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We introduce new iterative algorithms by hybrid method for finding a common element of the
set of solutions of fixed points of infinite family of nonexpansive mappings, the set of common
solutions of generalized mixed equilibrium problems, and the set of common solutions of the
variational inequality with inverse-strongly monotone mappings in a real Hilbert space. We
prove the strong convergence of the proposed iterative method under some suitable conditions.
Finally, we apply our results to complementarity problems and optimization problems. Our results
improve and extend the results announced by many others.

1. Introduction

Throughout this paper, let H be a real Hilbert space with inner product (-,-) and norm
| - ||, and let C be a nonempty closed convex subset of H. A mapping T : C — C is called
nonexpansive if |Tx — Ty|| < ||x — y||, for all x,y € C. The set of fixed points of T denoted by
F(T); thatis, F(T) = {x € C : Tx = x}. If C C H is bounded, closed, and convex and T
is a nonexpansive mapping of C into itself, then F(T) #0; see, for instance, [1]. Let F be a
bifunction of C x C into R, where R is the set of real numbers, A : C — H a mapping, and
¢ : C — R a real-valued function. The generalized mixed equilibrium problem is for finding
x € C such that

F(x,y) +(Ax,y—x)+¢(y) —¢(x) >0, VyeC. (1.1)
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The set of solutions of (1.1) is denoted by GMEP(F, ¢, A); that is,

GMEP(F,¢,A) = {x e C:F(x,y) + (Ax,y —x) + ¢(y) —¢(x) >0, Vy € C}. (1.2)

The generalized mixed equilibrium problem include fixed point problems, optimization
problems, variational inequalities problems, Nash equilibrium problems, noncooperative
games, economics, and the equilibrium problems as special cases [2-7].

In particular, if A = 0, the problem (1.1) is reduced into the mixed equilibrium problem
[8] for finding x € C such that

F(x,y) +¢(y) —p(x) 20, VyeC. (1.3)

The set of solutions of (1.3) is denoted by MEP(F, ¢).
If ¢ =0, (1.1) is reduced into the generalized equilibrium problem [9] for finding x € C
such that

F(x,y) +(Ax,y-x) 20, VyeC. (1.4)

The set of solutions of (1.4) is denoted by GEP(F, A), which this problem was studied by S.
Takahashi and W. Takahashi [10].

If A =0and ¢ =0, then the generalized mixed equilibrium problem (1.1) becomes the
following equilibrium problem which is to find x € C such that

F(x,y) >0, VyeC (1.5)

The set of solutions of (1.5) is denoted by EP(F). Many problems in applied sciences, such as
numerous problems in physics, optimization, and economics reduce into finding a solution
of (1.5). Some methods have been proposed to solve the generalized mixed equilibrium
problems, equilibrium problems, and fixed point problems ([2, 6, 11-29]) and references
therein. If F = 0 and ¢ = 0, then the generalized mixed equilibrium problem (1.1) becomes
the following variational inequality problem, denoted by VI(C, A), is to find x € C such that

(Ax,y-x)>0, VyeC. (1.6)

The variational inequality problem has been extensively studied in the literature. See, for
example [30, 31] and the references therein. A mapping A of C into H is called monotone if

(Ax - Ay,x-y) >0, VYx,yeC (1.7)
A is called an a-inverse-strongly monotone if there exists a positive real number a > 0 such that

(Ax - Ay, x —y) > a||Ax - Ay Z Vx,y € C. (1.8)
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In 2008, Takahashi et al. [32] introduced an iterative method for finding the set of fixed
point by Hybrid method in Hilbert spaces. Starting with C; = C, x; = P, xo, define sequence
{xn}, {yn} as follows:

Yn=0nXn+ (1 -ay)Tx,, n2>1,
Con={z€Cp:|lyn—z|<lxn—-2l}, n>1, (1.9)

Xn+l = PC X0, n 2 ]-/

n+l1

where Pc is a metric projection of H onto C and T is a nonexpansive mapping of C into
itself. They proved that if the sequence {a,} of parameters satisfies appropriate conditions,
then {x,} generated by (1.9) converges strongly to Pr(ryxo. In 2009, Kumam [20] introduced
an iterative method for finding a common element of the set of common fixed points of
nonexpansive mapping, the set of solutions of a variational inequality problem, and the set
of solutions of an equilibrium problem in Hilbert spaces. Starting with an arbitrary C; = C,
x1 = Pc,x¢, define sequence {x,}, {z,} as follows:

F(zn, y) +Tl (Y= Zn, zn—%2) 20, VyeC,
n

Yn = anXy + (1 —an)TPc(zy — \yBz,), n2>1, (1.10)
Cun ={Z€Cnl ”yn_Z” S”xn_Z”}/ n>1,

Xn+1 = PC X0, n 2 ]-/

n+l1

where T is a nonexpansive mapping of C into itself and B is a f-inverse-strongly monotone
mapping of C into H. He proved that if the sequences {a,}, {r,}, and {\,} of parameters
satisfies appropriate conditions, then {x,} generated by (1.10) converges strongly to
Pryrepcr)nvic,ByXo. In 2010, Kangtunyakarn [33] introduced a new method for a common
of generalized equilibrium problems, common of variational inequality problems, and fixed
point problems by using S-mapping generated by a finite family of nonexpansive mappings
and real numbers in Hilbert spaces. Starting with an arbitrary x;, u, v in C, define the
sequences {x,}, {y»} as follows:

1
F(uy, u) + (Axy, u—uy,) + . (U—Up, Uy —x,) >0, YuecC,
n

1
G(vy,v) + (Bxy,v—vy,) + < (v=vy,0,—x,) >0, VYveC(,
n

Yn = 64Pc(un — My Auy) + (1 - 6,)Pc (v — 1uBvy), n>1,

(1.11)

Xn+l = anf(xn) + ﬁnxn + Ynsn]/n/ Yn>1,

where S, is the S-mapping and A, B are a, f-inverse-strongly monotone mappings of C into
H, respectively. He proved that if the sequences {a,}, {fn}, {yn}, {*n}, {Sn}, {11n}, and {1} of
parameters satisfies appropriate conditions, then {x,} generated by (1.11) converges strongly
to Py.—= | F(S,)NMEP(E,A)AMEP(G,B)"VI(C,A)WI(C,B) X1-
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Recently, Shehu [34] motivated Chantarangsi et al. [35] who studied the problem
of approximating a common element of the set of fixed points of an infinite family of
nonexpansive mapping, the set of common solutions of generalized mixed equilibrium
problems, and the set of solutions to a variational inequality problem in a real Hilbert spaces.

