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We obtain common fixed point results for generalized I-nonexpansive R-subweakly com-
muting maps on nonstarshaped domain. As applications, we establish noncommutative
versions of various best approximation results for this class of maps in certain metrizable
topological vector spaces.
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1. Introduction and preliminaries

Let X be a linear space. A p-norm on X is a real-valued function on X with 0 < p <1,
satisfying the following conditions:
(i) lIxll, =0and [lx]l, =0 x =0,
(i) llaxllp = lal?lxllp,
(iid) flx+yllp < llxllp+ 1y,

for all x,y € X and all scalars a. The pair (X,|[,|l,) is called a p-normed space. It is a
metric linear space with a translation invariant metric d, defined by d,(x,y) = llx — yll,
for all x,y € X. If p = 1, we obtain the concept of the usual normed space. It is well-
known that the topology of every Hausdorff locally bounded topological linear space is
given by some p-norm, 0 < p < 1 (see [9] and references therein). The spaces [, and L,
0< p <1 are p-normed spaces. A p-normed space is not necessarily a locally convex
space. Recall that dual space X* (the dual of X) separates points of X if for each nonzero
x € X, there exists f € X* such that f(x) # 0. In this case the weak topology on X is
well-defined and is Hausdorff. Notice that if X is not locally convex space, then X* need
not separate the points of X. For example, if X = L, [0,1], 0 < p < 1, then X* = {0} ([12,
pages 36 and 37]). However, there are some non-locally convex spaces X (such as the
p-normed spaces [,, 0 < p < 1) whose dual X* separates the points of X.

Let X be a metric linear space and M a nonempty subset of X. The set Py(u) = {x €
M :d(x,u) = dist(u, M)} is called the set of best approximants to u € X out of M, where
dist(u,M) = inf{d(y,u) : y € M}. Let f : M — M be a mapping. A mapping T: M — M
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2 Common fixed point and approximations

is called an f-contraction if there exists 0 < k < 1 such that d(Tx,Ty) <k d(fx,fy)
for any x,y € M. If k = 1, then T is called f-nonexpansive. A mapping T: M — M is
called condensing if for any bounded subset B of M with «(B) >0, a(T(B)) < a(B), where
a(B) = inf{r > 0: B can be covered by a finite number of sets of diameter < r}. A map-
ping T : M — M is hemicompact if any sequence {x,} in M has a convergent subsequence
whenever d(x,, Tx,) — 0 as n — co. The set of fixed points of T (resp. f) is denoted by
F(T) (resp. F(f)). A point x € M is a common fixed point of f and T'ifx = fx = Tx. The
pair { f,T} is called (1) commuting if T fx = fTx for all x € M; (2) R-weakly commut-
ing [16] if for all x € M there exists R > 0 such that d(fTx,T fx) < Rd(fx,Tx). IfR =1,
then the maps are called weakly commuting. The set M is called g-starshaped with g € M
if the segment [g,x] = {(1 —k)gq+kx:0 <k < 1} joining g to x, is contained in M for all
x € M. Suppose that M is g-starshaped with q € F(f) and is both T- and f-invariant.
Then T and f are called R-subweakly commuting on M (see [17]) if for all x € M, there
exists a real number R > 0 such that d(fTx, T fx) < Rdist(fx,[q, Tx]). It is well-known
that commuting maps are R-subweakly commuting maps and R-subweakly commuting
maps are R-weakly commuting but not conversely in general (see [16, 17]).
A set M is said to have property (N) if [7, 11]
i) T:M—-M,
(ii) (1 = ky)g + k,Tx € M, for some q € M and a fixed sequence of real numbers
k,(0 < k, < 1) converging to 1 and for each x € M.

A mapping f is said to have property (C) on a set M with property (N) if f((1 —k,)q+
knTx)=(1—ky)fq+k,fTxforeachx e MandneN.

