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The strong convergence theorem is proved for finding a common solution for a system of
equilibrium problems: find u∗ ∈ S := ∩N

i=1EP(Fi),EP(Fi) := {z ∈ C : Fi(z, v) ≥ 0 ∀v ∈ C}, i =
1, . . . ,N, where C is a closed convex subset of a Hilbert space H and Fi are N bifunctions from
C ×C into R given exactly or approximatively. As an application, finding a common solution for a
system of variational inequality problems is given.

1. Introduction

Let H be a real Hilbert space with the scalar product and the norm denoted by the symbols
〈·, ·〉 and ‖ · ‖, respectively. Let C be a nonempty closed convex subset of H, and let
Fi(i = 1, . . . ,N) be N bifunctions from C × C into R. In this paper, we consider the system of
equilibrium problems:

find u∗ ∈ S := ∩N
i=1EP(Fi),

EP(Fi) := {z ∈ C : Fi(z, v) ≥ 0 ∀v ∈ C}, i = 1, . . . ,N.
(1.1)

We assume that S/= ∅ and the bifunctions Fi satisfy the following conditions.

Condition 1. The bifunction F satisfies the following conditions:

(A1) F(u, u) = 0 for all u ∈ C.

(A2) F(u, v) + F(v, u) ≤ 0 for all (u, v) ∈ C × C.
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(A3) For every u ∈ C, F(u, ·) : C →R is lower semicontinuous and convex.

(A4) limt→+0F((1 − t)u + tz, v) ≤ F(u, v) for all (u, z, v) ∈ C × C × C.

Definition 1.1. A mapping A of C into H is called monotone if

〈
A(x) −A

(
y
)
, x − y

〉 ≥ 0, (1.2)

for all x, y ∈ C.

Now, we consider the variational inequality problem: find u∗ ∈ C such that

〈A(u∗), x − u∗〉 ≥ 0, (1.3)

for all x ∈ C. We denote VI(C,A) the set of solutions of the variational inequality problem.

Definition 1.2. A mapping T of C into H is called k-strictly pseudocontractive in the
terminology of Browder and Petryshyn [1], if there exists a number k ∈ [0, 1) such that

‖T(x) − T
(
y
)‖2 ≤ ‖x − y‖2 + k‖(I − T)(x) − (I − T)

(
y
)‖2, (1.4)

where I is the identity operator inH.

The above inequality is equivalent to

〈
A(x) −A

(
y
)
, x − y

〉 ≥ λ‖A(x) −A
(
y
)‖2, (1.5)

where the operator A := I − T is λ = (1 − k)/2-inverse strongly monotone (hence monotone)
and Lipschitz continuous with the Lipschitz constant 2/(1 − k). Clearly, when k = 0, T is
nonexpansive, that is,

‖T(x) − T
(
y
)‖ ≤ ‖x − y‖ (1.6)

for all x, y ∈ D(T), the domain of T . It means that the class of k-strictly pseudocontractive
mappings strictly includes the class of nonexpansive mappings. Denote by F(T) the set of
fixed points of the operator T in C, that is,

F(T) = {x ∈ C : x = T(x)}. (1.7)

If N = 1, then (1.1) is a single equilibrium problem [2, 3] to cover monotone inclusion
problems, saddle point problems, variational inequality problems, minimization problems,
Nash equilibria in noncooperative games, vector equilibrium problems, as well as certain
fixed point problems.

For finding approximative solutions of (1.1), there exist several approaches: the
regularization approach in [4–7], the gap-function approach in [8–10], and iterative
procedure approach in [11–15].
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If N > 1, then (1.1) is a problem of finding a common solution for a system of
equilibrium problems which is studied firstly in [5] (cf. [16]) under the condition that
Fi (i = 1, . . . ,N) are bounded, Fréchet differentiable with respect to v and ∇vFi(u, u) are
Lipschitz continuous, that is,

‖∇vFi(x, x) − ∇vFi

(
y, y

)‖ ≤ L‖x − y‖ ∀x, y ∈ C, i = 1, 2, . . . ,N, (1.8)

where L is a positive constant.
With the case that

Fi(u, v) = 〈(I − Ti)(u), v − u〉, (1.9)

and Ti (i = 2, . . . ,N) are N − 1 strictly pseudocontractive mappings, (1.1) is a problem of
finding a solution of an equilibrium problemwhich is also a common fixed point for a system
of a finite family of strictly pseudocontractive mappings [17–19].

