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We obtain common fixed point results for generalized I-nonexpansive R-subweakly com-
muting maps on nonstarshaped domain. As applications, we establish noncommutative
versions of various best approximation results for this class of maps in certain metrizable
topological vector spaces.
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1. Introduction and preliminaries

Let X be a linear space. A p-norm on X is a real-valued function on X with 0 < p ≤ 1,
satisfying the following conditions:

(i) ‖x‖p ≥ 0 and ‖x‖p = 0⇔ x = 0,
(ii) ‖αx‖p = |α|p‖x‖p,
(iii) ‖x+ y‖p ≤ ‖x‖p +‖y‖p

for all x, y ∈ X and all scalars α. The pair (X ,‖,‖p) is called a p-normed space. It is a
metric linear space with a translation invariant metric dp defined by dp(x, y)= ‖x− y‖p
for all x, y ∈ X . If p = 1, we obtain the concept of the usual normed space. It is well-
known that the topology of every Hausdorff locally bounded topological linear space is
given by some p-norm, 0 < p ≤ 1 (see [9] and references therein). The spaces lp and Lp,
0 < p ≤ 1 are p-normed spaces. A p-normed space is not necessarily a locally convex
space. Recall that dual space X∗ (the dual of X) separates points of X if for each nonzero
x ∈ X , there exists f ∈ X∗ such that f (x) �= 0. In this case the weak topology on X is
well-defined and is Hausdorff. Notice that if X is not locally convex space, then X∗ need
not separate the points of X . For example, if X = Lp[0,1], 0 < p < 1, then X∗ = {0} ([12,
pages 36 and 37]). However, there are some non-locally convex spaces X (such as the
p-normed spaces lp, 0 < p < 1) whose dual X∗ separates the points of X .

Let X be a metric linear space and M a nonempty subset of X . The set PM(u)= {x ∈
M : d(x,u)= dist(u,M)} is called the set of best approximants to u∈ X out of M, where
dist(u,M) = inf{d(y,u) : y ∈M}. Let f :M →M be a mapping. A mapping T :M →M
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2 Common fixed point and approximations

is called an f -contraction if there exists 0 ≤ k < 1 such that d(Tx,Ty) ≤ k d( f x, f y)
for any x, y ∈M. If k = 1, then T is called f -nonexpansive. A mapping T :M →M is
called condensing if for any bounded subset B ofM with α(B) > 0, α(T(B)) < α(B), where
α(B) = inf{r > 0 : B can be covered by a finite number of sets of diameter ≤ r}. A map-
ping T :M→M is hemicompact if any sequence {xn} inM has a convergent subsequence
whenever d(xn,Txn)→ 0 as n→∞. The set of fixed points of T (resp. f ) is denoted by
F(T) (resp. F( f )). A point x ∈M is a common fixed point of f and T if x = f x = Tx. The
pair { f ,T} is called (1) commuting if T f x = f Tx for all x ∈M; (2) R-weakly commut-
ing [16] if for all x ∈M there exists R > 0 such that d( f Tx,T f x)≤ Rd( f x,Tx). If R= 1,
then the maps are called weakly commuting. The setM is called q-starshaped with q ∈M
if the segment [q,x]= {(1− k)q+ kx : 0≤ k ≤ 1} joining q to x, is contained inM for all
x ∈M. Suppose that M is q-starshaped with q ∈ F( f ) and is both T- and f -invariant.
Then T and f are called R-subweakly commuting onM (see [17]) if for all x ∈M, there
exists a real number R > 0 such that d( f Tx,T f x) ≤ Rdist( f x, [q,Tx]). It is well-known
that commuting maps are R-subweakly commuting maps and R-subweakly commuting
maps are R-weakly commuting but not conversely in general (see [16, 17]).

A setM is said to have property (N) if [7, 11]
(i) T :M→M,
(ii) (1− kn)q + knTx ∈M, for some q ∈M and a fixed sequence of real numbers

kn(0 < kn < 1) converging to 1 and for each x ∈M.
A mapping f is said to have property (C) on a set M with property (N) if f ((1− kn)q+
knTx)= (1− kn) f q+ kn f Tx for each x ∈M and n∈N .