We extend the concept of R-subweakly commuting maps to nonstarshaped domain in
the following way (see [7]):

Let f and T be self-maps on the set M having property (N) with g € F(f). Then f
and T are called R-subweakly commuting on M, provided for all x € M, there exists a real
number R >0 such that d(fTx, T fx) < Rd(fx, Tyx) where T,,x = (1 — k,)q + k,Tx, and
the sequence {k,} is as in definition of property (N) of M. Each T-invariant g-starshaped
set has property (N) but not conversely in general. Each affine map on a g-starshaped set
M satisfies condition (C).

Example 1.1 [7]. Consider X = R> and M = {(0,y):y € [-1,1]} U {(1 — 1/(n+1),0) :
n € N} U{(1,0)} with the metric induced by the norm ||(a,b)|l = |a| +|b|, (a,b) € R.
Define T on M as follows:

T(0,) = (0,y), T(l— ,o):(o,1—i), T(1,0) = (0,1).  (L.1)

n+1 n+1

Clearly, M is not starshaped [11] but M has the property (N) for g = (0,0) and k, =
1 —1/(n+1). Define I1(0,y) = I(1 — 1/(n+1),0) = (0,0), I(1,0) = (1,0). Then ||[TIx —
ITx|| = 0 or 1. Thus for all x in M, || TIx — ITx|| < R||k,Tx — Ix|| with each R > 1 and
q = (0,0) € F(I). Thus I and T are R-subweakly commuting but not commuting on M.

The map T : M — X is said to be completely continuous if {x,} converges weakly to x
implies that {Tx,,} converges strongly to Tx.
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In 1963, Meinardus [10] employed the Schauder fixed point theorem to prove a result
regarding invariant approximation. In 1979, Singh [19] proved the following extension
of “Meinardus” result.

TaeoREM 1.2. Let T be a nonexpansive operator on a normed space X, M be a T-invariant
subset of X and u € F(T). If Py(u) is nonempty compact and starshaped, then Pp(u) N
F(T) + @.

In 1988, Sahab et al. [13] established the following result which contains Theorem 1.2
and many others.

THEOREM 1.3. Let I and T be selfimaps of a normed space X with u € F(I) n F(T), M C
X with T(OM) C M, and q € F(I). If Py(u) is compact and g-starshaped, 1(Py(u)) =
Pyi(u), I is continuous and linear on Py (u), I and T are commuting on Pp(u) and T is
I-nonexpansive on Py (1) U {u}, then Ppy(u) N F(T)NF(I) + @.

Let D = Py (u) N Cl,;(u), where Cl;(u) = {x € M : Ix € Py(u)}.

THEOREM 1.4 [1, Theorem 3.2]. Let I and T be selfmaps of a Banach space X with u €
F(I)nF(T), M c X with T(0M n M) C M. Suppose that D is closed and q-starshaped with
q € F(I), I(D) = D, I is linear and continuous on D. If I and T are commuting on D and T
is [-nonexpansive on D U {u} with cl(T(D)) compact, then Pp(u) N F(T) N F(I) + &.

Recently, by introducing the concept of non-commuting maps to this area, Shahzad
[14-18], Hussain and Khan [6] and Hussain et al. [7], further extended and improved
the above mentioned results to non-commuting maps.

The aim of this paper is to prove new results extending and subsuming the above
mentioned invariant approximation results. To do this, we establish a general common
fixed point theorem for R-subweakly commuting generalized I-nonexpansive maps on
nonstarshaped domain in the setting of locally bounded topological vector spaces, locally
convex topological vector spaces and metric linear spaces. We apply a new theorem to
derive some results on the existence of best approximations. Our results unify and extend
the results of Al-Thagafi [1], Dotson [3], Guseman and Peters [4], Habiniak [5], Hussain
and Khan [6], Hussain et al. [7], Khan and Khan [9], Sahab et al. [13], Shahzad [14-18],
and Singh [19].

2. Common fixed point and approximation results

The following common fixed point result is a consequence of Theorem 1 of Berinde [2],
which will be needed in the sequel.

TuEOREM 2.1. Let M be a closed subset of a metric space (X,d) and T and f be R-weakly
commuting self-maps of M such that T(M) C f(M). Suppose there exists k € (0,1) such
that

d(Tx,Ty) < kmax{d(fx, fy),d(Tx, fx),d(Ty, fy),d(Tx, fy),d(Ty, fx)}  (2.1)

forall x,y € M. If l(T(M)) is complete and T is continuous, then there is a unique point z
in M such that Tz = fz = z.



