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In quasigauge spaces, we introduce the families of generalized quasipseudodistances, and we
define three kinds of dissipative set-valued dynamic systems with these families of generalized
quasi-pseudodistances and with some families of not necessarily lower semicontinuous entropies
and next, assuming that quasigauge spaces are left K sequentially complete (but not necessarily
Hausdorff), we prove that for each starting point each dynamic process or generalized sequence
of iterations of these dissipative set-valued dynamic systems left converges and we also show
that if an iterate of these dissipative set-valued dynamic systems is left quasiclosed, then these
limit points are periodic points. Examples illustrating ideas, methods, definitions, and results are
constructed.

1. Introduction

The study of quasigauge spaces, initiated by Reilly [1], has a long history. These spaces
generalize topological spaces, quasiuniform spaces, and quasimetric spaces. Studies of
asymmetric structures in these spaces and their applications to problems in theoretical
computer science are important. There exists an extensive literature concerning unsymmetric
distances, topological properties, and fixed point theory in these spaces. Some researches
tools for many problems in these spaces were provided by Reilly [1, 2], Reilly et al. [3],
Kelly [4], Subrahmanyam [5], Alemany and Romaguera [6], Romaguera [7], Stoltenberg [8],
Wilson [9], Gregori and Romaguera [10], Lee et al. [11], Frigon [12], and Chiş-Novac et al.
[13]. For quasiuniformities over the past 20 years, see also to the Fletcher and Lindgren book
[14] and to the Künzi surveys [15, 16].

Recall that a set-valued dynamic systems is defined as a pair (X, T), where X is a certain
space and T is a set-valued map T : X → 2X ; in particular, a set-valued dynamic system
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includes the usual dynamic system, where T is a single-valued map. Here, 2X denotes the
family of all nonempty subsets of a space X.

For each x ∈ X, a sequence (wm : m ∈ {0} ∪ N) such that

∀m∈{0}∪N{wm+1 ∈ T(wm)}, w0 = x, (1.1)

is called a dynamic process or a trajectory starting at w0 = x of the system (X, T) (for details see
Aubin and Siegel [17], Aubin and Ekeland [18], and Aubin and Frankowska [19]). For each
x ∈ X, a sequence (wm : m ∈ {0} ∪ N), such that

∀m∈{0}∪N
{
wm+1 ∈ T [m+1](x)

}
, w0 = x, (1.2)

T [m] = T ◦ T ◦ · · · ◦ T (m-times), m ∈ N, is called a generalized sequence of iterations starting
at w0 = x of the system (X, T) (for details see Yuan [20, page 557], Tarafdar and Vyborny
[21], and Tarafdar and Yuan [22]). Each dynamic process starting from w0 is a generalized
sequence of iterations starting from w0, but the converse may not be true; the set T [m](w0) is,
in general, bigger than T(wm−1). If (X, T) is a single-valued, then, for each x ∈ X, a sequence
(wm : m ∈ {0} ∪ N) such that

∀m∈{0}∪N
{
wm+1 = T [m+1](x)

}
, w0 = x, (1.3)

is called a Picard iteration starting at w0 = x of the system (X, T). If (X, T) is a single valued,
then (1.1)–(1.3) are identical.

If (X, T) is a dynamic system, then by Fix(T), Per(T), and End(T), we denote the sets
of all fixed points, periodic points, and endpoints of T , respectively, that is, Fix(T) = {w ∈ X : w ∈
T(w)}, Per(T) = {w ∈ X : w ∈ T [q](w) for some q ∈ N}, and End(T) = {w ∈ X : {w} = T(w)}.

Let X be a metric space with metric d, and let (X, T) be a single-valued dynamic
system. Racall that if ∃λ∈[0,1)∀x,y∈X{d(T(x), T(y)) � λd(x, y)}, then (X, T) is called a Banach’s
contraction (Banach [23]). (X, T) is called contractive if ∀x,y∈X{d(T(x), T(y)) < d(x, y)}. If
∃ε>0∀x,y∈X{0 < d(x, y) < ε ⇒ d(T(x), T(y)) < d(x, y)}, then (X, T) is called ε-contractive
(Edelstein [24]). Contractive and ε-contractive maps are some modifications of Banach’s
contractions. If

∀x∈X{d(x, T(x)) � ω(x) −ω(T(x))} (1.4)

for some ω : X → [0,+∞), then T is called Caristi’s map (Caristi [25], Caristi and Kirk [26])
and ω is called entropy. Caristi’s maps generalize Banach’s contractions (for details see Kirk
and Saliga [27, page 2766]). Recall that Ekeland’s [28] variational principle concerning lower
semicontinuous maps and Caristi’s fixed point theorem (Caristi [25]) when entropy ω is
lower semicontinuous are equivalent.

In metric spaces (X, d), map ω : X → [0,+∞) is called a weak entropy or entropy of a
set-valued dynamic system (X, T) if

∀x∈X∃y∈T(x)
{
d
(
x, y

)
� ω(x) −ω

(
y
)}

(1.5)
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or

∀x∈X∀y∈T(x)
{
d
(
x, y

)
� ω(x) −ω

(
y
)}

, (1.6)

respectively, and (X, T) is called weak dissipative or dissipative if it has a weak entropy or an
entropy, respectively; here, ω is not necessarily lower semicontinuous. These two kinds of
dissipative maps were introduced and studied by Aubin and Siegel [17]. If (X, T) is a single
valued, then (1.4)–(1.6) are identical.

Various results concerning the convergence of Picard iterations and the existence of
periodic points, fixed points, and invariant sets for contractive and ε-contractive single-
valued and set-valued dynamic systems in metric spaces have been established by Edelstein
[24], Ding and Nadler Jr. [29], and Nadler Jr. [30]. Periodic point theorem for special single-
valued dynamic systems of Caristi’s type in quasimetric spaces haS been obtained by Ćirić
[31, Theorem 2].

Investigations concerning the existence of fixed points and endpoints and convergence
of dynamic processes or generalized sequences of iterations to fixed points or endpoints
of single-valued and set-valued dissipative dynamic systems of the types (1.4)–(1.6) when
entropy ω is not necessarily lower semicontinuous have been conducted by a number of
authors in different settings; for example, see Aubin and Siegel [17], Kirk and Saliga [27],
Yuan [20], Willems [32], Zangwill [33], Justman [34], Maschler and Peleg [35], and Petruşel
and Sı̂ntămărian [36].

In this paper, in quasigauge spaces (see Section 2), we introduce the families of
generalized quasipseudodistances and define three new kinds of dissipative set-valued
dynamic systems with these families of generalized quasipseudodistances and with some
families of not necessarily lower semicontinuous entropies (see Section 3) and next, assuming
that quasigauge spaces are left K sequentially complete (but not necessarily Hausdorff), we
prove that for each starting point each dynamic process or generalized sequence of iterations
of these dissipative set-valued dynamic systems left converges, andwe also show that if some
iterates of these dissipative set-valued dynamic systems are left quasiclosed, then these limit
points are periodic points (see Section 4). Examples are included (see Section 5).

The presented methods and results are different from those given in the literature and
are new even for single-valued and set-valued dynamic systems in topological, quasiuniform,
and quasimetric spaces.

This paper is a continuation of [37–41].

2. Quasigauge Spaces

The following terminologies will be much used.

Definition 2.1. LetX be a nonempty set. A quasipseudometric onX is a map p : X×X → [0,∞)
such that

(P1) ∀x∈X{p(x, x) = 0},
(P2) ∀x,y,z∈X{p(x, z) � p(x, y) + p(y, z)}.

If, additionally,

(P3) ∀x,y∈X{p(x, y) = 0 ⇒ x = y},
then p is called quasimetric on X.
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Definition 2.2. Let X be a nonempty set.