We extend the concept of R-subweakly commuting maps to nonstarshaped domain in
the following way (see [7]):

Let f and T be self-maps on the set M having property (N) with q ∈ F( f ). Then f
and T are called R-subweakly commuting onM, provided for all x ∈M, there exists a real
number R > 0 such that d( f Tx,T f x)≤ Rd( f x,Tnx) where Tnx = (1− kn)q+ knTx, and
the sequence {kn} is as in definition of property (N) ofM. Each T-invariant q-starshaped
set has property (N) but not conversely in general. Each affine map on a q-starshaped set
M satisfies condition (C).

Example 1.1 [7]. Consider X = R2 and M = {(0, y) : y ∈ [−1,1]} ∪ {(1− 1/(n+1),0) :
n ∈ N}∪ {(1,0)} with the metric induced by the norm ‖(a,b)‖ = |a|+ |b|, (a,b) ∈ R2.
Define T onM as follows:

T(0, y)= (0,−y), T
(
1− 1

n+1
,0
)
=
(
0,1− 1

n+1

)
, T(1,0)= (0,1). (1.1)

Clearly, M is not starshaped [11] but M has the property (N) for q = (0,0) and kn =
1− 1/(n+1). Define I(0, y) = I(1− 1/(n+1),0) = (0,0), I(1,0) = (1,0). Then ‖TIx −
ITx‖ = 0 or 1. Thus for all x in M, ‖TIx− ITx‖ ≤ R‖knTx− Ix‖ with each R ≥ 1 and
q = (0,0)∈ F(I). Thus I and T are R-subweakly commuting but not commuting onM.

The map T :M→ X is said to be completely continuous if {xn} converges weakly to x
implies that {Txn} converges strongly to Tx.
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In 1963, Meinardus [10] employed the Schauder fixed point theorem to prove a result
regarding invariant approximation. In 1979, Singh [19] proved the following extension
of “Meinardus” result.

Theorem 1.2. Let T be a nonexpansive operator on a normed space X ,M be a T-invariant
subset of X and u ∈ F(T). If PM(u) is nonempty compact and starshaped, then PM(u)∩
F(T) �= ∅.

In 1988, Sahab et al. [13] established the following result which contains Theorem 1.2
and many others.

Theorem 1.3. Let I and T be selfmaps of a normed space X with u ∈ F(I)∩ F(T), M ⊂
X with T(∂M) ⊂M, and q ∈ F(I). If PM(u) is compact and q-starshaped, I(PM(u)) =
PM(u), I is continuous and linear on PM(u), I and T are commuting on PM(u) and T is
I-nonexpansive on PM(u)∪{u}, then PM(u)∩F(T)∩F(I) �= ∅.

Let D = PM(u)∩CI
M(u), where C

I
M(u)= {x ∈M : Ix ∈ PM(u)}.

Theorem 1.4 [1, Theorem 3.2]. Let I and T be selfmaps of a Banach space X with u ∈
F(I)∩F(T),M ⊂ X with T(∂M∩M)⊂M. Suppose thatD is closed and q-starshaped with
q ∈ F(I), I(D)=D, I is linear and continuous on D. If I and T are commuting on D and T
is I-nonexpansive on D∪{u} with cl(T(D)) compact, then PM(u)∩F(T)∩F(I) �= ∅.

Recently, by introducing the concept of non-commuting maps to this area, Shahzad
[14–18], Hussain and Khan [6] and Hussain et al. [7], further extended and improved
the above mentioned results to non-commuting maps.

The aim of this paper is to prove new results extending and subsuming the above
mentioned invariant approximation results. To do this, we establish a general common
fixed point theorem for R-subweakly commuting generalized I-nonexpansive maps on
nonstarshaped domain in the setting of locally bounded topological vector spaces, locally
convex topological vector spaces and metric linear spaces. We apply a new theorem to
derive some results on the existence of best approximations. Our results unify and extend
the results of Al-Thagafi [1], Dotson [3], Guseman and Peters [4], Habiniak [5], Hussain
and Khan [6], Hussain et al. [7], Khan and Khan [9], Sahab et al. [13], Shahzad [14–18],
and Singh [19].

2. Common fixed point and approximation results

The following common fixed point result is a consequence of Theorem 1 of Berinde [2],
which will be needed in the sequel.

Theorem 2.1. Let M be a closed subset of a metric space (X ,d) and T and f be R-weakly
commuting self-maps of M such that T(M) ⊂ f (M). Suppose there exists k ∈ (0,1) such
that

d(Tx,Ty)≤ kmax
{
d( f x, f y),d(Tx, f x),d(Ty, f y),d(Tx, f y),d(Ty, f x)

}
(2.1)

for all x, y ∈M. If cl(T(M)) is complete and T is continuous, then there is a unique point z
inM such that Tz = f z = z.