4 Common fixed point and approximations

We can prove now the following.

TueoreM 2.2. Let T, I be self-maps on a subset M of a p-normed space X. Assume that M
has the property (N) with q € F(I), I satisfies the condition (C) and M = I(M). Suppose
that T and I are R-subweakly commuting and satisfy

| Tx = Tyll, < max {[[Ix — Iyl p,dist(Ix, [ Tx,q]),dist(Iy,[ Ty,q]),
(2.2)
dist(Ix, [Ty,ql),dist(Iy,[Tx,q])}

for all x,y € M. If T is continuous, then F(T) N F(I) # @, provided one of the following
conditions holds:
(1) M is closed, cl(T(M)) is compact and I is continuous,
(ii) M is bounded and complete, T is hemicompact and I is continuous,
(iii) M is bounded and complete, T is condensing and I is continuous,
(iv) X is complete with separating dual X*, M is weakly compact, T is completely con-
tinuous and I is continuous.

Proof. Define T, by T,x = (1 — k,,)q + k,, Tx for all x € M and fixed sequence of real num-
bers k,(0 < k, < 1) converging to 1. Then, each T, is a well-defined self-mapping of M as
M has property (N) and for each n, T,,(M) ¢ M = I(M). Now the property (C) of I and
the R-subweak commutativity of {T,I} imply that

| Tulx = ITyx]|, = (ka) "I TIx = ITxl, < (k,)"Rdist(Ix, [ Tx,q])
(2.3)
< (kn)pR||T,,x—Ix|{p

for all x € M. This implies that the pair {T,,I} is (k,)? R-weakly commuting for each #.
Also by (2.2),

1 Tux = Tuyll, = (ka) I Tx = Tyl
< (kn)? max {||Ix — Iyll p,dist(Ix, [ Tx,q]),dist(Iy, [Ty, q]),
dist(Ix, [T y,q)),dist(Iy, [Tx,q])} (2.4)
< (kn)pmaX{IIIx—Iyllp,||1x— Tox|| |1y = Tuyll ,»

11 = Tuyll,» 11y = Tuxl ], §

for each x,y € M.

(i) Since cIT(M) is compact, cl(T,(M)) is also compact. By Theorem 2.1, for each
n > 1, there exists x,, € M such that x,, = Ix,, = Tyx,,. The compactness of cI T(M) implies
that there exists a subsequence {Tx,,} of {Tx,} such that Tx,, — y as m — co. Then the
definition of T},x,, implies x,, — ¥, so by the continuity of T and I we have y € F(T) N
F(I). Thus F(T)NF(I) + @.
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(ii) As in (i) there exists x, € M such that x,, = Ix, = T,,x,. And M is bounded, so
xn— Txy = (1= (ky)"") (x4, — q) — 0 as n — oo and hence dp(x4, Txy) — 0 as n — co. The
hemicompactness of T implies that {x,,} has a subsequence {x;} which converges to some
z € M. By the continuity of T and I we have z € F(T) N F(I). Thus F(T) N F(I) + &.

(iii) Every condensing map on a complete bounded subset of a metric space is hemi-
compact. Hence the result follows from (ii).

(iv) As in (i) there exists x, € M such that x,, = Ix,, = Ty,x,. Since M is weakly compact,
we can find a subsequence {x,,} of {x,} in M converging weakly to y € M as m — co.
Since T is completely continuous, Tx,, — Ty as m — oco. Since k, — 1, X = Tpxyy =
kmTxm+ (1 = ky)q — Ty asm — oo, Thus Tx,, — T?y as m — co and consequently T?y =
Ty implies that Tw = w, where w = T'y. Also, since Ix,, = x,, — T'y = w, using the conti-
nuity of I and the uniqueness of the limit, we have Iw = w. Hence F(T) N F(I) # @. O

It is clear that each T-invariant g-starshaped set satisfies the property (N) and if I is
affine, then I satisfies the condition (C) and T,(M) C I(M) provided T(M) C I(M) and
q € F(I).