In this paper, motivated by the above results, we present a new hybrid iterative
scheme for finding a common element of the set of solutions of a common of generalized
mixed equilibrium problems, the common solutions of the variational inequality for inverse-
strongly monotone mapping, and the set of fixed points of infinite family of nonexpansive
mappings in the set of Hilbert spaces. Then, we prove strong convergence theorems under
some mild conditions. Finally, we give some applications of our results. The results presented
in this paper generalize, extend, and improve the results of Takahashi et al. [32], Kumam [20],
Kangtunyakarn [33], and many authors.

2. Preliminaries

Let H be a real Hilbert space with norm || - || and inner product (-, -), and let C be a closed
convex subset of H. When {x,} is a sequence in H, x, — x means {x,} converges weakly to
x,and x, — x means {x,} converges strongly to x. In a real Hilbert space H, we have

= yl1* = x> = |yl|* - 2¢x - v, v),
, (2.1)

e+ (1= Wy |* = Maxl? + A= V)|ly]|* - ra-V|x -y

forall x,y € H and A € [0, 1]. For every point x € H, there exists a unique nearest point in C,
denoted by Pcx, such that

llx = Pex|| < ||lx -y

, VyecC. (2.2)

Pc is called the metric projection of H onto C. It is well known that Pc is a nonexpansive
mapping of H onto C and satisfies

> VYxyeH (2.3)

(x =y, Pcx = Pcy) 2 ||Pcx - Pcy
Moreover, Pcx is characterized by the following properties: Pcx € C,

(x = Pcx,y —Pcx) <0, (2.4)

= y|[* > llac = Pex|® + ||y - Pex|[?, 2.5)

forall x € H, y € C. Itis also known that H satisfies the Opial condition; for any sequence
{x,} with x,, — x, the inequality

lim inf|lx, - x|| <lim inf||x, -y (2.6)

holds for every y € H with y #x.
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It is obvious that any a-inverse-strongly monotone mapping A is (1/a)-Lipschitz
monotone and continuous mapping. We also have that for all x,y € H and A > 0,

1T =ra)x = -rAy| = |(x - y) - r(Ax - Ap) |
=llx -y’ -2r(x -y, Ax - Ay) + Pl Ax - Ay|” - 27)
< |lx =y + r(r - 2a) | Ax - Ay]*.
So, if r < 2a, then I — r A is a nonexpansive mapping of C into H.
For solving the generalized mixed equilibrium problem, let us assume that the

bifunction F : C x C — R, the nonlinear mapping A : C — H is continuous monotone,
¢ : C — Ris convex, and lower semicontinuous satisfies the following conditions:

(A1) F(x,x) =0forallx € C,
(A2) F is monotone; that is, F(x, y) + F(y,x) < 0 for any x,y € C,

(A3) F is upper-hemicontinuous; that is, for each u, x,y € C,

limsup F(tu+ (1 -t)x,y) < F(x,y), (2.8)

t—0*

(A4) F(x,-) is convex and lower semicontinuous for each x € C,

(B1) For each x € H and r > 0, there exists a bounded subset D, C C and y, € C N
dom(¢p) such that for any u € C \ Dy,

F(u,yx) + (Au,yx —u) + (yx) + i(yx ~u,u-x) <¢u), (2.9)

(B2) C is a bounded set.

The following lemma appears implicitly in [2]. We need the following lemmas for proving
our main result.

Lemma 2.1 (see [2]). Let C be a nonempty closed convex subset of H, and let F be a bifunction of
C x C into R satisfying (A1)—(A4). Let r > 0 and x € H. Then, there exists u € C such that

F(u,y)+1<y—u,u—x)20, Yy eC. (2.10)

The following lemma was also given in [36].

Lemma 2.2 (see [36]). Assume that F : C x C — R satisfies (A1)-(A4). For r > 0 and x € H,
define a mapping K, : H — C as follows:

K. (x) = {uEC :F(u,y) + i(y—u,u—x) >0, VyeC}, (2.11)
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forall x € H. Then, the following hold:

(1) K, is single-valued,

(2) K, is firmly nonexpansive, that is, for any x,y € H, |K,x - K,y|* < (K, x-K,y, x-y),
(8) F(K;) = EP(F),

(4) EP(F) is closed and convex.

Lemma 2.3 (see [37]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
F : CxC — R be a bifunction mapping satisfies (A1)—(A4), and let ¢p : C — R be convex and
lower semicontinuous such that C N dom ¢ # (0. Assume that either (B1) or (B2) holds. For r > 0 and
x € H, there exists u € C such that

1
F(uy) +9(y) —9@) + (y—u,u-x). (2.12)
Define a mapping K, : H — C as follows:
T (x) = {u €eC:F(uy)+o(y) —pu)+ i(y —u,u-x)>0, Vy e C}, (2.13)

forall x € H. Then, the following hold:

1) Tr(F"p) is single-valued,
(2) Tri?’; is firmly nonexpansive, that is, for any x,y € H, ||T,(F"p)x - T,(F’q’) ylI> < (Tr(F'lp)x -
T, Py, x - vy),
F,
(3) F(I,"") = MEP(F, ),
(4) MEP(F, o) is closed and convex.

Lemma 2.4 (see [38]). Assume that {a,} is a sequence of nonnegative real numbers such that

ani1 £ (1 -ay)a, +6, n>0, (2.14)

where {a,} is a sequence in (0,1) and {6,} is a sequence in R such that

(1) X2 an = oo,
(2) limsup, _,_ (6,/an) <0o0r 3721 |6,] < oo.

Then, lim,, . ,a,, = 0.