In addition, when F1(u, v) = 〈A1(u), v − u〉 where A1 is a monotone operator, (1.1)
is a problem of finding an element which is a solution of a variational inequality problem
and a common fixed point for a finite family of strictly pseudocontractive mappings and
investigated intensively in [20–32]. If all Fi have the form (1.9), then (1.1) is a problem of
finding a common fixed point for a finite family of strictly pseudocontractive mappings Ti
from C intoH [14, 33–35].

In this paper, we present an iteration method for solving (1.1), where the iteration
sequence {xn} is defined by

x0 = x ∈ H,

ui
n ∈ C : Fi

(
ui
n, v

)
+
〈
ui
n − xn, v − ui

n

〉
≥ 0, ∀v ∈ C, i = 1, . . . ,N,

xn+1 = xn − βn

[
n∑

i=1

(
xn − ui

n

)
+ αnxn

]

,

(1.10)

where {αn}, {βn} are two sequences of positive numbers satisfying some conditions.
As an application, we find a common solution for a system ofN variational inequality

problems with monotone mappings.

2. Main Results

The strong and weak convergence of any sequence are denoted by → and ⇀, respectively.
We formulate the following facts which are necessary in the proof of our main results.

Lemma 2.1 (see [5]). Let C be a nonempty closed convex subset of a Hilbert spaceH, and let F be a
bifunction of C × C into R satisfying the Condition 1. Let r > 0 and x ∈ H. Then, there exists z ∈ C
such that

F(z, v) +
1
r
〈z − x, v − z〉 ≥ 0, ∀v ∈ C. (2.1)
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Lemma 2.2 (see [5]). Assume that F : C × C →R satisfies the Condition 1. For r > 0 and x ∈ H,
define a mapping Tr : H → C as follows:

Tr(x) =
{
z ∈ C : F(z, v) +

1
r
〈z − x, v − z〉 ≥ 0, ∀v ∈ C

}
. (2.2)

Then, the following hold:

(i) Tr is single-valued;

(ii) Tr is firmly nonexpansive, that is, for any x, y ∈ H,

‖Tr(x) − Tr
(
y
)‖2 ≤ 〈

Tr(x) − Tr
(
y
)
, x − y

〉
; (2.3)

(iii) F(Tr) = EP(F);

(iv) EP(F) is closed and convex.

Lemma 2.3. Let Fh(u, v) be a bifunction approximating the bifunction F(u, v) in the sense

∣∣∣Fh(u, v) − F(u, v)
∣∣∣ ≤ hg(‖u‖)‖u − v‖ ∀u, v ∈ C, h > 0, (2.4)

where g(t) is a real positive function. Then, for each r > 0 and x ∈ H, we have

‖Th
r (x) − Tr(x)‖ ≤ rhg(‖Tr(x)‖), (2.5)

where

Th
r (x) =

{
z̃ ∈ C : Fh(z̃, v) +

1
r
〈z̃ − x, v − z̃〉 ≥ 0 ∀v ∈ C

}
. (2.6)

Proof. Let x be an arbitrary element of H. By replacing v by z̃ in (2.2) and by z in (2.6), we
obtain

F(z, z̃) + Fh(z̃, z) ≥ 1
r
[〈x − z, z̃ − z〉 + 〈z̃ − x, z̃ − z〉]. (2.7)

Therefore, by virtue of (A2) in Condition 1, we can write

F(z, z̃) − Fh(z, z̃) ≥ 1
r
‖z̃ − z‖2. (2.8)

Consequently,

‖z̃ − z‖ ≤ rhg(‖Tr(x)‖). (2.9)

The proof is completed.
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Lemma 2.4 (see [36]). Let {an}, {bn}, and {cn} be sequences of positive numbers satisfying the
conditions:

(i) an+1 ≤ (1 − bn)an + cn, bn < 1,

(ii)
∑∞

n=0 bn = +∞, limn→+∞(cn/bn) = 0.

Then, limn→+∞an = 0.

Lemma 2.5 (see [37]). Assume that T is a nonexpansive mapping of a closed convex subset C of a
Hilbert space H. Then I − T is demiclosed at zero; that is whenever {xn} is a sequence in C weakly
converging to some x ∈ C and the sequence {(I − T)(xn)} strongly converges to zero, it follows
(I − T)(x) = 0.

Lemma 2.6 (see [17]). Let A be a λ-inverse strongly monotone mapping from C into H such that
SA /= ∅, where SA = {x ∈ C : A(x) = 0}. Then, SA = VI(C,A).