(i) Each family P = {pα : α ∈ A} of quasipseudometrics pα : X ×X → [0,∞), α ∈ A is
called a quasigauge on X.

(ii) Let the familyP = {pα : α ∈ A} be a quasigauge onX. The topologyT(P) having as
a subbase the family B(P) = {B(x, εα) : x ∈ X, εα > 0, α ∈ A} of all balls B(x, εα) =
{y ∈ X : pα(x, y) < εα}, x ∈ X, εα > 0, α ∈ A is called the topology induced by P on
X.

(iii) (Dugundji [42], Reilly [1, 2]) A topological space (X,T) such that there is a
quasigauge P on X with T = T(P) is called a quasigauge space and is denoted by
(X,P).

Theorem 2.3 (see Reilly [1, Theorem 2.6]). Any topological space is a quasigauge space.

Definition 2.4. Let X be a nonempty set.
(i) A quasiuniformity on X is a filter U on X ×X such that

(U1) ∀U∈U{Δ(X) � U},
(U2) ∀U∈U∃V∈U{V 2 � U}.

Here,Δ(X) = {(x, x) : x ∈ X} denotes the diagonal ofX×X and, for eachM ⊂ X×X,
M2 = {(x, y) ∈ X×X : ∃z∈X{(x, z) ∈ M∧ (z, y) ∈ M}}. The elements ofU are called
entourages (or vicinities ).

(ii) A subfamily B of U is called a base of the quasiuniformity U on X if ∀U∈U∃V∈B{V ⊂
U}.

(iii) The topology T(U) on X induced by the quasiuniformity U on X is {A ⊆ X :
∀x∈A∃U∈U{U(x) � A}}; here U(x) = {y ∈ X : (x, y) ∈ U} whenever U ∈ U and
x ∈ X. A neighborhood base for each point x ∈ X is given by {U(x) : U ∈ U}.

(iv) If U is a quasiuniformity on X, then the pair (X,U) is called a quasiuniform space.

Theorem 2.5 (see Reilly [1, Theorem 4.2]). Any quasiuniform space is a quasigauge space.

Definition 2.6. Let (X,P) be a quasigauge space.

(i) (Reilly et al. [3, Definition 1(v) and page 129])We say that a sequence (wm : m ∈ N)
in X is left- (P, K-) Cauchy sequence in X if

∀α∈A∀ε>0∃k∈N∀m,n∈N;k�m�n

{
pα(wm,wn) < ε

}
. (2.1)

(ii) (Reilly et al. [3, Definition 1(i) and page 129])We say that a sequence (wm : m ∈ N)
in X is left P-Cauchy sequence in X if

∀α∈A∀ε>0∃w∈X∃k∈N∀m∈N;k�m

{
pα(w,wm) < ε

}
. (2.2)

(iii) We say that a sequence (wm : m ∈ N) in X is left convergent in X if

∃w∈X∀α∈A∀ε>0∃k∈N∀m∈N;k�m

{
pα(w,wm) < ε

}
. (2.3)
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(iv) (Reilly [1, Definition 5.3] and [2, Definition 4]) If every left- (P, K-) Cauchy
sequence in X is left convergent to some point in X, then (X,P) is called left K
sequentially complete quasigauge space.

(v) (Reilly [1, Definition 5.3] and [2, Definition 4]) If every left P-Cauchy sequence in
X is left convergent to some point inX, then (X,P) is called left sequentially complete
quasigauge space.

Remark 2.7. Let (X,P) be a quasigauge space.

(a) (Reilly [2, page 131]) Every left- (P, K-) Cauchy sequence in X is left P-Cauchy
sequence in X.

(b) (Reilly [2, Example 1], Reilly et al. [3, Example 2], and Kelly [4, Example 5.8]) Every
left convergent sequence in X is left P-Cauchy sequence in X and the converse is
false.

(c) (Reilly et al. [3, Section 3]) Every left sequentially complete quasigauge space is
left K sequentially complete quasigauge space.

3. Three Kinds of Dissipative Set-Valued Dynamic Systems in
Quasigauge Spaces with Generalized Quasipseudodistances

First, we introduce the concepts of JP-family of generalized quasipseudodistances in
quasigauge space (X,P) and left- (JP, K-) Cauchy sequences in quasigauge space (X,P)
with JP-family of generalized quasipseudodistances.

Definition 3.1. Let (X,P) be a quasigauge space.

(i) The family J = {Jα : α ∈ A} of maps Jα : X × X → [0,∞), α ∈ A, is said to be a
JP-family on X if the following two conditions hold:

(J1) ∀α∈A∀x,y,z∈X{Jα(x, z) � Jα(x, y) + Jα(y, z)},
(J2) for any sequence (wm : m ∈ N) in X such that

∀α∈A∀ε>0∃k∈N∀m,n∈N;k�m�n{Jα(wm,wn) < ε}, (3.1)

if there exists a sequence (vm : m ∈ N) in X satisfying

∀α∈A∀ε>0∃k∈N∀m∈N;k�m{Jα(wm, vm) < ε}, (3.2)

then

∀α∈A∀ε>0∃k∈N∀m∈N;k�m

{
pα(wm, vm) < ε

}
. (3.3)

(ii) The elements of JP-family on X are called generalized quasipseudodistances on X.

(iii) Let the family J = {Jα : α ∈ A} be a JP-family on X. We say that a sequence
(wm : m ∈ N) in X is left- (JP, K-) Cauchy sequence in X if (3.1) holds.
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Remark 3.2. Let X be a nonempty set.

(a) If (X,P) is a quasigauge space, J = {Jα : α ∈ A} is a JP-family on X and
∀α∈A∀x∈X{Jα(x, x) = 0}, then, for each α ∈ A, Jα is quasipseudometric.

(b) Each quasigauge P on X is JP-family on X and the converse is false (see Section 5,
e.g., in Example 5.1(II), if x /∈E, then ∀α∈A{Jα(x, x) = cα > 0}).

Now, we introduce the following three kinds of dissipative set-valued dynamic
systems in quasigauge spaces with generalized quasipseudodistances.

Definition 3.3. Let (X,P) be a quasigauge space, and let (X, T) be a set-valued dynamic
system. Let J = {Jα : α ∈ A}, Jα : X × X → [0,∞), α ∈ A be aJP-family on X, and let
Γ = {γα : α ∈ A}, γα : X → [0,∞), α ∈ A be a family of maps.

(i) We say that a sequence (wm : m ∈ {0} ∪ N) in X is (J,Γ) admissible if

∀α∈A∀m∈{0}∪N
{
Jα(wm,wm+1) � γα(wm) − γα(wm+1)

}
. (3.4)

(ii) If the following two conditions hold:

(C1) ∅/=X0 ⊂ X,

(C2) x ∈ X0 if and only if there exists a (J,Γ-) admissible dynamic process (wm :
m ∈ {0} ∪ N) starting at w0 = x of the system (X, T), then we say that T is a
weak (J,Γ;X0) dissipative on X.

(iii) We say that T is (J,Γ)-dissipative on X if, for each x ∈ X, each dynamic process
(wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) is (J,Γ)-admissible.

(iv) We say that T is a strictly (J,Γ) dissipative on X if, for each x ∈ X, each generalized
sequence of iterations (wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) is
(J,Γ) admissible.

If one from the conditions (ii)–(iv) holds, then we say that (X, T) is a dissipative set-
valued dynamic system with respect to (J,Γ) (dissipative set-valued dynamic system, for short) and
elements of the family Γwe call entropies on X.

Remark 3.4. Let (X,P) be a quasigauge space, and let (X, T) be a set-valued dynamic system.

(a) If a sequence (wm : m ∈ {0} ∪ N) in X is (J,Γ) admissible, then, for each k ∈ N, a
sequence (wm+k : m ∈ {0} ∪ N) is (J,Γ) admissible.