4 Common fixed point and approximations

We can prove now the following.

Theorem 2.2. Let T , I be self-maps on a subsetM of a p-normed space X . Assume thatM
has the property (N) with q ∈ F(I), I satisfies the condition (C) and M = I(M). Suppose
that T and I are R-subweakly commuting and satisfy

‖Tx−Ty‖p ≤max
{‖Ix− I y‖p,dist(Ix, [Tx,q]),dist(I y, [Ty,q]),

dist(Ix, [Ty,q]),dist(I y, [Tx,q])
} (2.2)

for all x, y ∈M. If T is continuous, then F(T)∩ F(I) �= ∅, provided one of the following
conditions holds:

(i) M is closed, cl(T(M)) is compact and I is continuous,
(ii) M is bounded and complete, T is hemicompact and I is continuous,
(iii) M is bounded and complete, T is condensing and I is continuous,
(iv) X is complete with separating dual X∗, M is weakly compact, T is completely con-

tinuous and I is continuous.

Proof. Define Tn by Tnx = (1− kn)q+ knTx for all x ∈M and fixed sequence of real num-
bers kn(0 < kn < 1) converging to 1. Then, each Tn is a well-defined self-mapping ofM as
M has property (N) and for each n, Tn(M)⊂M = I(M). Now the property (C) of I and
the R-subweak commutativity of {T ,I} imply that

∥∥TnIx− ITnx
∥∥
p =

(
kn
)p‖TIx− ITx‖p ≤

(
kn
)p
Rdist(Ix, [Tx,q])

≤ (kn)pR∥∥Tnx− Ix
∥∥
p

(2.3)

for all x ∈M. This implies that the pair {Tn,I} is (kn)pR-weakly commuting for each n.
Also by (2.2),

∥∥Tnx−Tny
∥∥
p =

(
kn
)p‖Tx−Ty‖p

≤ (kn)pmax
{‖Ix− I y‖p,dist(Ix, [Tx,q]),dist(I y, [Ty,q]),

dist(Ix, [Ty,q]),dist(I y, [Tx,q])
}

≤ (kn)pmax
{
‖Ix− I y‖p,

∥∥Ix−Tnx
∥∥
p,
∥∥I y−Tny

∥∥
p,

∥∥Ix−Tny
∥∥
p,
∥∥I y−Tnx

∥∥
p

}

(2.4)

for each x, y ∈M.
(i) Since clT(M) is compact, cl(Tn(M)) is also compact. By Theorem 2.1, for each

n≥ 1, there exists xn ∈M such that xn = Ixn = Tnxn. The compactness of clT(M) implies
that there exists a subsequence {Txm} of {Txn} such that Txm → y as m→∞. Then the
definition of Tmxm implies xm → y, so by the continuity of T and I we have y ∈ F(T)∩
F(I). Thus F(T)∩F(I) �= ∅.
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(ii) As in (i) there exists xn ∈M such that xn = Ixn = Tnxn. And M is bounded, so
xn−Txn = (1− (kn)−1)(xn− q)→ 0 as n→∞ and hence dp(xn,Txn)→ 0 as n→∞. The
hemicompactness of T implies that {xn} has a subsequence {xj}which converges to some
z ∈M. By the continuity of T and I we have z ∈ F(T)∩F(I). Thus F(T)∩F(I) �= ∅.

(iii) Every condensing map on a complete bounded subset of a metric space is hemi-
compact. Hence the result follows from (ii).

(iv) As in (i) there exists xn ∈M such that xn = Ixn = Tnxn. SinceM is weakly compact,
we can find a subsequence {xm} of {xn} in M converging weakly to y ∈M as m→∞.
Since T is completely continuous, Txm → Ty as m→∞. Since kn → 1, xm = Tmxm =
kmTxm + (1− km)q→ Ty asm→∞. Thus Txm→ T2y asm→∞ and consequently T2y =
Ty implies that Tw =w, where w = Ty. Also, since Ixm = xm→ Ty =w, using the conti-
nuity of I and the uniqueness of the limit, we have Iw =w. Hence F(T)∩F(I) �= ∅. �

It is clear that each T-invariant q-starshaped set satisfies the property (N) and if I is
affine, then I satisfies the condition (C) and Tn(M)⊂ I(M) provided T(M)⊂ I(M) and
q ∈ F(I).