3. Main Result

In this section, we prove a strong convergence theorem for finding a common element
of the set of solutions of a common of generalized mixed equilibrium problems, the
common solutions of the variational inequality for inverse-strongly monotone mapping, and
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the set of fixed points of infinite family of nonexpansive mappings in the set of Hilbert
spaces.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Fi, F; be a
bifunction of C x C into real numbers R satisfying (A1)—(A4), and let ¢1,¢p, : C — R U {+o0}
be a proper lower semicontinuous and convex function. Let A, B, D, and E be a, B, 6, and 7-
inverse-strongly monotone mapping of C into H, respectively. Let {T;}2, be an infinite nonexpansive
mapping such that © := (2, F(T;)NGMEP(F1, 1, A)\NGMEP(F5, ¢, B)nVI(C, D)NVI(C, E) # 0.
Assume that either (B1) or (B2) holds. Let {x,} be a sequence generated by xo € C, C1; = C,
Cy = ﬂj’jlcl,i, X1 = P(jl.X'o and

bn = Trg:l,lpl)(xn —AXy),

Ts(fz,(,ﬂz)

U, = (xp — suBxy),

wy = &nPc(uy — XyDuy) + (1-&,)Pc (tn - ,unEtn)/
Yni = aniXo + (1 — ani) Tiwn, 3.1)
Chai = {z € i lymi—2|” < llew — 2I* + zxn,i(llxoll2 +2(wy - xO,Z>> }
]
Cus1 = [ \Cusriv
i=1

Xn+l = PC X0,

n+l

for every n > 0, where {r,}, {s,} C (0,00), A, € (0,26) and p, € (0,2n) satisfying the following
conditions:

i)0<a<r,<b<2a
(i) 0<c<s, <d <2p,
(iii) limy, — oatni =0,
(iv) limy, - oén =& € (0,1),
(v)0<e<A, < f <26,
(vi)0< g <y <j<2m.

Then, {x,} converges strongly to Pgx.
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Proof. Letp € O, then p = T(Fl"pl)(p - 1. Ap), p T(FZ"pZ)(p - s,Bp), p = Pc(p — A,Dp), and
p = Pc(p — pnEp). By nonexpansiveness of Pc, T, ) and Ts(fz’(‘aZ), we have

[
= [|énPc (1t — AuDutn) + (1= 0)Pe (b — b)) — &aPe(p —~ AaDp) — (1~ &) Pe(p — paEp) |
= ||¢n{ Pe(tn = 1uDit) = Pe(p = 1aDp) } + (1= &) {Pe(bu = pnEt) = Pe(p — pEp) ) |I°
< &al|(n = 4aDuu) = (p = 1uDp) |” + (1= &) || (b = pnEtn) = (p = paEp) ||
= &ul| (= p) = a(Dutn = Dp) |+ (1= &) || (b = p) = ptu (Etn = Ep) |I°

= &u{lln ~ Pl 2026~ 1,)[| Dw, ~ Dp|[*}

+ (1= &) {[ltw =PI = a (211~ ) | Ets - Ep||*}

sgn{

ra-of|r

(F2,42) 2 2
(xn — $uBxy) = Ts,”" (p — suBp) ” - 14(26 - \y)||Duy, — Dp| }

T3 (= ruAxa) = i (p - TnAP)” = (21 = i) || Etn —EPII}

< &u{ | Gen = 5uBxa) = (p = 5uBp) |I*} + (1 = &) { | en = rAxa) = (p = ruAp) |}

< é"”x" _p”Z +(1 _gn)”xn _pHZ

< [l - plI*.
(3.2)
Since both I — 7, A and I — s,,B are nonexpansive for each n > 1 and (2.7), we have
it = pIP = |74 (1 = 5,B)x ~ T4 (1 - 5,B)p |

< ”(I —spB)x, — (I - SnB)P”

< [l = pII* + su(50 — 28) || Bx, - Bp||?

< lxw=pll°
(3.3)

= pl* = |54 = ru)ea - T4 (0= rayp |
< (I =ruA)x, = (I = A)p|?

< lxn = pl|* + 7ura - 2)|| Ax - Ap||?
<l pl*

Therefore, we obtain ||u, — p|| < [|x, — p|l and ||t, — p|| < ||x. — Pl



Fixed Point Theory and Applications 9
Next, we will divide the proof into four steps.

Step 1. We show that {x,} is well defined. Let n = 1, then C;; = C is closed and convex for
each i > 1. Suppose that C,; is closed convex for some n > 1. Then, by definition of C,.1,, we
know that C,1, is closed convex for n > 1. Hence, C,,; is closed convex for n > 1 and for each
i > 1. This implies that C, is closed convex for n > 1. Moreover, we show that © ¢ C,. For
n=1,0CcC=Cy; Forn>2letp € ©. Then,

2 2 2
s = PII* = [[ani (x0 = p)* + (1 = @0,) (Tiow - p) |

< il xo = p||* + (1 = ans) [wn - ||’
) ) ) (3.4)
= o~ pII* + @i Jlx0 - pI - lwn - pII*)

< [ln = pII* + i (Ixoll® + 2¢e0s = x0,p) ).

which shows thatp € Cy,;, foralln > 2, foralli > 1.50,© C C,, foralln > 1, forall i > 1.
Therefore, it follows that §#© c C,, for all n > 1. This implies that {x,} is well defined.

Step 2. We claim that lim,, . o || X441 — X5 || = 0 and limy, —, oo ||Yn,i — Xx|| = 0.
From x, = Pc,xo, we get

(x0 = Xn, xn —y) 20, (3.5)
for each y € C,,. Since © C C,,, we have
(x0 = xp,x, —p) >0 foreachpe®, neN (3.6)
Hence, for p € ©, we obtain

0 < (X0 — Xp, Xn — Pp)

= (X0 = Xp, Xn — X0 + X0 — P)

(3.7)
= —(X0 — Xn, X0 — Xn) + (X0 — Xp, X0 — P)
< _”xO - xnllz + ”xO - xn“”xO —P”
It follows that
X0 = xull < ||x0=p|, Vp€O, neN (3.8)

From x,, = Pc,xp and x,.1 = Pc,,,x0 € Cp1 C C,, we have

n+l

(X0 = Xp, Xn — Xns1) > 0. (3.9)
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For n € N, we compute
0 < (X0 = X, Xn — Xns1)
= (X0 = Xn, Xp — X0 + X0 ~ Xp+1)
= —(X0 = X, X0 = Xn ) + (X0 = Xn, X0 — Xn+1) (3.10)
< ~Jlxo = xall* + (0 = Xn, X0 = Xns1)

< =llxo = xull* + l|0 = Xulll|20 = X1 ],
and then

lxo — xu|l < |lx0 — Xpa1]l, VreEN (3.11)

Thus, the sequence {||x,—x]|} is a bounded and nondecreasing sequence, so lim,, . o, || X, — xo||
exists. That is, there exists m such that

m = lim [x, = xof- (3.12)

Hence, {x,} isbounded and so are { Ax,,}, { Bx,}, {u,}, {Du,}, {t.}, {Etp}, {wn}, {Tiw,}, and
{yni} fori=1,2,...,and n > 1. From (3.9), we get

2
”xn - xn+1||2 = ”xn — X0+ Xo — xn+1||
= ||xn = x0I* + 2(2n — X0, X0 = Xns1) + |20 = Xna1 ||