(b) By (a), if T is a weak (J,Γ;X0) dissipative on X, x ∈ X0 and (wm : m ∈ {0} ∪ N)
is a (J,Γ)-admissible dynamic process starting at w0 = x of the system (X, T), then
∀m∈N{wm ∈ X0}.

(c) If (X, T) is a single-valued dynamic system, then (iii) and (iv) are identical.
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Proposition 3.5. Let (X,P) be a quasigauge space, and let (X, T) be a set-valued dynamic system.

(a) If T is a weak (J,Γ;X0) dissipative on X, then (X0,KJ;T ) is a set-valued dynamic system
where, for each x ∈ X0,

KJ;T (x) =
⋃

{{w0, w1, w2, . . .} : (wm : m ∈ {0} ∪ N) ∈ KJ(T, x)}, (3.5)

KJ(T, x) = {(wm : m ∈ {0} ∪ N) : w0 = x

∧∀m∈{0}∪N
{
wm+1 ∈ T(wm) ∧ ∀α∈A

{
Jα(wm,wm+1) � γα(wm) − γα(wm+1)

}}}
.

(3.6)

(b) If T is (J,Γ) dissipative on X, then (X,WJ;T) is a set-valued dynamic system where, for
each x ∈ X,

WJ;T (x) =
⋃

{{w0, w1, w2, . . .} : (wm : m ∈ {0} ∪ N) ∈ WJ(T, x)}, (3.7)

WJ(T, x) =
{
(wm : m ∈ {0} ∪ N) : w0 = x ∧ ∀m∈{0}∪N{wm+1 ∈ T(wm)}

}
. (3.8)

(c) If T is a strictly (J,Γ) dissipative on X, then (X,SJ;T ) is a set-valued dynamic system
where, for each x ∈ X,

SJ;T (x) =
⋃

{{w0, w1, w2, . . .} : (wm : m ∈ {0} ∪ N) ∈ SJ(T, x)}, (3.9)

SJ(T, x) =
{
(wm : m ∈ {0} ∪ N) : w0 = x ∧ ∀m∈{0}∪N

{
wm+1 ∈ T [m+1](w0)

}}
. (3.10)

Proof. The fact that KJ;T : X0 → 2X0 , WJ;T : X → 2X , and SJ;T : X → 2X follows from (1.1),
(1.2), Definition 3.3, Remark 3.4, and (3.5)–(3.10).

Remark 3.6. By Definition 3.3 and Proposition 3.5, we obtain the following.

(a) If T is (J,Γ) dissipative onX, then T is a weak (J,Γ;X0) dissipative onX forX0 = X
and ∀x∈X0{KJ;T (x) = WJ;T (x)}.

(b) If T is strictly (J,Γ) dissipative on X, then T is (J,Γ) dissipative on X and
∀x∈X{WJ;T (x) ⊂ SJ;T (x)}.

4. Convergence of Dynamic Processes and Generalized Sequences
of Iterations and Periodic Points of Dissipative Set-Valued
Dynamic Systems in Quasigauge Spaces with Generalized
Quasipseudodistances

We first recall the definition of closed maps in topological spaces given in Berge [43] and
Klein and Thompson [44].
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Definition 4.1. Let L be a topological vector space. The set-valued dynamic system (X, T)
is called closed if whenever (wm : m ∈ N) is a sequence in X converging to w ∈ X and
(vm : m ∈ N) is a sequence in X satisfying the condition ∀m∈N{vm ∈ T(wm)} and converging
to v ∈ X, then v ∈ T(w).

By Definition 2.6(iii), we are able to revise the above definition, and we define left
quasiclosed maps and left quasiclosed sets in quasigauge spaces as follows.

Definition 4.2. Let (X,P) be a left K sequentially complete quasigauge space.

(i) The set-valued dynamic system (X, T) is called left quasiclosed if whenever (wm :
m ∈ N) is a sequence in X left converging to each point of the set W ⊂ X and
(vm : m ∈ N) is a sequence in X satisfying the condition ∀m∈N{vm ∈ T(wm)} and left
converging to each point of the set V ⊂ X, then ∃v∈V∀w∈W{v ∈ T(w)}.

(ii) For an arbitrary subsetE ofX, the left quasi-closure ofE, denoted by clL(E), is defined
as the set

clL(E) =
{
w ∈ X : ∃(wm:m∈N)⊂E∀α∈A∀ε>0∃k∈N∀m∈N;k�m

{
pα(w,wm) < ε

}}
. (4.1)

(iii) The subset E of X is said to be left quasiclosed subset in X if clL(E) = E.

Remark 4.3. Let (X,P) be a left K sequentially complete quasigauge space. For each subset
E of X, E ⊂ clL(E). Indeed, by Definition 4.2(ii) and (P1), for each w ∈ E, the sequence
(wm : m ∈ N), where ∀m∈N{wm = w}, is left convergent to w.

Now we are ready to prove the following main result of this paper.

Theorem 4.4. Let (X,P) be a left K sequentially complete quasigauge space, and let (X, T) be a set-
valued dynamic system. Let J = {Jα : α ∈ A}, Jα : X × X → [0,∞), α ∈ A be a JP-family on X
and let Γ = {γα : α ∈ A}, γα : X → [0,∞), α ∈ A be a family of maps. The following hold.

(A) (A1) If T is weak (J,Γ;X0) dissipative on X, then, for each x ∈ X0 and for each dynamic
process (wm : m ∈ {0} ∪ N) ∈ KJ(T, x), there exists a nonempty set W ⊂ clL(X0) such
that, for each w ∈ W , (wm : m ∈ {0} ∪ N) is left convergent to w.
(A2) If, in addition, the map T [q] is left quasiclosed in X for some q ∈ N, then there exists
w ∈ W such that w ∈ T [q](w).

(B) (B1) If T is (J,Γ) dissipative on X, then, for each x ∈ X and for each dynamic process
(wm : m ∈ {0} ∪ N) ∈ WJ(T, x), there exists a nonempty set W ⊂ X such that, for each
w ∈ W , (wm : m ∈ {0} ∪ N) is left convergent to w.
(B2) If, in addition, the map T [q] is left quasiclosed in X for some q ∈ N, then there exists
w ∈ W such that w ∈ T [q](w).

(C) (C1) If T is strictly (J,Γ) dissipative on X, then, for each x ∈ X and for each generalized
sequence of iterations (wm : m ∈ {0} ∪N) ∈ SJ(T, x), there exists a nonempty setW ⊂ X
such that, for each w ∈ W , (wm : m ∈ {0} ∪ N) is left convergent to w.
(C2) If, in addition, the map T [q] is left quasiclosed in X for some q ∈ N, then, for each
x ∈ X, there exists a generalized sequence of iterations (wm : m ∈ {0} ∪ N) ∈ SJ(T, x), a
nonempty setW ⊂ X and w ∈ W such that (wm : m ∈ {0} ∪ N) is left convergent to each
points of W and w ∈ T [q](w).
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Proof. The proof will be broken into five steps.