Now, consider the firmly nonexpansive mappings Ti defined by

Ti(x) = {z ∈ C : Fi(z, v) + 〈z − x, v − z〉 ≥ 0, ∀v ∈ C}, i = 1, . . . ,N. (2.10)

By virtue of Lemma 2.2, we can see Ti is nonexpansive. Consequently, Ai := I − Ti is (1/2)-
inverse strongly monotone and Lipschitz continuous with the Lipschitz constant Li = 2, i =
1, . . . ,N.

We construct a Tikhonov regularization solution yn for (1.1) by solving the following
operator equation: find yn ∈ H such that

N∑

i=1

Ai

(
yn

)
+ αnyn = 0, (2.11)

where the positive regularization parameter αn → 0 as n → +∞. We have the following
result.

Theorem 2.7. (i) For each αn > 0, problem (2.11) has a unique solution yn.

(ii) limn→+∞yn = u∗, u∗ ∈ S, ‖u∗‖ ≤ ‖y‖, for all y ∈ S.

(iii) ‖yn − ym‖ ≤ (|αn − αm|/αn)‖u∗‖.

Proof. (i) Since the mapping
∑n

i=1 Ai is a monotone and Lipschitz continuous mapping
defined onH, it is maximal monotone. Therefore, (2.11) has a unique solution for each αn > 0
([38]).

(ii) For each y ∈ S, on the base of Lemma 2.2, we have that Ai(y) = 0, i = 1, . . . ,N.
Thus, from (2.11) it follows that

N∑

i=1

〈
Ai

(
yn

) −Ai

(
y
)
, yn − y

〉
+ αn

〈
yn, yn − y

〉
= 0. (2.12)

Since every Ai is monotone, from the last equality, we obtain

〈
yn, yn − y

〉 ≤ 0. (2.13)
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Hence,

‖yn‖ ≤ ‖y‖, ∀y ∈ S. (2.14)

It means that the sequence {yn} is bounded. Let {ynk} be a subsequence of the sequence {yn}
such that ynk ⇀ ỹ as k → ∞.

Again, let y be an arbitrary element of S. From the (1/2)-inverse strongly monotone
property of Al, and Al(y) = 0, l = 1, . . . ,N, it implies that

1
2
‖ynk − Tl

(
ynk

)‖2 ≤ 〈
Al

(
ynk

)
, ynk − y

〉

≤
N∑

i=1

〈
Ai

(
ynk

)
, ynk − y

〉

≤ −αnk

〈
ynk , ynk − y

〉

= −αnk

〈
ynk − y, ynk − y

〉 − αnk

〈
y, ynk − y

〉

≤ −αnk

〈
y, ynk − y

〉

≤ αnk2‖y‖2,

(2.15)

that is,

‖ynk − Tl
(
ynk

)‖ ≤ 2‖y‖√αnk . (2.16)

Therefore,

lim
k→∞

‖Al

(
ynk

)‖ = 0. (2.17)

By Lemma 2.5, Al(ỹ) = 0, that is, ỹ ∈ F(Tl), l = 1, . . . ,N. It means that ỹ ∈ S. Because S is
a closed convex subset in Hilbert space, it has a unique minimal element u∗ in norm. From
(2.14) and the weak convergence of {ynk} to ỹ = u∗, it also follows that ‖ynk‖ → ‖u∗‖, as
k → ∞. Moreover, the sequence {yn} converges strongly to u∗ as n → ∞.

(iii) From (2.11), (2.14), and the monotone property of Ai, it follows

αn

〈
yn, yn − ym

〉 − αm

〈
ym, yn − ym

〉 ≤ 0 (2.18)

or

‖yn − ym‖ ≤ |αn − αm|
αn

‖ym‖ ≤ |αn − αm|
αn

‖u∗‖, (2.19)

for each αn, αm > 0. The proof is completed.
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Theorem 2.8. Suppose that αn, βn satisfy the following conditions:

αn, βn > 0 (αn ≤ 1), lim
n→∞

αn = lim
n→∞

|αn − αn+1|
α2
nβn

= 0,

∞∑

n=0

αnβn = ∞, lim
n→∞

βn
(2N + αn)2

αn
< 1.

(2.20)

Then,

lim
n→∞

xn = u∗ ∈ S, (2.21)

where xn is defined by (1.10).