2
= |2 = x0l1* + 2(2n — X0, X0 = Xy + Xn = Xns1 ) + [|%0 — X1 ||°

(3.13)
= [|2¢n = x0|* = 2(2tn = X0, Xn — X0) + 2{%Xp = X0, Xn = Xns1) + || X0 — X1 ||*
= —||xn = X0|* + 2(2 — X0, X — Xns1) + || X0 — Xs1||*
< —lln = X0l + [|x0 = X ]I
By (3.12), we obtain
lim ||x; — xu41] = 0. (3.14)
n—oo
Since x,41 = Pc,,,x0 € Cps1 C C,, we have
2 2 2
|y = Xne1 || < llxn = xmaa ||~ + cxn,i<||xo|| +2(wy — X0, Xp11 >>' (3.15)

By (iii) and (3.14), we get

Tim [|yni — 2w || = 0. (3.16)
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It follows that
lyni = xn|| < ||Yni = Xnar || + 120 = Xt |I- (3.17)
By (3.14) and (3.16), we have

B lyni =%l =0, i=1,2,.... (3.18)

Step 3. We claim that the following statements hold:

(81) limy, o [|2¢ — uul| = 0,
(52) limy, oo || x, — ta]l = O,

(83) limy, — oo ||y, — x4 = 0.
For (3.2), we note that
Iyni = pII* < anillxo = pII* + (1 = @) || Tieon - p|”

— anllzo - pll + 1 - an)0n -
< apif|x0 — P”2 +(1—au)

x {&ull (on = 5uBx) = (p = 5uBp) I” + (1= ) | (e = raAx) = (p = ruAP) ||}
< apif|x0 — ]9||2 + (1= an,)

{6 = I + 52 (50~ 29) 1B~ Bl

2 2
+(1 =) (|2 = pI* + 7l = 20) || Axo — Ap]*) }

= “n,i”xO - P”z + (1 - “n,i)

% { [|xn - p||2 +¢nSu(sn—2P) || Bxn — Bp”2 + (1= &n)rn(rn — 2a) || Axy - Ap||2}
= anil|xo = plI* + 1% = PII* + (1 = an:)énsn (sn — 26) || Bx, — Bp||®

+ (1= @) (1 = &) 7u(rn — 20) || Ax, — Ap||?
= || x0 = p||* + |20 = pI|* + (1 = ni)&nsn (50 — 28) || Bxa - Bp||*.

(3.19)

Since0<c<s, <d<2B,0< ki <ayi < hi <1, wehave

(1- hy)éc(2p - d) || Bxa = Bp||* < ansl|x0 - p|I* + %0 = PII* = lymi - P’ (3.20)

< atnil|xo = pI + s = xall (1 = o + s = ).
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By condition (iii) and (3.18), lim, . o ||Bx, — Bp|| = 0 by using the same method with (3.20).
Hence, from (3.19), since0 <a <r, <b<2a,0< k; <a,; <h; <1, we have

(1-hi)(1- &) a2a - b)||Axy — Ap||* < awl|x0 = p||* + [|xa = p||* = [|yni = |’

< anillxo =plI* + lyni = xall (20 = Il + lyni = PlI)-
(3.21)

By condition (iii) and (3.18), then we have lim, _, o ||Ax, — Ap|| = 0. On the other hand, we
compute

2
TSI = 5,B)xy - To, (I - 5,B)p |

ln = plI* =

< ((xn = 5nBxy) = (p = 5uBp), un — p)
= {10 suBx) = = 5uBp) I+ e~
~||(xn = suBxn) = (p = $2Bp) ~ (1n —p) ||2} (3.22)
< o {1 = I+l pIF = 1| oo~ 50B2) — (9~ 5.Bp) — (s~ p) )
= ;{len =l + [|un = pII* = ltn = Xul* + 25, = 11, Bx, - Bp)

~s3||Bx, - Bp|*},
and hence,

||2n —p||2 < ||xn —p||2 — Nl = xa)* + 285 Xn — tn, Bx, — Bp) — sp||Bxu — Bp”2

) (3.23)
< 1w = PI|” = l1ttn = xull® + 28ullxn — wall||Bxx - Bp||-
By using the same method as (3.23), we also have
It = pII> < 20 = PII* = l1tn = xall® + 27u(xn = tu, Axy — Ap) = r2|| Ax, - Ap|® 20

< 1% =PI = ltn = 2all? + 2rullxn — bl || Az — Ap]|.



Fixed Point Theory and Applications 13

Furthermore, we observe that

ymi - plI*
< api|[x0 —P||2 + (1 - an) || Tiwn —P”2
= |0 = p|I* + (1 - @) [|wn - |
< il xo = p* + (= ) {180 P 10 = \uDuan) + (1 = &) Pe (b = puEti) - pII*}
< apji||x0 —P||2 +(1—an,)
s {& (llww = plI” - 14(26 ~ 1) [| Dus ~ D)
+ (=& (||ta = plI* = a (21— ) | Eta ~ Ep|*) }
< anillxo =~ p + (1 = @) (&l =PI + (1= &) 10 - )
< anil|xo = p || + (1= any)
L& (Ilen = I = it = xlP + 250120 — || B~ B )
+ (=) (1= pIP = 1w = 2all + 2710 =l Az~ Ap]|)}
< anillxo = plI* + o0 = pII* = (1 = @ni)énllin = xall”

+ (1= i) én2sul|xn — | ”an - BP” (T =an)(1=¢&)lltn - anz
+ (1= ani) (1 = &n)2rnllxn — tal| ”Axn - AP”

< an,i”xo - P”2 + ”xn - p”2 - (1 - an,i)én“un - xn”2 +(1- an,i)gnzsn“xn - un” ”an - BP”

+ (1 = i) (1 = &) 27|20 — tall]| A — Ap|.-
(3.25)

By condition (i)-(iv), (3.18), lim,, . || Ax, — Ap|| = 0 and lim,, . o || Bx,, — Bp|| = 0, then we get

(1= i) nllttn — xal* < anil|xo0 = p||* + [0 = 21| = lymi — P
+ (1= i) én2su|xn — | ”an - BP”

+ (1= an,i) (1 = &) 27ul|xn - tn””Axn - AP”
(3.26)

< atnillxo = pII” + 26w = ynsll (e = ol + s = 1)
+ (1= an,i)én28nl|xn — unl| ”an - BP”
+ (1= ani) (1= &n)2rnllxn — tn””Axn - AP”
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Therefore, we have

Him [lx, —uyl| = 0. (3.27)

Similar to (3.26), from (3.25) by conditions (i)-(iv), (3.18), lim,_ | Ax, — Ap|| = 0, and
lim, —, o»||Bx,, — Bp|| = 0, we get