Step 1. Let (i) x ∈ X0 and (wm : m ∈ {0} ∪ N) ∈ KJ(T, x) or (ii) x ∈ X and (wm : m ∈
{0} ∪ N) ∈ WJ(T, x) ∪ SJ(T, x). We show that (wm : m ∈ {0} ∪ N) is left- (JP, K-) Cauchy
sequence in X, that is,

∀α∈A∀ε>0∃k∈N∀m,n∈N;k�m�n{Jα(wm,wn) < ε}. (4.2)

Indeed, by (3.6), (3.8), (3.10), Definition 3.3(iii) and (iv), and definition of J,
∀α∈A∀m∈{0}∪N{γα(wm+1) � γα(wm)}. According to the fact that ∀α∈A∀x∈X{γα(x) � 0}, we
conclude that, for each α ∈ A, the sequence (γα(wm) : m ∈ {0} ∪ N) is bounded from below
and nonincreasing. Hence, we have

∀α∈A∃uα�0

{
lim
m→∞

∣∣γα(wm) − uα

∣∣ = 0
}
. (4.3)

Let now α0 ∈ A and ε0 > 0 be arbitrary and fixed. By (4.3),

∃n0∈N∀m;n0�m

{∣∣γα0(wm) − uα0

∣∣ < ε0
2

}
. (4.4)

Furthermore, for n0 � m � n, using (J1) and (3.4), we obtain 0 � Jα0(wm,wn) �∑n−1
k=m Jα0(wk,wk+1) � γα0(wm) − γα0(wn) and next, by (4.4), we have that Jα0(wm,wn) �

γα0(wm) − γα0(wn) = |γα0(wm) − uα0 − γα0(wn) + uα0 | � |γα0(wm) − uα0 | + |γα0(wn) − uα0 | <
ε0/2 + ε0/2 = ε0. Therefore, (4.2) holds.

Step 2. Let (i) x ∈ X0 and(wm : m ∈ {0} ∪ N) ∈ KJ(T, x) or(ii) x ∈ X and (wm : m ∈
{0} ∪ N) ∈ WJ(T, x) ∪ SJ(T, x). We show that (wm : m ∈ {0} ∪ N) is left-(P, K-) Cauchy
sequence in X, that is,

∀α∈A∀ε>0∃k∈N∀m,n∈N;k�m�n

{
pα(wm,wn) < ε

}
. (4.5)

Indeed, by (4.2), ∀α∈A∀ε>0∃k∈N∀m�k∀l∈{0}∪N{Jα(wm,wl+m) < ε}. Hence, if i0 ∈ {0} ∪ N is
arbitrary and fixed and if we define a sequence (vm : m ∈ N) as vm = wi0+m for m ∈ N, then
we obtain

∀α∈A∀ε>0∃k∈N∀m�k{Jα(wm, vm) < ε}. (4.6)

By (J2), (4.2), and (4.6),

∀α∈A∀ε>0∃k∈N∀m�k

{
pα(wm, vm) < ε

}
. (4.7)

Consequence of (4.7) and the definition of (vm : m ∈ N) is

∀α∈A∀ε>0∃k∈N∀m�k

{
pα(wm,wi0+m) < ε

}
. (4.8)
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Now, let α0 ∈ A, ε0 > 0 be arbitrary and fixed. By (4.2),

∃n1∈N∀m�n1∀l∈{0}∪N{Jα0(wm,wl+m) < ε0}. (4.9)

From (4.8), we get

∃n2∈N∀m�n2∀i∈{0}∪N
{
pα0(wm,wi+m) < ε0

}
. (4.10)

Let n0 = max{n1, n2}+1. Hence, if n0 � m � n, then n = i0+m for some i0 ∈ {0}∪N. Therefore,
by (4.9) and (4.10), pα0(wm,wn) = pα0(wm,wi0+m) < ε0. The proof of (4.5) is complete.

Step 3. Let (i) x ∈ X0 and(wm : m ∈ {0} ∪ N) ∈ KJ(T, x) or (ii) x ∈ X and (wm : m ∈
{0} ∪N) ∈ WJ(T, x)∪SJ(T, x). We show that(wm : m ∈ {0} ∪N) is left P-Cauchy sequence in
X, that is,

∀α∈A∀ε>0∃w∈X∃k∈N∀m∈N;k�m

{
pα(w,wm) < ε

}
. (4.11)

Indeed, by Remark 2.7(a), property (4.11) is a consequence of Step 2.

Step 4. Assertions of (A) and (B) hold.

Indeed, let (i) x ∈ X0 and (wm : m ∈ {0} ∪ N) ∈ KJ(T, x) or (ii) x ∈ X and (wm : m ∈
{0} ∪ N) ∈ WJ(T, x).

Since ∀m∈{0}∪N{wm ∈ KJ;T (x)} or ∀m∈{0}∪N{wm ∈ WJ;T (x)}, X is left K sequentially
complete quasigauge space and (4.5) holds; therefore, by Definition 2.6(iv), we claim that
there exists a nonempty set W ⊂ clL(KJ;T (x)) or W ⊂ clL(WJ;T (x)), respectively, where
KJ;T (x) ⊂ X0, clL(KJ;T (x)) ⊂ clL(X0), WJ;T (x) ⊂ X, and clL(X) = X, such that the sequence
(wm : m ∈ {0} ∪ N) is left convergent to each point w ofW .

Now, we see that if T [q] is left quasiclosed for some q ∈ N, then there exists a point
w ∈ W such that w ∈ T [q](w). Indeed, by (1.1), we conclude that

∀m∈N
{
wm ∈ T(wm−1) ⊂ T [2](wm−2) ⊂ · · · ⊂ T [m−1](w1) ⊂ T [m](w0)

}
, (4.12)

which gives

wmq+k ∈ T [q](w(m−1)q+k
)

for k = 1, 2, . . . , q, m ∈ N. (4.13)

It is clear that, for each k = 1, 2, . . . , q, the sequences (wmq+k : m ∈ {0} ∪ N) and (w(m−1)q+k :
m ∈ {0} ∪ N), as subsequences of (wm : m ∈ {0} ∪ N), also left converge to each point
of W . Further, since T [q] is left quasiclosed in X, by (4.13) and Definition 4.2(i), we obtain
∃v∈V=W∀w∈W{v ∈ T [q](w)}, which gives ∃w∈W{w ∈ T [q](w)}.

Step 5. Assertion of (C1) holds.

Indeed, let x ∈ X and (wm : m ∈ {0} ∪ N) ∈ SJ(T, x) be arbitrary and fixed. By
Step 2 and Proposition 3.5(c), we claim that ∀m∈{0}∪N{wm ∈ T [m](x) ⊂ SJ;T (x) ⊂ X}, (wm :
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m ∈ {0} ∪ N) is left (P, K)-Cauchy sequence in left K-sequentially complete quasigauge
space X, and, by Definition 2.6(iv), there exists a nonempty set W ⊂ clL(SJ;T (x)) such that
the sequence (wm : m ∈ {0} ∪ N) is left convergent to each point w of W . This gives that
assertion of (C1) holds.

Step 6. Assertion of (C2) holds.

Initially, wewill prove that if, for some q ∈ N, T [q] is left quasiclosed inX, then, for each
x ∈ X, we may construct a generalized sequence of iterations (wm : m ∈ {0} ∪ N) ∈ SJ(T, x)
which converge to each point w of some nonempty set W ⊂ clL(SJ;T(x)), and the following
property holds: ∃w∈W{w ∈ T [q](w)}.

Indeed, let x ∈ X and k ∈ {1, 2, . . . , q} be arbitrary and fixed. First, we construct a
sequence (umq+k : m ∈ {0} ∪ N) as follows. For m = 0, we define uk as an arbitrary and
fixed point satisfying uk ∈ T [k](w0). Then, we have that T [q](uk) ⊂ T [q+k](w0) and, for m = 1,
we define uq+k as an arbitrary and fixed point satisfying uq+k ∈ T [q](uk) ⊂ T [q+k](w0). Then,
we have that T [q](uq+k) ⊂ T [2q+k](w0) and, for m = 2, we define u2q+k as an arbitrary and
fixed point satisfying u2q+k ∈ T [q](uq+k) ⊂ T [2q+k](w0). In general, for each m ∈ {0} ∪ N,
if we define u(m−1)q+k satisfying u(m−1)q+k ∈ T [q](u(m−2)q+k) ⊂ T [q(m−1)+k](w0), then we have
that T [q](u(m−1)q+k) ⊂ T [mq+k](w0) and define umq+k as an arbitrary and fixed point satisfying
umq+k ∈ T [q](u(m−1)q+k) ⊂ T [mq+k](w0).