Corollary 2.3. Let M be a closed q-starshaped subset of a p-normed space X , and T and
I continuous self-maps of M. Suppose that I is affine with q ∈ F(I), T(M) ⊂ I(M) and
clT(M) is compact. If the pair {T ,I} is R-subweakly commuting and satisfy (2.2) for all
x, y ∈M, then F(T)∩F(I) �= ∅.

Corollary 2.4 [18, Theorem 2.2]. Let M be a closed q-starshaped subset of a normed
space X , and T and I continuous self-maps of M. Suppose that I is affine with q ∈ F(I),
T(M) ⊂ I(M) and clT(M) is compact. If the pair {T ,I} is R-subweakly commuting and
satisfy, for all x, y ∈M,

‖Tx−Ty‖ ≤max
{
‖Ix− I y‖,dist(Ix, [Tx,q]),dist(I y, [Ty,q]),

1
2
[dist(Ix, [Ty,q]) +dist(I y, [Tx,q])]

}
,

(2.5)

then F(T)∩F(I) �= ∅.

The following corollary improves and generalizes [1, Theorem 2.2].

Corollary 2.5. LetM be a nonempty closed and q-starshaped subset of a p-normed space
X and I be continuous self-map of M. Suppose that I is affine with q ∈ F(I), T(M) ⊂
I(M) and clT(M) is compact. If the pair {T ,I} is R-subweakly commuting and T is I-
nonexpansive onM, then F(T)∩F(I) �= ∅.

The following corollaries improve and generalize [3, Theorem 1] and [5, Theorem 4].

Corollary 2.6. LetM be a nonempty closed and q-starshaped subset of a p-normed space
X , T and I be continuous self-maps of M. Suppose that I is affine with q ∈ F(I), T(M) ⊂
I(M) and clT(M) is compact. If the pair {T ,I} is commuting and T and I satisfy (2.2), then
F(T)∩F(I) �= ∅.
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Corollary 2.7 [9, Theorem 2]. Let M be a nonempty closed and q-starshaped subset of
a p-normed space X . If T is nonexpansive self-map of M and clT(M) is compact, then
F(T) �= ∅.

We now derive some approximation results.
LetDR,I

M (u)=PM(u)∩GR,I
M (u), whereGR,I

M (u)={x∈M :‖Ix−u‖p≤(2R+1)dist(u,M)}.
The following result extends Theorem 2.3 of Shahzad [16] from the I-nonexpansive-

ness of T to a more general condition.

Theorem 2.8. Let M be subset of a p-normed space X and I ,T : X → X be mappings such
that u ∈ F(T)∩ F(I) for some u ∈ X and T(∂M ∩M) ⊂M. If I(DR,I

M (u)) = DR,I
M (u) and

the pair {T ,I} is R-subweakly commuting and continuous on DR,I
M (u) and satisfy for all

x ∈DR,I
M (u)∪{u},

‖Tx−Ty‖p ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖Ix− Iu‖p if y=u,

max
{‖Ix− I y‖p,dist(Ix, [q,Tx]),dist(I y, [q,Ty]),
dist(Ix, [q,Ty]),dist(I y, [q,Tx])

}
if y ∈DR,I

M (u),
(2.6)

then DR,I
M (u) is T-invariant. Suppose that DR,I

M (u) is closed and cl(T(DR,I
M (u))) is compact.

If DR,I
M (u) has property (N) with q ∈ F(I), and I satisfies property (C) on DR,I

M (u), then
PM(u)∩F(I)∩F(T) �= ∅.

Proof. Let x ∈ DR,I
M (u). Then, x ∈ PM(u) and hence ‖x− u‖p = dist(u,M). Note that for

any k ∈ (0,1),

‖ku+ (1− k)x−u‖p = (1− k)p‖x−u‖p < dist(u,M). (2.7)

It follows that the line segment {ku+ (1− k)x : 0 < k < 1} and the set M are disjoint.
Thus x is not in the interior of M and so x ∈ ∂M∩M. Since T(∂M∩M)⊂M, Tx must
be inM. Also since Ix ∈ PM(u), u∈ F(T)∩F(I) and T and I satisfy (2.6), we have

‖Tx−u‖p = ‖Tx−Tu‖p ≤ ‖Ix− Iu‖p = ‖Ix−u‖p = dist(u,M). (2.8)

Thus Tx ∈ PM(u). From the R-subweak commutativity of the pair {T ,I} and (2.6), it
follows that (see also proof of [16, Theorem 2.3]),

‖ITx−u‖p = ‖ITx−TIx+TIx−Tu‖p ≤ R‖Tx− Ix‖p +
∥∥I2x− Iu

∥∥
p

= R‖Tx−u+u− Ix‖p +
∥∥I2x−u

∥∥
p

≤ R
(‖Tx−u‖p +‖Ix−u‖p

)
+
∥∥I2x−u

∥∥
p

≤ (2R+1)dist(u,M).