Proof. Let yn be a solution of (2.11). Set Δn = ‖xn − yn‖. Then,

Δn+1 = ‖xn+1 − yn+1‖ ≤ ‖xn+1 − yn‖ + ‖yn+1 − yn‖,

‖xn+1 − yn‖ =
∥∥∥∥xn − yn − βn

[
N∑

i=0

(
Ai(xn) −Ai

(
yn

))
+ αn

(
xn − yn

)
]∥∥∥∥.

(2.22)

From the monotone and Lipschitz continuous properties of Ai, i = 1, . . . ,N, (2.11), and ui
n =

Ti(xn), we can write

∥∥∥∥∥
xn − yn − βn

[
N∑

i=1

(
Ai(xn) −Ai

(
yn

))
+ αn

(
xn − yn

)
]∥∥∥∥∥

2

= ‖xn − yn‖2 + β2n

∥∥∥∥∥

[
N∑

i=1

(
Ai(xn) −Ai

(
yn

))
+ αn

(
xn − yn

)
]∥∥∥∥∥

2

− 2βn

〈
N∑

i=1

(
Ai(xn) −Ai

(
yn

))
+ αn

(
xn − yn

)
, xn − yn

〉

≤ ‖xn − yn‖2
[
1 − 2βnαn + β2n(2N + αn)2

]
.

(2.23)

Hence,

‖xn+1 − yn‖ ≤ Δn

[
1 − 2βnαn + β2n(2N + αn)2

]1/2
. (2.24)

Therefore,

Δn+1 ≤ Δn

[
1 − 2βnαn + β2n(2N + αn)2

]1/2
+
|αn − αn+1|

αn
‖u∗‖

≤ Δn

(
1 − αnβn

)1/2 +
|αn − αn+1|

αn
‖u∗‖.

(2.25)
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Thus, applying the inequality

(a + b)2 ≤ (1 + ε)

(

a2 +
b2

ε

)

(ε > 0), ε =
αnβn
2

, (2.26)

we obtain

0 ≤ Δ2
n+1 ≤ Δ2

n

(
1 − αnβn

)
(
1 +

1
2
αnβn

)
+
(
αn − αn+1

αn
‖u∗‖

)2 2
αnβn

(
1 +

1
2
αnβn

)

≤ a2
n

(
1 − 1

2
αnβn − 1

2
(
αnβn

)2
)
+

(
αn − αn+1

α2
nβn

‖u∗‖
)2

2αnβn

(
1 +

1
2
αnβn

)
.

(2.27)

Set

bn = αnβn

(
1
2
+
1
2
αnβn

)
,

cn =

(
αn − αn+1

α2
nβn

‖u∗‖
)2

2αnβn

(
1 +

1
2
αnβn

)
.

(2.28)

It is not difficult to check that bn and cn satisfy the conditions in Lemma 2.4 for sufficiently
large n. Hence, limn→+∞Δ2

n = 0. Since limn→∞yn = u∗, we have

lim
n→∞

xn = u∗ ∈ S. (2.29)

Now, let Fn
i (u, v) := Fhn

i (u, v) be bifunctions approximating the bifunctions Fi(u, v) in
the sense (2.4) where hn → 0, as n → ∞, and g(t) is a real positive and bounded (the image
of any bounded set is bounded) function. Then, the sequence of iterations {x̃n} is defined by

x̃0 = x ∈ H,

ũi
n ∈ C : Fn

i

(
ũi
n, v

)
+
〈
ũi
n − x̃n, v − ũi

n

〉
≥ 0 ∀v ∈ C, i = 1, . . . ,N,

x̃n+1 = x̃n − βn

[
n∑

i=1

(
x̃n − ũi

n

)
+ αnx̃n

]

,

(2.30)

where {αn}, {βn} are two sequences of positive numbers satisfying some conditions.
We have the following result.

Theorem 2.9. Suppose that αn, βn, and hn satisfy the conditions in Theorem 2.8 and

lim
n→∞

hn + hn+1

α2
nβn

= 0. (2.31)
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Then, we have

lim
n→∞

x̃n = u∗ ∈ S, (2.32)

where x̃n is defined by (2.30).