Consequently, for arbitrary and fixed x ∈ X and k ∈ {1, 2, . . . , q}, there exists a
sequence (umq+k : m ∈ {0} ∪ N) satisfying

uk ∈ T [k](w0), (4.14)

umq+k ∈ T [q](u(m−1)q+k
)
⊂ T [mq+k](w0), m ∈ N. (4.15)

Let now (wm : m ∈ {0} ∪N) be an arbitrary and fixed sequence satisfying (1.2) and the
condition

wmq+k = umq+k, m ∈ {0} ∪ N. (4.16)

Obviously, by Step 5, (wm : m ∈ {0} ∪ N) is left convergent to each point w of some set
W ⊂ clL(SJ;T (x)). Moreover, (umq+k : m ∈ {0}∪N) and (u(m−1)q+k : m ∈ N), as subsequences of
(wm : m ∈ {0} ∪ N), also converge to each point w of some setW . Hence, using (4.15), (4.16),
assumption in (C2), and Definition 4.2(i), we get that ∃v∈V=W∀w∈W{v ∈ T [q](w)}, which gives
∃w∈W{w ∈ T [q](w)}.

Remark 4.5. If (X, T) is a single-valued dynamic system, then Theorems 4.4(B) and 4.4(C) are
identical.

5. Examples

In this section, we present some examples illustrating the concepts introduced so far.
In Example 5.1, we define two JP-families in quasigauge spaces.
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Example 5.1. Let the family P = {pα : α ∈ A} of quasipseudometrics pα : X × X → [0,∞),
α ∈ A be a quasigauge on X and let (X,P) be a quasigauge space.

(I) The family P is a JP-family on X (see Remark 3.2(b)).

(II) Let X contain at least two different points. Let the set E ⊂ X containing at least two
different points be arbitrary and fixed, and let {cα}α∈A satisfy ∀α∈A{δα(E) < cα},
where ∀α∈A{δα(E) = sup{pα(x, y) : x, y ∈ E}}. Let the family J = {Jα : α ∈ A},
Jα : X ×X → [0,∞), α ∈ A be defined by the following formula:

Jα
(
x, y

)
=

⎧
⎨
⎩
pα
(
x, y

)
if E ∩

{
x, y

}
=
{
x, y

}

cα if E ∩
{
x, y

}
/=
{
x, y

}
,

x, y ∈ X. (5.1)

We show that the family J is a JP-family on X.
Indeed, we see that the condition (J1) does not hold only if there exist some α ∈ A

and x, y, z ∈ X such that Jα(x, y) = cα, Jα(x, z) = pα(x, z), Jα(z, y) = pα(z, y), and pα(x, z) +
pα(z, y) < cα. However, then we conclude that there exists v ∈ {x, y} such that v /∈E and
x, y, z ∈ E, which is impossible. Therefore, ∀α∈A∀x,y,z∈X{Jα(x, y) � Jα(x, z) + Jα(z, y)}, that is,
the condition (J1) holds.

For proving that (J2) holds, we assume that the sequences {wm} and {vm} inX satisfy
(3.1) and (3.2). Then, in particular, (3.2) yields

∀α∈A∀0<ε<cα∃m0=m0(α)∈N∀m�m0{Jα(wm, vm) < ε}. (5.2)

By (5.2) and (5.1), denoting m′ = min{m0(α) : α ∈ A}, we conclude that

∀m�m′ {E ∩ {wm, vm} = {wm, vm}}. (5.3)

From (5.3), definition of J, and (5.2), we get

∀α∈A∀0<ε<cα∃m′∈N∀m�m′
{
pα(wm, vm) = Jα(wm, vm) < ε

}
. (5.4)

The result is that the sequences {wm} and {vm} satisfy (3.3). Therefore, the property (J2)
holds.

The following example illustrates Theorem 4.4(A) in not Hausdorff quasigauge space.

Example 5.2. Let X = [0, 1/2] ∪ {3/4, 1} ⊂ R, and let T : X → 2X be of the form

T(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{1} for x = 0

[0, (1/2)x] for x ∈ (0, 1/2]

{0, 1} for x = 3/4

{0, 3/4} for x = 1.

(5.5)
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Let the map p : X ×X → [0,∞) be defined by the formula

p
(
x, y

)
=

⎧
⎨
⎩
0 if x � y,

1 if x < y,

(
x, y

)
∈ X ×X, (5.6)

and let P = {p}; this map p is a modification of a map p due to Reilly et al. [3, Example 1].
For a set E = [0, 1/2], let the family J = {J : X ×X → [0,∞)} be defined as follows

J
(
x, y

)
=

⎧
⎨
⎩
p
(
x, y

)
if E ∩

{
x, y

}
=
{
x, y

}
,

2 if E ∩
{
x, y

}
/=
{
x, y

}
,

x, y ∈ X, (5.7)

and let Γ = {γ}, where γ : X → [0,∞) is of the form γ(x) = x, x ∈ X.
(a) The map p : X ×X → [0,∞) is a quasipseudometric on X.
Indeed, we have that p(x, x) = 0 since x � x, and thus (P1) holds. Also (P2) is satisfied

since we obtain the following. (1) If x � z, then p(x, z) = 0 � p(x, y) + p(y, z) for each
y ∈ X. (2) If x < z, then p(x, z) = 1, and suppose that p(x, y) = p(y, z) = 0 for some y ∈ X,
then x � y and y � z which implies x � z. This is absurd because x < z. Consequently,
∀y∈X{p(x, y) = 1 ∨ p(y, z) = 1}.

(b) Quasigauge space (X,P) is a left sequentially complete.
Indeed, let (wm : m ∈ N) be left P-Cauchy sequence in X (i.e., let (2.2) hold), and let

η0, 0 < η0 < 1, be arbitrary and fixed. Then, by (2.2), we get

∃w0∈X∃k0∈N∀m�k0

{
p(w0, wm) < η0 < 1

}
. (5.8)

Now, if ε0 > 0 is arbitrary and fixed, then, by (5.6) and (5.8), for each m � k0,
p(w0, wm) = 0 < ε0.

Hence, we conclude that ∃w0∈X∀ε>0∃k∈N∀m�k{p(w0, wm) < ε}. This gives that (wm : m ∈
N) left converges to w0.

(c) Quasigauge space (X,P) is a left K sequentially complete.
This follows from (b) and Remark 2.7(c).
(d) The family J = {J : X ×X → [0,∞)} is a JP-family on X.
This is the consequence of Example 5.1(II). Let us observe, additionally, that

clL(E) = X.
(e) T is weak (J,Γ;X0)dissipative on X, where X0 = (0, 1/2].
Indeed, let x ∈ (0, 1/2] be arbitrary and fixed. We have that T [2](x) = [0, (1/4)x] ∪ {1}

and T [m](x) = [0, (1/2m)x] ∪ {3/4, 1} for m � 3. Thus, there exists a dynamic process (wm :
m ∈ {0} ∪ N) given by the formula w0 = x, wm = (1/2m)x, m ∈ N, such that J(w0, w1) =
p(x, (1/2)x) = 0 � x − x/2 = γ(w0) − γ(w1) and ∀m∈N{J(wm,wm+1) = p(wm,wm+1) = 0 �
γ(wm) − γ(wm+1)}. This gives that the dynamic process (wm : m ∈ {0} ∪ N) satisfies (1.1) and
(3.4). Consequently, x ∈ X0. Therefore, we proved that (0, 1/2] ⊂ X0.