(2.9)

Thus Tx∈GR,I
M (u). Consequently,T(DR,I

M (u))⊂DR,I
M (u)=I(DR,I

M (u)). Now Theorem 2.2(i)
guarantees that, PM(u)∩F(I)∩F(T) �= ∅. �
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Remarks 2.9. (1) If p = 1 andM is q-starshaped with q ∈ F(I), T(M)⊂ I(M) and I is lin-
ear on DR,I

M (u) in Theorem 2.8, we obtain the conclusion of a recent result [18, Theorem
2.5] for the more general inequality (2.6).

(2) Let CI
M(u) = {x ∈ M : Ix ∈ PM(u)}. Then I(PM(u)) ⊂ PM(u) implies PM(u) ⊂

CI
M(u) ⊂ GR,I

M (u) and hence DR,I
M (u) = PM(u). Consequently, Theorem 2.8 remains valid

when DR,I
M (u) = PM(u). Hence we obtain the following result which contains properly

Theorems 1.2 and 1.3 and improves and extends Theorem 8 of [5], Theorem 4 in [9],
and Theorem 6 in [14, 15].

Corollary 2.10. LetM be subset of a p-normed space X and let I ,T : X → X be mappings
such that u∈ F(T)∩F(I) for some u∈ X and T(∂M∩M)⊂M. Assume that I(PM(u))=
PM(u) and the pair {T ,I} is R-subweakly commuting and continuous on PM(u) and satisfy
for all x ∈ PM(u)∪{u},

‖Tx−Ty‖p ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖Ix− Iu‖p if y = u,

max
{‖Ix− I y‖p,dist(Ix, [q,Tx]),dist(I y, [q,Ty]),
dist(Ix, [q,Ty]),dist(I y, [q,Tx])

}
if y ∈ PM(u).

(2.10)

Suppose that PM(u) is closed, q-starshaped with q ∈ F(I), I is affine and cl(T(PM(u))) is
compact. Then PM(u)∩F(I)∩F(T) �= ∅.

Let D = PM(u)∩CI
M(u), where C

I
M(u)= {x ∈M : Ix ∈ PM(u)}.

The following result contains Theorem 1.4 and many others.

Theorem 2.11. LetM be subset of a p-normed space X and I ,T : X → X be mappings such
that u∈ F(T)∩F(I) for some u∈ X and T(∂M∩M)⊂M. If I(D)=D and the pair {T ,I}
is commuting and continuous on D and satisfy for all x ∈D∪{u},

‖Tx−Ty‖p ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖Ix− Iu‖p if y = u,

max
{‖Ix− I y‖p,dist(Ix, [q,Tx]),dist(I y, [q,Ty]),
dist(Ix, [q,Ty]),dist(I y, [q,Tx])

}
if y ∈D,

(2.11)

then D is T-invariant. Suppose that D is closed and cl(T(D)) is compact. If D has property
(N) with q ∈ F(I), and I satisfies property (C) on D, then PM(u)∩F(I)∩F(T) �= ∅.

Proof. Let x ∈D, then proceeding as in the proof of Theorem 2.8, we obtain Tx ∈ PM(u).
Moreover, since T commutes with I on D and T satisfies (2.11),

‖ITx−u‖p = ‖TIx−Tu‖p ≤
∥∥I2x− Iu

∥∥
p =

∥∥I2x−u
∥∥
p = dist(u,M). (2.12)

Thus ITx ∈ PM(u) and so Tx ∈ CI
M(u). Hence Tx ∈D. Consequently, T(D)⊂D = I(D).