Proof. Let ỹn be a solution of the following equation:

N∑

i=1

An
i

(
ỹn

)
+ αnỹn = 0, An

i = I − Tn
i , (2.33)

where each Tn
i is defined by

Tn
i (x) =

{
z ∈ C : Fn

i (z, v) + 〈z − x, v − z〉 ≥ 0, ∀v ∈ C
}
, i = 1, . . . ,N. (2.34)

Since

‖x̃n − u∗‖ ≤ ‖x̃n − ỹn‖ + ‖ỹn − yn‖ + ‖yn − u∗‖, (2.35)

and limn→∞yn = u∗, in order to prove that limn→∞x̃n = u∗, it is necessary to prove that

lim
n→∞

‖x̃n − ỹn‖ = lim
n→∞

‖ỹn − yn‖ = 0. (2.36)

For this purpose, first we estimate the value ‖ỹn − yn‖. On the basis of Lemma 2.3, we have

‖Ai(x) −An
i (x)‖ = ‖Ti(x) − Tn

i (x)‖ ≤ hng(‖Ti(x)‖). (2.37)

Therefore, from (2.11), (2.33), and the monotone property of An
i it implies that

‖yn − ỹn‖2 = 1
αn

N∑

i=1

〈
An

i

(
ỹn

) −Ai

(
yn

)
, yn − ỹn

〉

≤ 1
αn

N∑

i=1

〈
An

i

(
yn

) −Ai

(
yn

)
, yn − ỹn

〉
.

(2.38)

Consequently, we have

‖yn − ỹn‖ ≤ 1
αn

N∑

i=1

‖An
i

(
yn

) −Ai

(
yn

)‖

≤ N
hn

αn
g
(‖Ti

(
yn

)‖).
(2.39)
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On the other hand,

‖Ti
(
yn

)‖ = ‖Ti
(
yn

) − Ti(u∗) + u∗‖
≤ ‖yn − u∗‖ + ‖u∗‖
≤ ‖yn‖ + 2‖u∗‖
≤ 3‖u∗‖.

(2.40)

Therefore,

‖yn − ỹn‖ ≤ C0N
hn

αn
, (2.41)

where C0 = sup{g(t) : 0 < t ≤ 3‖u∗‖}. It means that limn→∞ỹn = u∗ because limn→∞(hn/αn) =
0.

Secondly, to prove

lim
n→∞

‖x̃n − ỹn‖ = 0, (2.42)

as in the proof of Theorem 2.8, first we need to estimate the value ‖ỹn+1−ỹn‖. By the argument
as in the proof of Theorem 2.7, we have

N∑

i=1

〈
An

i

(
ỹn

) −An+1
i

(
ỹn+1

)
, ỹn − ỹn+1

〉
+ αn

〈
ỹn, ỹn − ỹn+1

〉 − αn+1
〈
ỹn+1, ỹn − ỹn+1

〉
= 0. (2.43)

Thus,

‖ỹn − ỹn+1‖2 = αn − αn+1

αn

〈−ỹn+1, ỹn − ỹn+1
〉
+

1
αn

N∑

i=1

〈
An+1

i

(
ỹn+1

) −An
i

(
ỹn

)
, ỹn − ỹn+1

〉

≤ αn − αn+1

αn

〈−ỹn, ỹn − ỹn+1
〉
+

1
αn

N∑

i=1

〈
An+1

i

(
ỹn+1

) −An
i

(
ỹn

)
, ỹn − ỹn+1

〉

≤ αn − αn+1

αn
‖ỹn‖‖ỹn − ỹn+1‖ + 1

αn

N∑

i=1

〈
An+1

i

(
ỹn

) −An
i

(
ỹn

)
, ỹn − ỹn+1

〉
.

(2.44)

Therefore,

‖ỹn − ỹn+1‖ ≤ αn − αn+1

αn
‖ỹn‖ + 1

αn

N∑

i=1

‖An+1
i

(
ỹn

) −Ai

(
ỹn

)‖ + ‖Ai

(
ỹn

) −An
i

(
ỹn

)‖

≤ αn − αn+1

αn
‖ỹn‖ +N

hn + hn+1

αn
g
(‖ỹn‖

)
.

(2.45)



Fixed Point Theory and Applications 11

Using (2.14) and (2.41), we have

‖ỹn‖ ≤ ‖u∗‖ + C0N
hn

αn
. (2.46)

Consequently, there exists a positive constant C such that ‖ỹn‖ ≤ C for n ≥ 0. Finally, we have

‖ỹn − ỹn+1‖ ≤ αn − αn+1

αn
C +NC1

hn + hn+1

αn
, (2.47)

where C1 = sup{g(t) : 0 < t < C}. Now, set Δ̃n = ‖x̃n − ỹn‖. It is not difficult to verify that

‖x̃n+1 − ỹn‖ ≤ Δ̃n

[
1 − 2βnαn + β2n(2N + αn)2

]1/2
,

Δ̃n+1 ≤ Δ̃n

(
1 − αnβn

)1/2 +
|αn − αn+1|

αn
C +NC1

hn + hn+1

αn
.