CoROLLARY 2.3. Let M be a closed q-starshaped subset of a p-normed space X, and T and
I continuous self-maps of M. Suppose that I is affine with q € F(I), T(M) C I(M) and
clT(M) is compact. If the pair {T,1} is R-subweakly commuting and satisfy (2.2) for all
X,y €M, then F(T)nF(I) + @.

CorOLLARY 2.4 [18, Theorem 2.2]. Let M be a closed q-starshaped subset of a normed
space X, and T and I continuous self-maps of M. Suppose that I is affine with q € F(I),
T(M) C I(M) and I T(M) is compact. If the pair {T,I} is R-subweakly commuting and
satisfy, for all x,y € M,

ITx—Tyll < max{ll]x —Iyll,dist(Ix,[Tx,q]),dist(Iy,[Ty,q]),
(2.5)
%[dist([x, [Ty, q)) + dist(Iy, [Tx,q])]},

then F(T) N F(I) + @.
The following corollary improves and generalizes [1, Theorem 2.2].

COROLLARY 2.5. Let M be a nonempty closed and q-starshaped subset of a p-normed space
X and I be continuous self-map of M. Suppose that I is affine with q € F(I), T(M) C
I(M) and I T(M) is compact. If the pair {T,1} is R-subweakly commuting and T is I-
nonexpansive on M, then F(T) N F(I) + .

The following corollaries improve and generalize [3, Theorem 1] and [5, Theorem 4].

COROLLARY 2.6. Let M be a nonempty closed and q-starshaped subset of a p-normed space
X, T and I be continuous self-maps of M. Suppose that I is affine with q € F(I), T(M) C
I(M) and 1 T(M) is compact. If the pair {T,I} is commuting and T and I satisfy (2.2), then
F(T)nF() + @.
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CoRrOLLARY 2.7 [9, Theorem 2]. Let M be a nonempty closed and q-starshaped subset of
a p-normed space X. If T is nonexpansive self-map of M and cIT(M) is compact, then
F(T) + @.

We now derive some approximation results.

Let Dy’ (u) = Py(u) NGy (1), where Gyf ()={x €M : || Ix — ull , < (2R+1) dist(u,M)}.

The following result extends Theorem 2.3 of Shahzad [16] from the I-nonexpansive-
ness of T' to a more general condition.

THEOREM 2.8. Let M be subset of a p-normed space X and I, T : X — X be mappings such

that u € F(T) n F(I) for some u € X and T(dM n M) C M. If I(Dy;' (1)) = D/ (u) and

the pair {T,I} is R-subweakly commuting and continuous on Dy; (u) and satisfy for all

x € D (u) U {ul,

l1x — Tull, if y=u,
ITx—Tyll, < {max {IlIx— Iyll,,dist(Ix, [g, Tx]),dist(Iy,[q, Ty1),
dist(Ix, [g, Ty)),dist(Iy, g, Tx])} ify € Dyj' (w),

(2.6)

then D]If,jl(u) is T-invariant. Suppose that Dﬁl(u) is closed and cl(T(DIIf/[’I(u))) is compact.
If Dﬁl(u) has property (N) with q € F(I), and I satisfies property (C) on D]}\z/f(u), then
Py(u)nF(I)NE(T) + @.

Proof. Letx € fo(u). Then, x € Py/(u) and hence ||x — ul|, = dist(u, M). Note that for
any k € (0,1),

lku+ 1 —k)x—ull, = (1 =k)Pllx—ull, < dist(u, M). (2.7)

It follows that the line segment {ku+ (1 —k)x:0 < k < 1} and the set M are disjoint.
Thus x is not in the interior of M and so x € dM N M. Since T(0M N M) C M, Tx must
be in M. Also since Ix € Py(u), u € F(T) N F(I) and T and I satisfy (2.6), we have

1 Tx—ullp = ITx - Tull, < [Ix —Tull, = Ix —ull, = dist(u, M). (2.8)

Thus Tx € Py(u). From the R-subweak commutativity of the pair {T,I} and (2.6), it
follows that (see also proof of [16, Theorem 2.3]),

IITx —ullp = ITx — TIx+ TIx — Tull, < RIITx—Ix||P+||sz—Iu||p
:RIITx—u+u—Ix||p+||sz—u||p
(2.9)
<R(ITx = ullp + 1Ix = ull,) +[|*x - ul],

< (2R+1)dist(u, M).