Now, we show that X0 ⊂ (0, 1/2]. Suppose that X0 ∩ {X \ (0, 1/2]}/= ∅ then there exists
x ∈ X0 such that x /∈ (0, 1/2], and we consider the following three cases.
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Case 1. If x = 0, then each dynamic process (wm : m ∈ {0}∪N) starting atw0 = 0 of the system
(X, T) satisfies w1 = 1 = T(w0) and 0 < J(w0, w1) = 2 > −1 = 0 − 1 = γ(w0) − γ(w1), that is,
(3.4) does not hold.

Case 2. Let x = 3/4 and let (wm : m ∈ {0} ∪ N) be an arbitrary and fixed dynamic process
starting at w0 = 3/4 of the system (X, T). If w1 = 1, then 0 < J(w0, w1) = 2 > 3/4 − 1 =
γ(w0) − γ(w1), that is, (3.4) does not hold. If w1 = 0, then w2 = 1 and 0 < J(w1, w2) = 2 >
0 − 1 = γ(w1) − γ(w2), that is, (3.4) does not hold.

Case 3. Let x = 1 and let (wm : m ∈ {0} ∪ N) be an arbitrary and fixed dynamic process
starting at w0 = 1 of the system (X, T). If w1 = 0, then w2 = 1 and 0 < J(w1, w2) = 2 > 0 − 1 =
γ(w1) − γ(w2), that is, (3.4) does not hold. If w1 = 3/4, then 0 < J(w0, w1) = 2 > 1 − 3/4 =
1/4 = γ(w0) − γ(w1), that is, (3.4) does not hold.

Consequently, X0 = (0, 1/2].

(f)We have that clL(X0) = (0, 1/2] ∪ {3/4, 1}.
First, we show thatX \{0} ⊂ clL(X0), that is, by Definition 4.2(ii), for eachw ∈ X \{0},

there exists a sequence (wm : m ∈ N) ⊂ X0 which left converges tow. Indeed, ifw ∈ X \ {0} is
arbitrary and fixed, then for the sequence defined byw1 = w andwm = cmw form � 2, where
0 < c < 1/2 is arbitrary and fixed, we get that ∃k∈N∀m�k{wm < w} and (wm : m ∈ N) ⊂ X0.
Consequently, for arbitrary and fixed ε > 0, by (5.6), we have ∀m�k{p(w,wm) = 0 < ε}.
Therefore, (wm : m ∈ N) left converges tow. By Definition 4.2(ii),w ∈ clL(X0). This gives that
X \ {0} ⊂ clL(X0).

Now, we show that clL(X0) ⊂ X \ {0}, that is, 0/∈ clL(X0). Otherwise, 0 ∈ clL(X0),
and thus there exists a sequence (wm : m ∈ N) ⊂ X0 which left converges to 0, that is,
∀ε>0∃k∈N∀m∈N;k�m{p(0, wm) < ε}. This is absurd because ∀m∈N{0 < wm} which, by (5.6), gives
∀m∈N{p(0, wm) = 1}.

(g) Theorem 4.41)holds.

Indeed, by the considerations in (e), if x ∈ (0, 1/2] = X0, then KJ(T, x)/= ∅, and if
(wm : m ∈ {0} ∪ N) ∈ KJ(T, x) is arbitrary and fixed, then, by Cases 1–3 in (e), ∀m∈N{wm ∈
[0, (1/2m)x]}. Therefore, from (f), (wm : m ∈ {0} ∪ N) left converges to each point w ∈ W =
clL(X0).

(h) The map T is not left quasiclosed in X.

Indeed, if (wm : m ∈ N) ⊂ X is such that ∀m∈N{wm = 0}, then W = [0, 1/2] ∪ {3/4, 1}.
Next, we see that if (vm : m ∈ N) satisfies ∀m∈N{vm ∈ T(wm)}, then ∀m∈N{vm = 1} which
gives V = {1}. Consequently, ∃v∈V∀w∈W{v ∈ T(w)} does not hold because w = 1 ∈ W and
V ∩ T(1) = {1} ∩ {0, 3/4} = ∅.

(i)The map T [2] is not left quasiclosed in X.

Indeed, we have that

T [2](x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{0, 3/4} for x = 0

[0, (1/4)x] ∪ {1} for x ∈ (0, 1/2]

{0, 3/4, 1} for x = 3/4

{0, 1} for x = 1.

(5.9)
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Thus, if (wm : m ∈ N) is such that ∀m∈N{wm = 0}, then W = [0, 1/2] ∪ {3/4, 1}, and if (vm :
m ∈ N) satisfying ∀m∈N{vm ∈ T [2](wm)} is of the form ∀m∈N{vm = 3/4}, then V = {3/4, 1}.
Consequently, ∃v∈V∀w∈W{v ∈ T [2](w)} does not hold because (I) if v = 3/4 ∈ V , then, for
w = 1 ∈ W , we have {3/4}∩T [2](1) = {3/4}∩{0, 1} = ∅, (II) if v = 1 ∈ V , then, forw = 0 ∈ W ,
we have {1} ∩ T [2](0) = {1} ∩ {0, 3/4} = ∅.

(j) The map T [3] is left quasiclosed in X.
Indeed, we have that

T [3](x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

{0, 1} for x = 0

[0, (1/8)x] ∪ {3/4, 1} for x ∈ (0, 1/2]

{0, 3/4, 1} for x = 3/4

{0, 3/4, 1} for x = 1,

(5.10)

and if (wm : m ∈ N) is an arbitrary and fixed sequence in X, W is a set of all left limit points
of (wm : m ∈ N), (vm : m ∈ N) is an arbitrary and fixed sequence satisfying ∀m∈N{vm ∈
T [3](wm)}, and V is a set of all left limit points of (vm : m ∈ N), then we see that ∀x∈X{1 ∈
T [3](x)} and 1 ∈ V . Consequently, ∃v=1∈V∀w∈W{v ∈ T [3](w)}.

(k) The assumptions of Theorem 4.4(A2) hold for q = 3.
This is the consequence of (h)–(j). The assertion is that {w ∈ W ⊂ clL(X0) : w ∈

T [q](w)} = {3/4, 1} ⊂ Fix(T [3]), that is, {3/4, 1} ⊂ Per(T) for q = 3.
(l) The map T is not (J,Γ) dissipative on X and not strictly (J,Γ) dissipative on X.
This is the consequence of Cases 1–3 in (e).
(m) For any Γ, T is not (J,Γ) dissipative on X.
Indeed, suppose that there exists Γ = {γ} such that γ : X → [0,∞) and that T is

(J,Γ) dissipative on X. Then, for a dynamic process (wm : m ∈ {0} ∪ N) starting at w0 = 3/4
defined by w1 = 0 ∈ T(w0), w2 = 1 ∈ T(w1), w3m+1 = 0 ∈ T(w3m), w3m+2 = 1 ∈ T(w3m+1),
and w3m = 3/4 ∈ T(w3m−1) for m ∈ N, we have 0 < J(w0, w1) = 2 � γ(w0) − γ(w1), 0 <
J(w1, w2) = 2 � γ(w1) − γ(w2), and 0 < J(w2, w3) = 2 � γ(w2) − γ(w3) = γ(w2) − γ(w0).
Hence, γ(w0) < γ(w2) < γ(w1) < γ(w0), which is impossible.

(n) For any Γ, T is not strictly (J,Γ) dissipative on X.
This is the consequence of (m) and Remark 3.6(b).
(o) Quasigauge space (X,P) is not Hausdorff.
Indeed, for x0, y0 ∈ X such that x0 > y0, there exists z0 ∈ X such that z0 � y0. Then,

for each ε, η > 0, by (5.6), we have that p(x0, z0) = 0 < ε and p(y0, z0) = 0 < η, which implies
that z0 ∈ B(x0, ε) ∩ B(y0, η).

The following example illustrates Theorems 4.4 (B) and 4.4 (C) in quasimetric space.