(2.48)

Therefore, limn→∞Δ̂n = 0. The proof is completed.

Remark. The sequences αn = (1 + n)−p, 0 < p < 1/2, and βn = γ0αn with

0 < γ0 <
1

(2N + α0)2
, (2.49)

satisfy all the necessary conditions in Theorem 2.8.

3. Applications

Consider the following problem: find an element u∗ ∈ C such that

〈Ai(u∗), v − u∗〉 ≥ 0, ∀v ∈ C, i = 1, . . . ,N, (3.1)

where Ai are N monotone hemicontinuous mappings from a closed convex subset C of a
Hilbert space H intoH.

Theorem 3.1. Let x0 = x be an arbitrary element in H. If {αn}, {βn} are chosen as in Theorem 2.8,
and the iteration sequence {xn} is defined as follows:

ui
n ∈ C,

〈Ai

(
ui
n

)
, v − ui

n〉 +
〈
ui
n − xn, v − ui

n

〉
≥ 0, ∀v ∈ C, i = 1, . . . ,N,

xn+1 = xn − βn

[
N∑

i=1

(
xn − ui

n

)
+ αnxn

]

,

(3.2)

then the sequence {xn} converges strongly to a common solution for (3.1).
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If C ≡ H, then we have a problem of finding a common zero for a system of monotone
hemicontinous mappings Ai, i = 1, . . . ,N. In this case, variational inequality in (3.2) has the
form Ai(ui

n) + ui
n = xn. Therefore, we have the following result.

Theorem 3.2. LetAi, i = 1, . . . ,N beN hemicontinuous monotone mappings defined onH. Let x0 =
x be an arbitrary element inH, let {αn} and {βn} be the sequences that are chosen as in Theorem 2.8,
and, the iteration sequence {xn} be defined as follows:

ui
n : Ai

(
ui
n

)
+ ui

n = xn,

xn+1 = xn − βn

[
N∑

i=1

(
xn − ui

n

)
+ αnxn

]

.

(3.3)

Then the sequence {xn} converges strongly to an element u∗ such that

Ai(u∗) = 0, i = 1, . . . ,N. (3.4)

Without the strongly or uniformly monotone property for Ai, each problem of (3.1),
in general, is ill-posed. Some methods for finding a solution of each variational inequality in
(3.1) are presented in [39].

Here we show an iterative regularization method for finding a common solution of
these problems. Suppose that instead ofAi, we have their monotone approximationsAn

i such
that D(An

i ) = C and

‖An
i (x) −Ai(x)‖ ≤ hng(‖x‖), i = 1, . . . ,N, (3.5)

where the positive parameter hn → 0 as n → ∞, and g(t) is a real positive and bounded
function. Obviously, the bifunctions

Fn(u, v) :=
〈
An

i (u), v − u
〉
, i = 1, . . . ,N, (3.6)

satisfy the Condition 1 and (2.4). Therefore, we have the following theorem.

Theorem 3.3. Let x̃0 = x be an arbitrary element in H. If {αn}, {βn} are chosen as in Theorem 2.9,
and the iteration sequence {x̃n} is defined as follows:

ũi
n ∈ C :

〈
Ai

(
ũi
n

)
, v − ũi

n

〉
+
〈
ũi
n − xn, v − ũi

n

〉
≥ 0 ∀v ∈ C, i = 1, . . . ,N,

x̃n+1 = x̃n − βn

[
N∑

i=1

(
x̃n − ũi

n

)
+ αnx̃n

]

,

(3.7)

then the sequence {x̃n} converges strongly to a common solution for (3.1).

If C ≡ H, then a common zero for a system of monotone hemicontinuous mappings
Ai, i = 1, . . . ,N, could be found by the following.
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Theorem 3.4. LetAi, i = 1, . . . ,N beN hemicontinuous monotone mappings defined onH. Let x̃0 =
x be an arbitrary element inH, let {αn} and {βn} be the sequences that are chosen as in Theorem 2.9,
and the iteration sequence {x̃n} be defined as follows:

ũi
n : Ai

(
ũi
n

)
+ ũi

n = x̃n,

x̃n+1 = x̃n − βn

[
N∑

i=1

(
x̃n − ũi

n

)
+ αnx̃n

]

.

(3.8)

Then the sequence {x̃n} converges strongly to an element u∗ such that

Ai(u∗) = 0, i = 1, . . . ,N. (3.9)
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