Thus Tx e Gﬁ’l(u). Consequently, T(Df,f(u)) - fo(u) = I(D]If,}[(u)). Now Theorem 2.2(i)
guarantees that, Py () N F(I) N F(T) #+ &. O
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Remarks 2.9. (1) If p = 1 and M is g-starshaped with g € F(I), T(M) C I(M) and I is lin-
ear on Df\}’l(u) in Theorem 2.8, we obtain the conclusion of a recent result [18, Theorem
2.5] for the more general inequality (2.6).

(2) Let Ci(u) = {x € M : Ix € Py(u)}. Then I(Py(u)) C Py(u) implies Py(u) C
Cl(u) C Gﬁ’l(u) and hence Dll\z,}l(u) = Pyi(u). Consequently, Theorem 2.8 remains valid
when D}/ (1) = Py (u). Hence we obtain the following result which contains properly
Theorems 1.2 and 1.3 and improves and extends Theorem 8 of [5], Theorem 4 in [9],
and Theorem 6 in [14, 15].

CoROLLARY 2.10. Let M be subset of a p-normed space X and let I, T : X — X be mappings
such that u € F(T) N F(I) for some u € X and T(0M N M) C M. Assume that [(Pp(u)) =
Py(u) and the pair {T,1} is R-subweakly commuting and continuous on Py (1) and satisfy
forall x € Py(u) U {u},

[l1x — Tull, ify=u,
ITx—Tyll, < max { || Ix — Iyllp,dist(Ix, [g, Tx]),dist(Iy,[q, Ty]),

dist(Ix, [g, Ty]),dist(Iy,[q, Tx])} if y € Py(u).
(2.10)

Suppose that Py(u) is closed, q-starshaped with q € F(I), I is affine and cl(T(Pp(u))) is
compact. Then Py(u) NF(I) N F(T) # @.

Let D = Py (u) N Cl;(u), where Cl;(u) = {x € M : Ix € Py(u)}.
The following result contains Theorem 1.4 and many others.

THEOREM 2.11. Let M be subset of a p-normed space X and I, T : X — X be mappings such
thatu € F(T) N F(I) for someu € X and T(0M N M) C M. IfI(D) = D and the pair {T,I}
is commuting and continuous on D and satisfy for all x € D U {u},

1 1x — Tull ify=u,
| Tx - Tyll, < {max {[|[Ix — Iy|l,,dist(Ix,[g, Tx]),dist(Iy, (g, Ty]), (2.11)
dist(Ix, [g, Ty]),dist(Iy,[q, Tx])} ifyeD,

then D is T-invariant. Suppose that D is closed and cI(T (D)) is compact. If D has property
(N) with q € F(I), and I satisfies property (C) on D, then Py(u) N F(I) N F(T) + @.

Proof. Let x € D, then proceeding as in the proof of Theorem 2.8, we obtain Tx € Py(u).
Moreover, since T commutes with I on D and T satisfies (2.11),

IITx —ully = | TLx = Tullp < ||PPx — Tul|, = ||Px — ul] , = dist(u, M). (2.12)

Thus ITx € Py (u) and so Tx € C};(u). Hence Tx € D. Consequently, T(D) C D = I(D).
Now Theorem 2.2(i) guarantees that Py (1) N F(I) N F(T) # &. O

In the following result we obtain a non-locally convex space analogue of [6, Theorem
3.3] for nonstarshaped set D.
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THEOREM 2.12. Let M be subset of a p-normed space X and I,T : X — X be mappings
such that u € F(T) N F(I) for some u € X and T(0M N M) C M. IfI(D) = D and the pair
{T,1} is R-subweakly commuting and continuous on D and, for all x € D U {u}, satisfies the
following inequality,

1 1x — Tull, ify=u,
ITx—Tyll, < max{llIx—Ipr,dist(Ix, (g, Tx]),dist(Iy,[q, Ty]), (2.13)
dist(Ix, [q, Ty]),dist(I y, [g, Tx])} if y € D,

and I is nonexpansive on Pp (1) U {u}, then D is T-invariant. Suppose that D is closed, has
property (N) with q € F(I), cl(T(D)) is compact and I satisfies property (C) on D. Then
Py (u)nF(I)NE(T) + @.