(1= ) (L= E)ltn = xall < @nil|xo = p|I* + || = pl|” = [lymi = pII°
+ (1= ani)én2snl|x, - un”"an - BP”
+ (1= aui) (1 = &n)2rn||xn — tall ”Axn - AP”

i (3.28)
< apil|xo = pl|” + |20 = ymil| (|20 = Il + lymi = Pl
+ (1 = ani)én25n|xn — unll|| Bx, — Bp||
+ (1= i) (1= &) 27l = tall | Axn — Ap)|.
Therefore, we have
;}ij{}o”xn —ta|| = 0. (3.29)

From (3.1), (3.3), we have

ll20n = p|* = || &P (1tn = AuDitn) + (1 = &) Pe (tn = puEty)
~&uPe(p = AuDp) — (1= &) Pe(p - aEp) ||

= &u| Pe(ttn — AuDutn) = Pe(p = 1.Dp)|°

+ (1= &u)|| Pe(tn = puFta) = Pe(p — punEp) |I°
< & llun = plI* - 128 - 1) || D, — Dp*}

+ (1= {[ltw =PI = #u (211 = o) | Ets - Ep "}
< & ll2n = pII* + s (s — 28) || Bxs = Bp||* = 126 = A,) | Dus, — Dp||*}

+ (U= {lln = p* + ru(ra ~ 200 || Ay = Ap|* = po 21— i) | Et — Ep |
< Nl = PII* + &nsu(sn = 28) | Bxn = Bp||” = &540(26 = A,) || Dutn — Dp||*

+ (1= &) ru(rn — 20)|| Axy = Ap||* = (1= &) pu (27 — piu) || Etn — Ep||*.
(3.30)
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Furthermore, we observe that

i = pII* < anillxo = plI* + (1 = @u) || Tizon - p||*
=ty i} x0 = p|* + (1 = an) || wn - ||
< ayilxo - pl|* + (1 - ans)
x {ll2n = pII* + &5 (50— 28) | Bxs = Bp||* - &u4n(26 = 1) || Duty ~ Dp||*
(1= &)1 (r = 20) [ Axy = Ap||* = (1= &0)pn (211 = pn) || Etn — Ep*}
< nall o = pIP + [ =PI+ (1 = @)dusu(sn ~ 26) | Ba = Bp|l* = (1 - @),
% (26 = A) | Dt = Dp||* + (1 = 1) (1 = &a)n(rn - 200) || Ax, — Ap]||”
~ (1= ) (1 = &) (21 = ) || Etu — Ep||*
< anil|xo = pl + [|xn = pII* + (1 = @) éusu(sn — 26) || Bx — Bp||*
~ (1= @n)&nAn(26 — A) || Du — Dp||*
+ (1= ) (1= &) (rn — 20)]| A — Ap]|*.
(3.31)

Since0<e <A, < f<260< ki <ay; <h; <1, wehave

(1= hi)ée(26 - f)||Dutn = Dp||* < anl|xo = plI* + [lx0 = pII* = llyni = pII*
+ (1= ui)énsn (50—~ 2P) || Bxn — Bp||*
+ (1= i) (1 = &) n(rn — 20) | Ax — Ap||”
< anillxo = pII” + llyms = xall (ln = p Il = lymi ~ )
+ (1= ui)énsn (50—~ 2P) || Bxn — Bp|[*

+ (1= i) (1 = &u) (1 — 20) | A, — Ap||*.
(3.32)
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By conditions (i)-(v), (3.18), lim, . ||Ax, — Ap|| = 0, and lim,_.|Bx, — Bp|| = 0, then

lim, —. ||Du, — Dp|| = 0. By using the same method with (3.32). Hence, from (3.31), and
since 0 < g < pp, <j<21,0< ki <api <h <1,wehave

(1-h)(1-)g(21 - j)||Ets - Ep|’
< anil|xo = plI* + 1% = PII* = llymi - pII’
+ (1= ) &n5n (sn — 2B) || Bxn - Bp||*
+ (1= ) (1 = &) 7n(r — 2) || Ax — Ap||? (3.33)
< anillxo = plI* + ymi = %all (% = 21| = llymi = plI)
+ (1= an)éusn(sn — 2B)||Bxn - Bp||*

+ (1= @) (1 = E)ru(ra — 20)|| Ax,, — Ap||*.

By conditions (i)—(iv), (vi), (3.18), lim, —, o ||Ax, — Ap|| = 0, and lim,, || Bx,, — Bp|| = 0, then
lim,, ., o»||Et, — Ep|| = 0. From (3.1), we have

ll0n = pII”* < [|&{ Pc (un = \uDuuy) = Pe(p - A.Dp) }

+(1 = &) {Pc (tn — pnEtn) = Pc(p — aEp) } || (3.34)

<&allty = p|* + =& |1ty - Pl

Assume that u), = Pc(u, — A,Du,) and t,, = Pc(t, — p,Et,). By nonexpansiveness of I — \,,D
and I — p,E, we also have

4, = p|I* < ||Pe(I ~ 2aD)uty — Pe(I ~ A, D)p||*
< ((un = AnDun) = (p = AuDp), 1, = p)

]' !
= {1t = 1.Dun) = (p = XuDp) | + ||, - ||
~[(ttn = \uD1aa) = (p = 1uDp) = (1, - p) |}
1 , ,
< {llwn =l + 1, = pI* = | ttn = 1aDw) = (p = 1uDp) = (= p) |} )

8

2
T G = 5uB6) = T80 (p = ,8p) |+ 1 = I = s =1,

20, (1t — ty, Dty — Dp) — 12|| Dty Dp||2}

]' ! !
< {llen =l 1 =PI = lluw = 16,|” + A = 26) || Duan = Dp|*}.
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It follows that
6, =PI 12w = pII* =l = 14, [1* + 20 (A = 26) | Dus — Dp]|*
Similar to (3.36), we obtain
16 =pI1* < 1w = pI1* = lltn = Eull* + o (pn = 2) | Et ~ Ep .
Substituting (3.36), (3.37) into (3.34), we have

llon = pII* < &l —plI* + A = &) |8~ pII”
< &{ e = pI*  llun > + 201~ 26)]| D~ D}
+ (1= &) {0 =PI = Nt = £l + pn (e — 20) || Bt - Ep||*}
<l = plI = &ulln — 2, |1* + udn (s - 26) || Du, - Dp||?