Now Theorem 2.2(i) guarantees that PM(u)∩F(I)∩F(T) �= ∅. �

In the following result we obtain a non-locally convex space analogue of [6, Theorem
3.3] for nonstarshaped set D.
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Theorem 2.12. Let M be subset of a p-normed space X and I ,T : X → X be mappings
such that u∈ F(T)∩F(I) for some u∈ X and T(∂M∩M)⊂M. If I(D)=D and the pair
{T ,I} is R-subweakly commuting and continuous onD and, for all x ∈D∪{u}, satisfies the
following inequality,

‖Tx−Ty‖p ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖Ix− Iu‖p if y = u,

max
{‖Ix− I y‖p,dist(Ix, [q,Tx]),dist(I y, [q,Ty]),
dist(Ix, [q,Ty]),dist(I y, [q,Tx])

}
if y ∈D,

(2.13)

and I is nonexpansive on PM(u)∪{u}, then D is T-invariant. Suppose that D is closed, has
property (N) with q ∈ F(I), cl(T(D)) is compact and I satisfies property (C) on D. Then
PM(u)∩F(I)∩F(T) �= ∅.

Proof. Let x ∈D, then proceeding as in the proof of Theorem 2.8, we obtain Tx ∈ PM(u).
Moreover, since I is nonexpansive on PM(u)∪{u} and T satisfies (2.13), we obtain

‖ITx−u‖p ≤ ‖Tx−Tu‖p ≤ ‖Ix− Iu‖p = dist(u,M). (2.14)

Thus ITx ∈ PM(u) and so Tx ∈ CI
M(u). Hence Tx ∈D. Consequently, T(D)⊂D = I(D).

Now Theorem 2.2(i) guarantees that PM(u)∩F(I)∩F(T) �= ∅. �

Remark 2.13. Notice that approximation results similar to Theorems 2.8, 2.11, and 2.12
can be obtained, using Theorem 2.2(ii), (iii), and (iv).

Example 2.14. Let X = R and M = {0,1,1− 1/(n+1) : n ∈ N} be endowed with usual
metric. Define T1 = 0 and T0 = T(1− 1/(n+1)) = 1 for all n ∈ N . Clearly, M is not
starshaped but M has the property (N) for q = 0 and kn = 1− 1/(n+1), n ∈ N . Let
Ix = x for all x ∈M. Now I and T satisfy (2.2) together with all other conditions of
Theorem 2.2(i) except the condition that T is continuous. Note that F(I)∩F(T)=∅.

Example 2.15. Let X = R2 be endowed with the p-norm ‖,‖p defined by ‖(a,b)‖p =
|a|p + |b|p, (a,b)∈ R2.

(1) LetM = A∪B, where A= {(a,b)∈ X : 0≤ a≤ 1,0≤ b ≤ 4} and B = {(a,b)∈ X :
2≤ a≤ 3,0≤ b ≤ 4}. Define T :M→M by

T(a,b)=
⎧⎪⎨
⎪⎩
(2,b) if (a,b)∈A,

(1,b) if (a,b)∈ B
(2.15)

and I(x) = x, for all x ∈M. All of the conditions of Theorem 2.2(i) are satisfied except
thatM has property (N), that is, (1− kn)q+ knT(M) is not contained inM for any choice
of q ∈M and kn. Note F(I)∩F(T)=∅.
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(2) IfM = {(a,b)∈ X : 0≤ a <∞,0≤ b ≤ 1} and T :M→M is defined by

T(a,b)= (a+1,b), (a,b)∈M. (2.16)

Define I(x)= x, for all x ∈M. All of the conditions of Theorem 2.2(i) are satisfied except
thatM is compact. Note F(I)∩F(T)=∅. Notice thatM, being convex and T-invariant,
has the property (N) for any choice of q and {kn}.

(3) IfM = {(a,b)∈ X : 0 < a < 1,0 < b < 1} and T ,I :M→M are defined by T(a,b)=
(a/2,b/3), and I(x)= x for all x ∈M. All of the conditions of Theorem 2.2(i) are satisfied
except the fact thatM is closed. However F(I)∩F(T)=∅.

Example 2.16. LetX = R andM = [0,1] be endowed with the usual metric. Define T(x)=
0 and I(x) = 1− x for each x ∈M. All of the conditions of Theorem 2.2(i) are satisfied
except the condition that the pair {I ,T} is R-subweakly commuting. Note F(I)∩F(T)=
∅.

3. Further results

All results of the paper (Theorem 2.2–Remark 2.13) remain valid in the setup of a metriz-
able locally convex topological vector space(tvs) (X ,d) where d is translation invariant
and d(αx,αy) ≤ αd(x, y), for each α with 0 < α < 1 and x, y ∈ X (recall that dp is trans-
lation invariant and satisfies dp(αx,αy)≤ αpdp(x, y) for any scalar α≥ 0). Consequently,
Theorem 2.2 (i)-(ii) and Theorem 3.3 (i)-(ii) due to Hussain and Khan [6] and Theorem
3.5 (i)-(ii) & (v), (ix)-(x) and Theorem 4.2 (i)-(ii) & (v), (ix)-(x) due to Hussain et al. [7]
are extended to a class of maps satisfying a more general inequality.