Proof. Let x € D, then proceeding as in the proof of Theorem 2.8, we obtain Tx € Py (u).
Moreover, since I is nonexpansive on Py (u) U {u} and T satisfies (2.13), we obtain

IITx—ull, <ITx — Tull, < [[Ix — Tull, = dist(u, M). (2.14)

Thus ITx € Py(u) and so Tx € C;(u). Hence Tx € D. Consequently, T(D) C D = I(D).
Now Theorem 2.2(i) guarantees that Py (1) N F(I) N F(T) #+ &. O

Remark 2.13. Notice that approximation results similar to Theorems 2.8, 2.11, and 2.12
can be obtained, using Theorem 2.2(ii), (iii), and (iv).

Example 2.14. Let X =R and M = {0,1,1 — 1/(n+1) : n € N} be endowed with usual
metric. Define T1 =0 and T0 = T(1 — 1/(n+1)) = 1 for all n € N. Clearly, M is not
starshaped but M has the property (N) forg=0and k, =1-1/(n+1), n € N. Let
Ix = x for all x € M. Now I and T satisfy (2.2) together with all other conditions of
Theorem 2.2(i) except the condition that T is continuous. Note that F(I) N F(T) = &.

Example 2.15. Let X = R?> be endowed with the p-norm II,1l, defined by [[(a,b)l, =
lal? +1|b|?, (a,b) € R2.

(1) Let M = AUB,where A={(a,b) e X:0<a<1,0<b<4}and B= {(a,b) €X:
2<a=<3,0<b=<4}.DefineT:M — M by

(2,b) if(a,b) € A,
T(a,b) = (2.15)
(1,b) if(a,b)eB

and I(x) = x, for all x € M. All of the conditions of Theorem 2.2(i) are satisfied except
that M has property (N), that s, (1 — k,)q + k, T(M) is not contained in M for any choice
of g€ M and k,,. Note F(I) N F(T) = @.
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2)UM={(a,b)ecX:0<a<x,0<b=<1}and T:M — M is defined by
T(a,b) = (a+1,b), (a,b)€ M. (2.16)

Define I(x) = x, for all x € M. All of the conditions of Theorem 2.2(i) are satisfied except
that M is compact. Note F(I) N F(T) = &. Notice that M, being convex and T-invariant,
has the property (N) for any choice of g and {k,}.

(B)IM=1{(ab)eX:0<a<1,0<b< 1}and T,I: M — M are defined by T'(a,b) =
(a/2,b/3), and I(x) = x for all x € M. All of the conditions of Theorem 2.2(i) are satisfied
except the fact that M is closed. However F(I) N F(T) = <.

Example 2.16. Let X = Rand M = [0, 1] be endowed with the usual metric. Define T'(x) =
0 and I(x) = 1 — x for each x € M. All of the conditions of Theorem 2.2(i) are satisfied
except the condition that the pair {I, T} is R-subweakly commuting. Note F(I) N F(T) =
@.

3. Further results

All results of the paper (Theorem 2.2—Remark 2.13) remain valid in the setup of a metriz-
able locally convex topological vector space(tvs) (X,d) where d is translation invariant
and d(ax,ay) < ad(x, y), for each « with 0 < & < 1 and x,y € X (recall that d,, is trans-
lation invariant and satisfies d, (ax,ay) < afd,(x, y) for any scalar & > 0). Consequently,
Theorem 2.2 (i)-(ii) and Theorem 3.3 (i)-(ii) due to Hussain and Khan [6] and Theorem
3.5 (i)-(ii) & (v), (ix)-(x) and Theorem 4.2 (i)-(ii) & (v), (ix)-(x) due to Hussain et al. [7]
are extended to a class of maps satisfying a more general inequality.
From Corollary 2.3, we have the following result which extends [18, Theorem 2.2];