-(1- én)”t" - t;1”2 + (1= &) ptn (pn — 217) ”Et" - Ep”z‘
By (3.38), we have

i - P
< anil|xo - p||* + (1 - aws) | Trwn - p||?
= |0 = p|* + (1 = aw)|wn ~ p|?
= apillxo - p* + (1 - ans)
w{ Il =PI = &l = 4] + a4~ 26)]| Dty - D
(1= &)t = 17 + (= &)ptn G — 27) | Etn — Ep|)*)
= ayil|x0 = pl|* + |20 =PI = (1 = )| — 24, ]|
+ (1= )énhn(ln — 26) || Dty — Dp||* = (1 = ) (1 = &) ||t — 1]
+ (1= ) (1= &) (n = 21) | Et = Ep||”

= anillxo = pII + loen = pII* = (1= atn)éulluen — 1, |

17

(3.36)

(3.37)

(3.38)

+ (1= @) éudn(Ay = 26) || Dity = Dp||* + (1 = @) (1 = &)t (ptn = 21) || Et = Ep|”.

(3.39)
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It follows that

(1= el =, |I* < @nillxo = pI* + llxn = I = llymi = plI* + (1= an)n

x (A = 26) || Dun = Dp||* + (1 = @) (1 = &u)ptn (4 = 217) || Etn - Ep||”

< atullxo = pII* + [len =yl (e = I+ i = p 1) + (1= )&k

x (A = 26)|| Dty = Dp||* + (1 = ani) (1 = &n) i (s — 217) || Etn — Ep||*.

(3.40)

By conditions (iii)—(vi), (3.18), lim, . o ||Du,, — Dp|| = 0 and lim,,_. || Et,, — Ep|| = 0, we get

lim ||u, — || = 0.

By using (3.41), we can prove that

1im [t £ = 0.
Applying (3.27) and (3.41), we also have

i [, - 1] = 0.
From (3.29) and (3.42), we obtain

1im [Jx, - £, = 0.

Since u), = Pc(u, — A\yDuy,) and t), = Pc(t, — pnEt,), we have
W — X = &n (U, — X)) + (1= &) (£, — x).
By (3.43) and (3.44), we obtain
lim ||z, — x| = 0.
n—oo
By condition (iii), we have vy, = a,ix0 + (1 — a,,;) Tiw,, which implies that
|yni — Tiwn|| = anillxo - Tiwy|| — 0, n— oo, Vi>1.

From (3.18) and limy, - oo ||y, — Tiwy|| = 0, we have

l¢n = Tiwoull < ||Yni = Tiwn|| + |yni = xul| — 0, n— 00, Vi1

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)
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Since
lwn — Tiwn|| < ||wn = xul| + [l = Tiwn|. (3.49)

By (3.46) and (3.48), we have that lim,, ., ||w, — Tiw,|| =0, foralli=1,2,....

Step 4. We show that z € © := (N2, F(T:)) NnGMEP(F1, 91, A) N GMEP(F, ¢, B) nVI(C,D) N
VI(C,E).

First, we show that z € N2, F(Ti). Assume that z ¢ (2, F(T:). Since limy,_, o ||w, —
Xn|| = 0 and lim, . oo ||x, — z|| = 0, we have that lim,, _, o, ||w,, — z|| = 0. By lim, . »o||w, — z|| = 0
and lim, _, oo||w, — Tiwy,|| =0,i=1,2,..., from Opial’s condition, we have

lim inf||w,, — z|| < liminf||w,, - T;z||
1— o0 1—00
< liminf(wy, — Tiawy | + [Ty, ~ Tiz) (3.50)

< lim infl|eoy, - 2,
1— 00

which is a contradiction. Thus, we obtain z € 2, F(T;).
Next, we show that z € GMEP(Fy, ¢, A). Since t,, = Tr(fl’%) (x, —12Ax,),n>1, we have
for any y € C that

1
Fi(ta, y) + 01(y) — 91(tn) + (Axp, vy —t,) + . (y—tatn—x,) 20, VyeC. (3.51)
n
From (A2), we also have
1
01(y) — p1(tn) + (Axn, y — t) + . (y —tn,ta—xn) > F1(y,t), VYyeC. (3.52)
n

FortwithO<t<landy e C, lety; =ty + (1 -1t)z. Sincey € C and z € C, we have y; € C.
Then, we have

(Yt = tn, Aye) = (y1 = tu, Aye) — 01(y1) + 91(tn) = (Yt — b, AXy,)

th — Xy
- <yt —tn, "’r o > + Fi (Y, tn,)

n;

(3.53)
= (Yt — tn, Ay — Aty + (Yi — tn,, Aby, — Axn,) — 01 (y1) + 1(tn,)

by, — Xy,
- <}/t _tni/ nlr & > +F1(yt/tn,->-

i
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Since ||t,, — x| — 0, we have ||At,, — Ax,,|| — 0. Further, from an inverse-strongly

monotonicity of A, we have (y; — t,,, Ay, — At,,) > 0. So, from (A4) and the weak lower
semicontinuity of ¢1, (tn, — xy,)/7s, — 0and t,, — z, we have at the limit

(yi =z, Aye) > —p1(ye) + 91(2) + Fi(yr, 2), (3.54)
asi — oo. From (Al), (A4), and (3.54), we also get

0=Fi(ye, yi) +p1(ye) — p1(w)
<tFi(y,y) + A -Fi(yr, z) + tp1(y) — (1 - Hp1(z) — o(yr)
=t[Fi(yey) + p1(y) —p1(ye)] + A= 1) [F1(ye, 2) + 91(2) — 1 (y1)]

(3.55)
<t[Fi(yey) +o1(y) — o1 (y)] + A -5yt — z, Ayr)
=t[Fi(y,y) +o1(y) —p1(y0)] + (1 -y - z, Ays),
0< Fi(yny) +91(y) - o1(yr) + 1=y - 2, Ays).
Letting t — 0, we have, for each y € C,
Fi(z,y) +¢1(y) —¢1(z) + {(y — 2, Az) > 0. (3.56)

This implies that z € GMEP(F;,¢1, A). By the same arguments, we can show that z €
GMEP(Fz, 2, B)

Lastly, by the same proof of [39, Theorem 3.1, pages 346-347], we can show that z €
VI(C, D) and z € VI(C, E). Therefore, z € (N2, F(Ti)) NGMEP(Fy, ¢1, A) NnGMEP(F;, ¢2, B) N
VI(C, D) nVI(C, E); that is, z € ©.