From Corollary 2.3, we have the following result which extends [18, Theorem 2.2];

Corollary 3.1. LetM be a closed q-starshaped subset of a metrizable locally convex space
(X ,d) where d is translation invariant and d(αx,αy)≤ αd(x, y), for each α with 0 < α < 1
and x, y ∈ X . Suppose that T and I are continuous self-maps ofM, I is affine with q ∈ F(I),
T(M) ⊂ I(M) and clT(M) is compact. If the pair {T ,I} is R-subweakly commuting and
satisfy for all x, y ∈M,

d(Tx,Ty)≤max
{
d(Ix,I y),dist(Ix, [Tx,q]),dist(I y, [Ty,q]),

dist(Ix, [Ty,q]),dist(I y, [Tx,q])
}
,

(3.1)

then F(T)∩F(I) �= ∅.

We define CI
M(u)= {x ∈M : Ix ∈ PM(u)} and denote by �0 the class of closed convex

subsets of X containing 0. For M ∈ �0, we defineMu = {x ∈M : ‖x‖ ≤ 2‖u‖}. It is clear
that PM(u)⊂Mu ∈�0.

Following result includes [1, Theorem 4.1] and [5, Theorem 8] and provides an ana-
logue of [18, Theorem 2.8] in the setting of metrizable locally convex space and contrac-
tive condition involved is more general.

Theorem 3.2. Let X be as in Corollary 3.1, and T be a self-mapping of X with u ∈ F(T),
M ∈ �0 such that T(M)⊂M. Suppose that clT(M) is compact, T is continuous onM and
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satisfies for all x ∈M∪{u},

d(Tx,Ty)≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d(x,u) if y = u,

max
{
d(x, y),dist(x, [0,Tx]),dist(y, [0,Ty]),

dist(x, [0,Ty]),dist(y, [0,Tx])
}

if y ∈M,

(3.2)

then
(i) PM(u) is nonempty, closed, and convex,
(ii) T(PM(u))⊂ PM(u),
(iii) PM(u)∩F(T) �= ∅.

Proof. (i) Let r = dist(u,M). Then there is a minimizing sequence {yn} in M such that
limn d(u, yn) = r. As clT(M) is compact so {Tyn} has a convergent subsequence {Tym}
with limTym = x0 (say) inM. Now by (3.2)

r ≤ d
(
x0,u

)= limd
(
Tym,u

)≤ limd
(
ym,u

)= limd
(
yn,u

)= r. (3.3)

Hence x0 ∈ PM(u). Thus PM(u) is nonempty closed and convex.
(ii) Let z ∈ PM(u). Then d(Tz,u)= d(Tz,Tu)≤ d(z,u)= dist(u,M). This implies that

Tz ∈ PM(u) and so T(PM(u))⊂ PM(u).
(iii) As clT(PM(u)) ⊂ clT(M), so clT(PM(u)) is compact. Thus by Corollary 3.1,

PM(u)∩F(T) �= ∅. �

Theorem 3.3. Let X be as in Theorem 3.2 and I and T be self-mappings of X with u ∈
F(I)∩ F(T) and M ∈ �0 such that T(Mu) ⊂ I(M) ⊂M. Suppose that I is affine and con-
tinuous on M, d(Ix,u) ≤ d(x,u) for all x ∈M, clI(M) is compact and I satisfies for all
x, y ∈M,

d(Ix,I y)≤max
{
d(x, y),dist(x, [0,Ix]),dist(y, [0,I y]),

dist(x, [0,I y]),dist(y, [0,Ix])
}
.

(3.4)

If the pair {T ,I} is R-subweakly commuting and T is continuous on Mu and satisfy for all
x, y ∈Mu∪{u}, and q ∈ F(I),

d(Tx,Ty)≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d(Ix,Iu) if y = u,

max
{
d(Ix,I y),dist(Ix, [q,Tx]),dist(I y, [q,Ty]),

dist(Ix, [q,Ty]),dist(I y, [q,Tx])
}

if y ∈Mu,

(3.5)

then
(i) PM(u) is nonempty, closed, and convex,
(ii) T(PM(u))⊂ I(PM(u))⊂ PM(u),
(iii) PM(u)∩F(I)∩F(T) �= ∅.