CoROLLARY 3.1. Let M be a closed q-starshaped subset of a metrizable locally convex space
(X,d) where d is translation invariant and d(ax,ay) < ad(x,y), for each a with0 < a < 1
and x, y € X. Suppose that T and I are continuous self-maps of M, I is affine with q € F(I),
T(M) C I(M) and clT(M) is compact. If the pair {T,I} is R-subweakly commuting and
satisfy for all x, y € M,

d(Tx,Ty) < max {d(Ix,1y),dist(Ix,[Tx,q]),dist(Iy,[Ty,q]),
(3.1)
dist(Ix, [Ty,ql),dist(Iy,[Tx,q])},

then F(T) N F(I) + @.

We define Cl;(u) = {x € M : Ix € Py;(u)} and denote by J, the class of closed convex
subsets of X containing 0. For M € J, we define M, = {x € M : ||x|| < 2|lull}. It is clear
that Py(u) C M, € J,.

Following result includes [1, Theorem 4.1] and [5, Theorem 8] and provides an ana-
logue of [18, Theorem 2.8] in the setting of metrizable locally convex space and contrac-
tive condition involved is more general.

THEOREM 3.2. Let X be as in Corollary 3.1, and T be a self-mapping of X with u € F(T),
M € 3 such that T(M) C M. Suppose that c1T(M) is compact, T is continuous on M and
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satisfies for all x € M U {u},

d(x,u) ify=u,
d(Tx,Ty) < 1 max {d(x, y),dist(x, [0, Tx]),dist(y, [0, Ty]), (3.2)
dist(x, [0, Ty]),dist(y, [0, Tx])} ifyeM,

then
(1) Py (u) is nonempty, closed, and convex,
(i) T(Pp(u)) C Pa(u),
(iii) Py (u) N F(T) + @.

Proof. (i) Let r = dist(u, M). Then there is a minimizing sequence {y,} in M such that
lim, d(u, y,) = r. As c1T(M) is compact so {Ty,} has a convergent subsequence {T y,,}
with im T'y,, = x, (say) in M. Now by (3.2)

r <d(xo,u) =limd(Tym,u) <limd(ym,u) =limd(y,,u) =r. (3.3)

Hence xy € Pp(u). Thus Py (u) is nonempty closed and convex.

(ii) Let z € Pp(u). Then d(Tz,u) = d(Tz, Tu) < d(z,u) = dist(u, M). This implies that
Tz € Py (u) and so T(Py(u)) C Par(u).

(iii) As cdT(Py(u)) € I T(M), so cIT(Py(u)) is compact. Thus by Corollary 3.1,
Py(u)nF(T) + &. a

TareoreM 3.3. Let X be as in Theorem 3.2 and I and T be self-mappings of X with u €
F(I) N F(T) and M € 3 such that T(M,) C I(M) C M. Suppose that I is affine and con-
tinuous on M, d(Ix,u) < d(x,u) for all x € M, clI(M) is compact and I satisfies for all
X,y €M,

d(Ix,1y) < max {d(x, y),dist(x, [0,Ix]),dist(y,[0,1y]),
(3.4)
dist(x, [0,1y]),dist(y,[0,Ix])}.

If the pair {T,1} is R-subweakly commuting and T is continuous on My, and satisfy for all
X,y € M, Uiu}, and g € F(I),

d(Ix,Iu) ify=u,
d(Tx,Ty) < { max{d(Ix,Iy),dist(Ix, [q, Tx]),dist(Iy,[g, Ty]), (3.5)
dist(Ix, (g, Ty]),dist(Iy,[q, Tx])} ify e M,

then
(1) Pyp(u) is nonempty, closed, and convex,
(ii) T(Pm(u)) C I(Pm(u)) C Py(u),
(iii) Py (u) NF(I) N F(T) + @.

