (Ix,[Ty,q]) +dist(Iy,[Tx,q])]

forallx,y € M. Then F(T) N F(I) # @.
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Proof. Two continuous maps defined on a compact domain are compatible if and only if
they are weakly compatible (cf. [10, Corollary 2.3]). To obtain the result, use an argument
similar to that in Theorem 2.2(i) and apply [10, Theorem 3.2] instead of Theorem 2.1.

O

(5) Similarly, all other results of Section 2 (Corollary 2.3—Theorem 2.7) hold in the
setting of metric linear space (X,d) with translation invariant and strictly monotone
metric d provided we replace compactness of cI(T(M)) by compactness of M and using
Theorem 3.1 instead of Theorem 2.2(i).
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