Noting that since x,, = Pc,xo, by(2.4), we have

(x0=xn,y—x,) <0, VyeC, (3.57)

Since © C C, and by the continuity of inner product, we obtain from the above inequality
that

(x0o—z,y-2y<0, VyeC. (3.58)

By (2.4), again, we conclude that z = Poxp. This completes the proof. Il
Using Theorem 3.1, we obtain the following corollaries.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert Space H. Let Fy, F; be a
bifunction of C x C into real numbers R satisfying (A1)—(A4), and let @1, : C — R U {+o0} be
a proper lower semicontinuous and convex function. Let A, B, D, and E be a, B, 6, and n-inverse-
strongly monotone mapping of C into H, respectively. Let T be nonexpansive mapping such that
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© := F(T) N GMEP(F1, 91, A) N GMEP(F, ¢, B) N VI(C, D) N VI(C, E) # 0. Assume that either
(B1) or (B2) holds. Let {x,} be a sequence generated by xo € C, x1 = Pc,x¢ and

bn = Trg:l,lpl)(xn —AXy),
Uy = Téfz"m)(xn - 5,Bx,),

wy = & Pc(uy — XyDuy) + (1 - &) Pc (tn - ,unEtn>/

Yn = XpXo + (1-a,)Tw,,

(3.59)

Crt = {z € Cut lyn = 2l < lhxw = 217 + @ (0> + 240 = 30, 2) ) |,

Xn+l = PC X0,

n+l

for every n > 0, where {r,},{s,} C (0,00), A, € (0,26), and pu,, € (0,2n) satisfy the following
conditions:

i)0<a<r,<b<2a,
(i) 0<c<s, <d <2p,
(iii) limy, — o0, = 0,
(iv) limy, — o6n = ¢ € (0, 1),
(v)0<e<\, < f<26,
(vi) 0< g <pn<j<2.
Then, {x,} converges strongly to Pox.

Proof. Taking T; = T fori = 1,2,..., to be nonexpansive mappings, in Theorem 3.1, we can
conclude the desired conclusion easily. This completes the proof. Il

A mapping T : C — C is said to be a x-strict pseudocontraction [40] if there exists a
constant 0 < x < 1 such that

ITx=Ty|l? < x -yl + |1 -Dx = -T)ylP, Vxyec (3.60)

where I denotes the identity operator on C.

Lemma 3.3 (see [41]). Let C be a nonempty closed convex subset of a real Hilbert space H, and let
T : C — C bea x-strict pseudocontraction. Define Sx : C — C by Sx = ax + (1 — a)Tx for each
x € C. Then, as a € [x,1) S is nonexpansive such that F(S) = F(T).

Using Theorem 3.1, we obtain the following result.

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert Space H. Let F1, F, be a
bifunction of C x C into real numbers R satisfying (A1)—(A4), and let @1, : C — R U {+o0} be
a proper lower semicontinuous and convex function. Let A, B, D, and E be a, , 6, and n-inverse-
strongly monotone mapping of C into H, respectively. Let T1,T,,...,Tn be a finite family of ;-
psuedocontractions such that © := ﬂf-\:]l F(Ti) nGMEP(F1, 1, A) N GMEP(F,, ¢, B)nVI(C, D) n
VI(C, E) #0. Define a mapping Ty, by Ty, = kix + (1 — x;)T;x forall x € C, i € {1,2,...,N}. Let
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Sy, be the S-mappings generated by Ty, Ty,, . .., Ty, and “:l,i' az., ..., “11:,]1" Assume that either (B1) or

ni’ "’
(B2) holds. Let {x,} be a sequence generated by xy € C, C1; = C, C1 = (%4 C1,i, x1 = Pc,xo and
bn = T:fl,lpl)(xn —AXy),

Téfz"m)(xn - s,Bxy),

Uy =
wy = & Pc(uy — yDuy) + (1 - &) Pc (tn - ,unEtn)/

Yni = Anixo + (1 — ayi) Tiwy, (3.61)

2
Cpetji = {z € Cuit ||ymi—2||” < llxn— 2zl + ocn,l-(llxoll2 +2(wy — xO,Z>> }
[ee]
Cus1 = [ \Cusriv
i=1

Xu41 = Pc,,, X0,

for every n > 0, where {r,},{s,} C (0,00), A, € (0,26), and p,, € (0,2n) satisfy the following
conditions:

i)0<a<r,<b<2a,
(i) 0<c <5, £d <2p,
(iii) limy, — oatni =0,
(iv) limy, - oén = § € (0, 1),
(v)0<e<A, < f <26,
(vi) 0< g <pu<j<2n

Then, {x,} converges strongly to Poxo.

Proof. From Theorem 3.1, {T;}Y, is a finite family of ;-strict pseudocontraction. By
Lemma 3.3, we have that T, is nonexpansive mappings. The conclusion of Theorem 3.4 can
be obtained from Theorem 3.1 immediately. Il

4. Some Applications
4.1. Complementarity Problem

Let C be a nonempty closed and convex cone in H, and let E be an operator of C into H. We
define the polar of C in H to be the set

K*:={y*e€H:(x,y*) >0, Vx € C}. (4.1)
Then, the element u € C is called a solution of the complementarity problem if

Eue K*, (u,Eu)=0. (4.2)
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The set of solution of the complementarity problem is denoted by C'(C, D), C'(C, E). We will
assume that D, E satisfies the following conditions:

(E1) D, E is a 6, n-inverse-strongly monotone mapping, respectively,

(E2) C'(C,D), C'(C,E) #0.

(B1) Foreach x € H and r > 0, there exist a bounded subset D, C C and y, € C ndom(¢)
such that for any z € C \ Dy,

F(292) + @) + ) (e = 2,2 - x) < 9(2), @3)

(B2) C is a bounded set.