Proof. From Theorem 3.2, we obtain (i). Also we have I(PM(u)) ⊂ PM(u). Let y ∈
TPM(u). Since T(Mu) ⊂ I(M) and PM(u) ⊂Mu, there exist z ∈ PM(u) and x ∈M such
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that y = Tz = Ix. By (3.5), we have

d(Ix,u)= d(Tz,Tu)≤ d(Iz,Iu)≤ d(z,u)= dist(u,M). (3.6)

Hence x ∈ CI
M(u)= PM(u) and so (ii) holds.

(iii) Theorem 3.2 guarantees that PM(u)∩F(I) �= ∅. Thus there exists q ∈ PM(u) such
that q ∈ F(I). Hence the conclusion follows from Corollary 3.1. �

Following corollary provides the conclusions of [1, Theorem 4.2(a)] and [17, Theorem
2.3], to the setup of metrizable locally convex space.

Corollary 3.4. Let X be as above and I , T be self-mappings of X with u ∈ F(I)∩ F(T)
and M ∈ �0 such that T(Mu)⊂ I(M)⊂M. Suppose that I is affine and continuous on M,
d(Ix,u)≤ d(x,u) for all x ∈M, clI(M) is compact and I is nonexpansive onM. If the pair
{T ,I} is R-subweakly commuting onMu and T is I-nonexpansive onMu∪{u}, then

(i) PM(u) is nonempty, closed and convex,
(ii) T(PM(u))⊂ I(PM(u))⊂ PM(u),
(iii) PM(u)∩F(I)∩F(T) �= ∅.

Let (X ,d) be a metric linear space with translation invariant metric d. We say that
the metric d is strictly monotone [4], if x �= 0 and 0 < t < 1 imply d(0, tx) < d(0,x). Each
p-norm generates a translation invariant metric, which is strictly monotone [4].

Following the arguments of Jungck [8, Theorem 3.2] and using Theorem 2.1 instead
of Theorem 3.1 of Jungck [8], we obtain,

Theorem 3.5. Let T and f be continuous self-maps of a compact metric space (X ,d) with
T(X)⊂ f (X). If T and f are R-weakly commuting self-maps of X such that

d(Tx,Ty) <max
{
d( f x, f y),d(Tx, f x),d(Ty, f y),d(Tx, f y),d(Ty, f x)

}
(3.7)

when right hand side is positive, then there is a unique point z in X such that Tz = f z = z.

Using Theorem 3.5, we establish common fixed point generalization of Theorem 1 of
Dotson [3], and Theorem 2 of Guseman and Peters [4].

Theorem 3.6. Let T , I be self-maps on a compact subset M of a metric linear space (X ,d)
with translation invariant and strictly monotone metric d. Assume thatM has the property
(N) with q ∈ F(I), I satisfies the condition (C) and M = I(M). Suppose that T and I are
R-subweakly commuting and satisfy

d(Tx,Ty)≤max
{
d(Ix,I y),dist(Ix, [Tx,q]),dist(I y, [Ty,q]),

dist(Ix, [Ty,q]),dist(I y, [Tx,q])
} (3.8)

for all x, y ∈M. If T and I are continuous, then F(T)∩F(I) �= ∅.

Proof. Proof is similar to Theorem 2.2(i), instead of applying Theorem 2.1, we apply
Theorem 3.5. �
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Similarly, all other results of Section 2 (Corollary 2.3–Theorem 2.12) hold in the set-
ting of metric linear space (X ,d) with translation invariant and strictly monotone metric
d provided we replace closedness of M and compactness of clT(M) by compactness of
M and using Theorem 3.6 instead of Theorem 2.2(i). Consequently, metric linear space
versions of Corollary 2.3–Corollary 2.7 improve and extend Theorem 2 and the Corollary
in [4].

A metric space (X ,d) is said to be S-space [20], if there exists an x0 in X such that
for every t ∈ (0,1) there is a d-contractive self-mapping ft of X for which the inequality
d( ft(x),x)≤ (1− t)d(x0,x) holds for every x in X . As an application of Theorem 3.5 and
[20, Theorem 1], we obtain the following extension of Theorems B, K , Z and C in [2]
and Theorem 3 of [20] to generalized nonexpansive mappings.

Theorem 3.7. Let (X ,d) be a compact S-space and T : X → X satisfies for all x, y ∈ X ,

d(Tx,Ty)≤max
{
d(x, y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)

}
. (3.9)

Then T has a fixed point.
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