Example 5.3. Let X = N ⊂ R, let T : X → X be defined by

T(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x = 1

x − 1 if x = 2k, k ∈ N

x − 2 if x = 2k + 1, k ∈ N,

(5.11)
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and let p : X ×X → [0,∞) be defined by the formulae

p(m,n) = 0 if m = n, (5.12)

p(m,n) = m−1 if m < n and m is even and n is odd, (5.13)

p(m,n) = 1 otherwise; (5.14)

this map p is a modification of a map p due to Reilly et al. [3, Example 5].
Let P = {p}, let J = {J} where J(m,n) = p(m,n) for m,n ∈ N, and let Γ = {γ} where

γ : X → [0,∞) is of the form

γ(x) = x, x ∈ X. (5.15)

(a) The map p is quasimetric on X.
This is the consequence of the following useful observations.

Case 1. Ifm = n, then p(m,n) = 0 � p(m, k) + p(k, n) for each k ∈ X.

Case 2. If m > n and k ∈ X, then p(m,n) � p(m, k) + p(k, n). Indeed, by (5.14), p(m,n) = 1.
On the other hand, k � n means that k < m. By (5.14), k < m implies p(m, k) = 1 and n < k
implies p(k, n) = 1. Hence, for each k ∈ X, 1 � p(m, k) + p(k, n).

Case 3. Ifm < n and k < m or n < k, then p(m,n) � p(m, k)+p(k, n). Indeed, by (5.12)–(5.14),
p(m,n) � 1. Next, for k < m or n < k, we have 1 � p(m, k) + p(k, n) since, by (5.14), k < m
implies p(m, k) = 1 and n < k implies p(k, n) = 1.

Case 4. If m < n and m � k � n, then p(m,n) � p(m, k) + p(k, n) since the following five
properties (IV1)–(IV2) are satisfied.

(IV1) Let k = m or k = n then p(m,n) = p(m, k) + p(k, n).

(IV2) Let m be even, let n be odd and let m < k < n then, by (5.12), p(m,n) = m−1. If
k is odd, then, by (5.13), p(m, k) = m−1 and, by (5.14), p(k, n) = 1. If k is even,
then, by (5.13), p(k, n) = k−1 and, by (5.14), p(m, k) = 1. Consequently, p(m,n) <
p(m, k) + p(k, n).

(IV3) Let m and n be even, and let m < k < n. Then, by (5.14), p(m,n) = 1. If k is odd,
then, by (5.13), p(m, k) = m−1 and, by (5.14), p(k, n) = 1. If k is even, then, by (5.14),
p(k, n) = p(m, k) = 1. Consequently, p(m,n) < p(m, k) + p(k, n).

(IV4) Let m and n be odd, and let m < k < n. Then, by (5.14), p(m,n) = 1. If k is odd,
then, by (5.14), p(m, k) = p(k, n) = 1. If k is even, then, by (5.13), p(k, n) = k−1 and,
by (5.14), p(m, k) = 1. Consequently, p(m,n) < p(m, k) + p(k, n).

(IV5) Let m be odd, let n be even, and let m < k < n. Then, by (5.14), p(m,n) = p(m, k) =
p(k, n) = 1.Consequently, p(m,n) < p(m, k) + p(k, n).
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(b) The family J is a JP-family.
This follows from Example 5.1(I).

(c) (X,P) is a left K sequentially complete quasimetric space.
Indeed, we see that only sequences (wm : m ∈ N) in X satisfying

∃k∈N∃w∈N∀m�k{wm = w} (5.16)

are left- (P, K-) Cauchy sequences in X, that is, satisfy (2.1). Further, each sequence (wm :
m ∈ N) in X satisfying (5.16) is left convergent in X, that is, satisfies (2.3). Consequently,
(X,P) is a left K sequentially complete.

(d) (X,P) is not a left sequentially complete quasimetric space.

Indeed, using (5.13), we see that the sequence (wm : m ∈ N) in X of the form wm =
2m−1,m ∈ N, satisfies ∀ε>0∃w=2m0∈X∀m∈N{p(w,wm) = 1/(2m0) < ε}, and thus (2m−1 : m ∈ N)
is left P-Cauchy sequence in X (i.e., satisfies (2.2)).

Now, suppose that for this sequence the condition (2.3) holds, that is, that
∃w∈N∀ε>0∃k∈N∀m∈N;k�m{p(w,wm) < ε}. It is clear that then ∃s∈N∀m�s{w < wm}. Hence, since,
for each m ∈ N, wm is odd, using (5.13) and (5.14), we obtain that

∃w∈N∀ε>0∀m�s

{
ε > p(w,wm) =

⎧
⎨
⎩
1/w if w is even

1 if w is odd,
(5.17)

which is impossible.

(e) The map T is strictly (J,Γ) dissipative on X.

Indeed, let x ∈ X be arbitrary and fixed, and consider the following three cases.

Case 1. If x = 1, then there exists a unique generalized sequence of iterations (wm : m ∈ {0} ∪
N) starting atw0 = x of the system (X, T), given by the formulawm = 1,m ∈ {0}∪N. Hence, by
(5.12) and (5.15), we have ∀m∈{0}∪N{J(wm,wm+1) = p(wm,wm+1) = 0 � γ(wm) − γ(wm+1) = 0}.
Therefore, the sequence (wm : m ∈ {0} ∪ N) satisfies (1.2) and (3.4) and left converges to
w = 1.

Case 2. If x = 2k, where k ∈ N, then there exists a unique generalized sequence of iterations
(wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) defined by the formula w0 = 2k,
wm = 2k − (2m − 1) = T [m](w0) for m ∈ {1, 2, 3, . . . , k − 1}, and wm = 1 = T [m](w0) for m � k.
Hence, by (5.14) and (5.15), we get that J(w0, w1) = p(2k, 2k − 1) = 1 � 2k − (2k − 1) =
γ(w0) − γ(w1) and ∀m∈{1,...,k−1}{J(wm,wm+1) = p(wm,wm+1) = 1 � 2 = wm − wm+1 = γ(wm) −
γ(wm+1)} and, by (5.12) and (5.15), we get that ∀m�k{J(wm,wm+1) = p(wm,wm+1) = 0 �
γ(wm)− γ(wm+1)}. Therefore, the sequence (wm : m ∈ {0}∪N) satisfies (1.2) and (3.4) and left
converges to w = 1.

Case 3. If x = 2k+1, where k ∈ N, then there exists a unique generalized sequence of iterations
(wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) defined by the formula wm = 2k −
(2m − 1) = T [m](w0) for m ∈ {0, 1, 2, 3, . . . , k − 1} and wm = 1 = T [m](w0) form � k. Hence, by
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(5.14) and (5.15), we get that J(w0, w1) = p(2k+1, 2k−1) = 1 � 2k+1−(2k−1) = γ(w0)−γ(w1)
and ∀m∈{1,...,k−1}{J(wm,wm+1) = p(wm,wm+1) = 1 � 2 = wm −wm+1 = γ(wm) − γ(wm+1)} and,
by (5.12) and (5.15), we get that ∀m�k{J(wm,wm+1) = p(wm,wm+1) = 0 � γ(wm) − γ(wm+1)}.
Therefore, the sequence (wm : m ∈ {0} ∪ N) satisfies (1.2) and (3.4) and left converges to
w = 1.

The above implies that T is strictly (J,Γ) dissipative on X.

(f) The assertion of Theorem 4.4 (C1) holds.

From considerations in (e), it follows that, for each x ∈ X, a generalized sequence of
iterations (wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) satisfies {(wm : m ∈
{0} ∪ N)} = SJ(T, x) and left converges to w ∈ W = {1} ⊂ X.

(g) The map T is left quasiclosed in X.