Proof. From Theorem 3.2, we obtain (i). Also we have I(Py(u)) C Py(u). Let y €
TPy (u). Since T(M,,) C I(M) and Py (u) C M, there exist z € Py(u) and x € M such
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that y = Tz = Ix. By (3.5), we have
d(Ix,u) = d(Tz,Tu) < d(Iz,Iu) < d(z,u) = dist(u, M). (3.6)

Hence x € C};(u) = Py(u) and so (ii) holds.
(iii) Theorem 3.2 guarantees that Py;(u) N F(I) # &. Thus there exists g € Py (1) such
that g € F(I). Hence the conclusion follows from Corollary 3.1. O

Following corollary provides the conclusions of [1, Theorem 4.2(a)] and [17, Theorem
2.3], to the setup of metrizable locally convex space.

CoROLLARY 3.4. Let X be as above and I, T be self-mappings of X with u € F(I) n F(T)
and M € 3 such that T(M,) C I(M) C M. Suppose that I is affine and continuous on M,
d(Ix,u) < d(x,u) for all x € M, clI(M) is compact and I is nonexpansive on M. If the pair
{T,I} is R-subweakly commuting on My, and T is I-nonexpansive on M, U {u}, then
(1) Pp(u) is nonempty, closed and convex,
(i) T(Pm(u)) C I(Pm(u)) C Py(u),
(iii) Pr(u) nF(I)NF(T) #+ @.

Let (X,d) be a metric linear space with translation invariant metric d. We say that
the metric d is strictly monotone [4], if x # 0 and 0 < ¢ < 1 imply d(0,¢x) < d(0,x). Each
p-norm generates a translation invariant metric, which is strictly monotone [4].

Following the arguments of Jungck [8, Theorem 3.2] and using Theorem 2.1 instead
of Theorem 3.1 of Jungck [8], we obtain,

TaEOREM 3.5. Let T and f be continuous self-maps of a compact metric space (X,d) with
T(X) C f(X). If T and f are R-weakly commuting self-maps of X such that

d(Tx,Ty) <max{d(fx,fy),d(Tx, fx),d(Ty, fy),d(Tx, fy),d(Ty, fx)} (3.7)

when right hand side is positive, then there is a unique point z in X such that Tz = fz = z.

Using Theorem 3.5, we establish common fixed point generalization of Theorem 1 of
Dotson [3], and Theorem 2 of Guseman and Peters [4].

THEOREM 3.6. Let T, I be self-maps on a compact subset M of a metric linear space (X,d)
with translation invariant and strictly monotone metric d. Assume that M has the property
(N) with q € F(I), I satisfies the condition (C) and M = I(M). Suppose that T and I are
R-subweakly commuting and satisfy

d(Tx,Ty) < max {d(Ix,1y),dist(Ix,[Tx,q]),dist(Iy,[Ty,q]),

(3.8)
dist(Ix, [Ty,q]),dist(Iy,[Tx,q])}

forall x,y € M. If T and I are continuous, then F(T) N F(I) + &.

Proof. Proof is similar to Theorem 2.2(i), instead of applying Theorem 2.1, we apply
Theorem 3.5. O
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Similarly, all other results of Section 2 (Corollary 2.3-Theorem 2.12) hold in the set-
ting of metric linear space (X,d) with translation invariant and strictly monotone metric
d provided we replace closedness of M and compactness of clT(M) by compactness of
M and using Theorem 3.6 instead of Theorem 2.2(i). Consequently, metric linear space
versions of Corollary 2.3—Corollary 2.7 improve and extend Theorem 2 and the Corollary
in [4].

A metric space (X,d) is said to be S-space [20], if there exists an xo in X such that
for every t € (0,1) there is a d-contractive self-mapping f; of X for which the inequality
d(fi(x),x) < (1 —t)d(x9,x) holds for every x in X. As an application of Theorem 3.5 and
[20, Theorem 1], we obtain the following extension of Theorems B, K, Z and C in [2]
and Theorem 3 of [20] to generalized nonexpansive mappings.

TaEOREM 3.7. Let (X,d) be a compact S-space and T : X — X satisfies for all x, y € X,
d(Tx,Ty) <max{d(x,y),d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx)}. (3.9)
Then T has a fixed point.
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