Corollary 4.1. Let C be a nonempty closed convex subset of a real Hilbert Space H. Let Fy, F; be a
bifunction of C x C into real numbers R satisfying (A1)—(A4), and let @1, : C — R U {+o0} be
a proper lower semicontinuous and convex function. Let A, B, D, and E be a, , 6, and n-inverse-
strongly monotone mapping of C into H, respectively. Let T1, T», . . . be infinite nonexpansive mapping
such that © = N2, F(T;) N GMEP(Fy,¢1, A) N GMEP(F,, ¢,,B) N C'(C,D) n C'(C,E) #.
Assume that either (B1) or (B2) holds. Let {x,} be a sequence generated by xo € C, C1; = C, C1 =
n?:l Cl,i/ X1 = Pcl.X'o and

te = T (o = 10 Axy),
Uy = Ts(fz’(‘m(xn - 5,Bx,),

wy = & Pc(uy — XyDuy) + (1 - &) Pc (tn - ,unEtn)/

Yni = An,iXo + (]- - an,i)Tiwnz (44)

2
Chai = {z € Coji lymi =21 < llxw — 2% + ocn,l-(llxoll2 +2(wy - xO,Z>> }

o]
Cui1 = [ \Crsris

i=1

Xu41 = Pc,,, X0,

n+l1

for every n > 0, where {r,},{s,} C (0,00), A, € (0,26), and p,, € (0,2n) satisfy the following
conditions:

i)0<a<r,<b<2a,
(i) 0<c<s, <d <2p,
(iii) limy, — oatni =0,
(iv) limy, - oén = § € (0, 1),
(v)0<e<\, < f<26,
(vi) 0< g <pu<j<2n

Then, {x,} converges strongly to Pgx.
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Proof. Using Lemma 7.1.1 of [42], we have that VI(C, D) = C'(C, D) and VI(C,E) = C'(C,E).
Hence, by Corollary 4.1, we can conclude the desired conclusion easily. This completes the
proof. Il

4.2. Optimization Problem

In this section, we study a kind of multiobjective optimization problem by using the result
of this paper. We will give an iterative algorithm of solution for the following optimization
problem with nonempty set of solutions:

min hy(x),
min hp(x), (4.5)

x €C,

where h(x) is a convex and lower semicontinuous functional, and define C as a closed convex
subset of a real Hilbert space H. We denote the set of solutions of (4.5) by M (h;) and M (hy).
Let F; : C x C — R be a bifunction defined by F;(x,y) = hi(y) — hi(x). We consider the
equilibrium problem, it is obvious that EP(F;) = M(h;), i = 1,2. Therefore, from Theorem 3.1,
we obtained the following corollary.

Corollary 4.2. Let C be a nonempty closed convex subset of a real Hilbert Space H. Let Fy, F; be a
bifunction of C x C into real numbers R satisfying (A1)—(A4), and let 1, : C — RU {+o0} bea
proper lower semicontinuous and convex function. Let A, B, D, and E be a, p, 6, and r-inverse-
strongly monotone mapping of C into H, respectively. Let T1, Ty, ... be an infinite nonexpansive
mapping such that © := N2, F(T;) "NMEP(Fy, 1) "\MEP(F,, ) "VI(C, D)NVI(C, E) # 0. Assume
that either (B1) or (B2) holds. Let {x,} be a sequence generated by xo € C, C1; = C, C1 = 2; C1,
X1 = Pclx(), and

1
Pu() = It (E=tu b —x2) 20, VEEC,

n

hy(u) — hy(uy,) + Sl (Uu—up,u,—t,) >0, YuedC,

wy = & Pc(uy — yDuy) + (1-¢,)Pc (tn - ,unEtn>/

Yn,i = Apixo + (1 — ay i) Tiwy, (4.6)

2
Chai = {z € Coi: [|ymi = 2] < e — 21 + ocn,l-<||xo||2 +2(wy - xO,Z>> }
oo
Cus1 = [ \Cusriv
i=1

Xu41 = Pc,,, X0,

n+l1
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for every n > 0, where {r,},{s,} C (0,00), A, € (0,26), and p, € (0,2n) satisfy the following
conditions:

(1) limn—moan,i =0,
(ii) limy—0én = § € (0,1),
(iii) 0 <e <A, < f <26,

(iv)0<g<pu, <j<2n.

Then, {x,} converges strongly to Pgx.

Proof. From Theorem 3.1, put Fi(t,,t) = hi(t) — hi(t,), Fo(un,u) = ha(u) — ha(u,), and
A,B,p1,9o = 0. The conclusion of Corollary 4.2 can be obtained from Theorem 3.1
immediately. [

4.3. Minimization Problem

In this section, we study the problem for finding a minimizer of a continuously Fréchet
differentiable convex functional in a Hilbert space.
First, we use the following lemma in our result.

Lemma 4.3 (see [43]). Let E be a Banach space, let f be a continuously Frechet differentiable convex
functional on E, and let V f be the gradient of f. If V f is (1/a)-Lipschitz continuous, then V f is an
a-inverse-strongly monotone.

Let fi1, f» be functionals on H which satisfies the following conditions:

(C1) let, f1, f» be a continuously Frechet differentiable convex functional on H, and let,
Vf1, V fabe (1/6), (1/n)-Lipschitz continuous, respectively,

(C2) (Vf1)'0={z1 € H: fi(z1) = miny,er fi(y1)} #0and (V£2) 0= {22 € H : fo(22) =
miny,er f2(y2) } #0.

Corollary 4.4. Let H be a real Hilbert Space. Let F1, F, be a bifunction of H x H into real numbers R
satisfying (A1)—(A4), and let ¢1,¢2 : C — R U {+oo} be a proper lower semicontinuous and convex
function. Let A, B be a, p-inverse-strongly monotone mapping of H into H, respectively. Let T1, T, . . .
be infinite nonexpansive mappings. Let f1, f» be functionals on H which satisfies the conditions
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(C1) and (C2). Suppose that © = (2 F(I;) N GMEP(Fy,¢1) N GMEP(F3, ) N (Vfl)’lo N
(V fz)’lo # (0. Assume that either (B1) or (B2) holds. Let {x,} be a sequence generated by xo € C,
C,i=C, C1 =N2Z Cui, x1 = Peyxo, and

by = T:fl,lpl)(xn —AXy),
Ts(fz,tpz)

U, =

Wn = én(un - )anfl(un)) +(1- gn)(tn - .uanZ(tn))r

Yni = apixo + (1 — api) Tiws,

(xn — suBxy),

(4.7)
Cpa,i = {z € Coi: ||ymi — 2||° < llxn — 2> + ocn,l-(llxoll2 +2(wy, — xO,Z>> }

o]
Cui1 = [ \Cusvis

i=1

Xu41 = Pc,,, X0,

n+l1

for every n > 0, where {r,}, {s,} C (0,00), A, € (0,26), and p, € (0,21n) satisfying the following
conditions:

(i)0<a<r,<b<2a,

(i) 0<c <5, £d <2p,

(iii) limy, — atni =0,

(iv) limy, — oén = § € (0, 1),

(v)0<e<A, < f <26,

(vi) 0< g <pn<j<2m.

Then, {x,} converges strongly to Poxo.

Proof. We know form condition (C1) and Lemma 4.3 that V f1, V f, is a §, 7-inverse-strongly
monotone operator from H in to itself, respectively. The conclusion of Corollary 4.4 can be
obtained from Theorem 3.1 immediately. Il
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