Indeed, in X only sequences (wm : m ∈ N) satisfying the condition
∃k∈N∃w∈X∀m;k�m{wm = w} are left convergent to w and W = {w}. Further, if ∀m∈N{vm =
T(wm)}, then a sequence (vm : m ∈ N) left converges to v = T(w) and V = {v}where

V =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{1} if w = 1

{w − 1} if w = 2k, k ∈ N

{w − 2} if w = 2k + 1, k ∈ N.

(5.18)

By Definition 4.2(i), the map T is left quasiclosed in X.

(h) The assertion of Theorem 4.4 (C2) holds.

Indeed, by (e)–(g), for each x ∈ X, there exists a generalized sequence of iterations
(wm : m ∈ {0} ∪ N) starting at w0 = x of the system (X, T) satisfying ∃k∈N∀m;k�m{wm = 1}
and {(wm : m ∈ {0} ∪ N)} = SJ(T, x), left converging to w ∈ W = {1}, for which {(vm : m ∈
{0} ∪ N)}, where ∀m∈N{vm = T(wm)} satisfies ∀m;k�m{vm = 1}, left converges to v ∈ V = {1},
and w = 1 is the fixed point of T .

From (a)–(h), it follows that Theorem 4.4(C) (also Theorem 4.4(B) by Remark 4.5)
holds.

The following example shows that in Theorem 4.4 the assumptions in (A2), (B2), and
(C2) (i.e., the assumptions that the map T [q] is left quasiclosed in X for some q ∈ N) are
essential.

Example 5.4. Let X = [0, 1], and let P = {p}where p(x, y) = |x − y|, x, y ∈ X. Then, the family
J = {J}, where J = p, is a JP-family. Let T : X → 2X be of the form

T(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{1} if x = 0

[0, (1/2)x] if x ∈ (0, 1)

{1} if x = 1,

(5.19)
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and let Γ = {γ : X → [0,∞)}, where γ is of the form

γ(x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 if x = 0

x if x ∈ (0, 1), x ∈ X.

0 if x = 1.

(5.20)

(a) Theorem 4.4 (B1) holds.
We show that the map T is (J,Γ) dissipative. Indeed, let x ∈ X be arbitrary and fixed.

We consider three cases.

Case 1. If x = 0, then there exists only one dynamic process (wm : m ∈ {0} ∪ N) starting at
w0 = 0. This dynamic process is of the form ∀m∈N{wm = 1 = T(wm−1) = T [m](w0)} and satisfies
J(w0, w1) = 1 � 1 − 0 = γ(0) − γ(1) and ∀m∈N{J(wm,wm+1) = 0 � γ(wm) − γ(wm+1)}.

Case 2. If x ∈ (0, 1), then each dynamic process (wm : m ∈ {0} ∪N) starting atw0 = x satisfies

∀m∈N{wm ∈ (0, 1)} (5.21)

or

∃k∈N{wk = 0}. (5.22)

If (5.21) holds, then ∀m∈N{wm ∈ (0, (1/2)wm−1] ⊂ T(wm−1) ⊂ [0, (1/2m)w0] ∪ {1} =
T [m](w0)} and ∀m∈{0}∪N{0 < J(wm,wm+1) = wm −wm+1 = γ(wm) − γ(wm+1)}.

If (5.22) holds, then ∀m�k{wm ∈ T(wm−1) = [0, (1/2)wm−1] ⊂ [0, (1/2m)w0] ∪ {1} =
T [m](w0)}, wk+1 ∈ {1} = T(0) = T(wk) ⊂ T [k](w0), and ∀m>k+1{wm ∈ {1} = T(wm−1) ⊂
T [m](w0)}. The above implies that ∀m<k{wm ∈ (0, (1/2)wm−1] and J(wm,wm+1) = wm−wm+1 =
γ(wm) − γ(wm+1)}, J(wk,wk+1) = |wk − wk+1| = |0 − 1| = 1 = 1 − 0 = γ(wk) − γ(wk+1), and
∀m>k{J(wm,wm+1) = 0 = γ(1) − γ(1) = γ(wm) − γ(wm+1)}.

Case 3. If x = 1, then there exists only one dynamic process (wm : m ∈ {0} ∪ N) starting at
w0 = 1. This dynamic process is of the form ∀m∈N{wm = 1 = T(wm−1) = T [m](w0)} and satisfies
∀m∈{0}∪N{J(wm,wm+1) = 0 � γ(wm) − γ(wm+1)}.

From the above, it follows that, for each x ∈ X, each sequence (wm : m ∈ {0} ∪ N)
starting atw0 = x and satisfying (1.1) satisfies (3.4). Thus, the assumption of Theorem 4.4(B1)
is satisfied.

From the above, it follows also that, for each x ∈ X, each dynamic process (wm : m ∈
{0} ∪ N) ∈ WJ(T, x) starting at w0 = x of the system (X, T) converges to w ∈ W = {1} if
x ∈ {0, 1}, tow ∈ W = {0} if x ∈ (0, 1) and (wm : m ∈ {0} ∪N) satisfies (5.21), tow ∈ W = {1}
if x ∈ (0, 1) and (wm : m ∈ {0} ∪ N) satisfies (5.22).

This gives that the Theorem 4.4 (B1) holds.
(b) For each q ∈ N, the map T [q] is not closed in X.
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Indeed, we have that, for each q � 2,

T [q](x) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{1} if x = 0

[0, (1/2q)x] ∪ {1} if x ∈ (0, 1)

{1} if x = 1.

(5.23)

Thus, if q ∈ N and x ∈ (0, 1) are arbitrary and fixed, then [0, (1/2q)x] ∪ {1} = T [q](x) if q � 2
and [0, (1/2)x] = T(x). Define the sequence (wm : m ∈ N) as follows:wm = (1/2q+m)x,m ∈ N.
Let (vm : m ∈ N) be a sequence satisfying ∀m∈N{vm ∈ T [q](wm)} of the form vm = 0 ∈ T [q](wm),
m ∈ N. It is clear that (wm : m ∈ N) converges to w ∈ W = {0}, (vm : m ∈ N) converges to
v ∈ V = {0}, and 0/∈ T [q](0) = {1}.

By Definition 4.1, for each q ∈ N, the map T [q] is not closed in X

(c) The assertion in (B2) of Theorem 4.4 does not hold.
Indeed, let x ∈ (0, 1) be arbitrary and fixed, and let a dynamic process (wm : m ∈ {0} ∪

N) ∈ WJ(T, x) starting atw0 = x of the system (X, T) such that ∀m∈N{wm ∈ (0, 1)} be arbitrary
and fixed. By (a), (wm : m ∈ {0}∪N) converges tow ∈ W = {0}. Since ∀q∈N{0/∈ T [q](0) = {1}},
we see that the assertion in (B2) of Theorem 4.4 does not hold.

It is worth noticing that if x ∈ {0, 1} and (wm : m ∈ {0} ∪ N) ∈ WJ(T, x), then, by
(a), (wm : m ∈ {0} ∪ N) converges to w ∈ W = {1} and ∀q∈N{1 ∈ T [q](1) = {1}}, that is,
∀q∈N{1 ∈ End(T [q])}.

(d) The map T is not strictly (J,Γ) dissipative on X.
Indeed, if x ∈ (0, 1) is arbitrary and fixed, then we have that ∀m∈N{T [m](w0) =

[0, (1/2m)w0]∪ {1}} forw0 = x and the generalized sequence of iterations (wm : m ∈ {0} ∪N)
defined by w1 = (1/2)w0 ∈ T(w0) and ∀m�2{wm = 0 ∈ T [m](w0)} does not satisfy (3.4) since
0 � J(w1, w2) = |w1 −w2| = (1/2)w0 > γ(w1) − γ(w2) = (1/2)w0 − 1.

In Example 5.5, we compare Theorem 4.4 and [2].

Example 5.5. Let X, T , and p be as in Example 5.3.,
We show that T , is not a generalized contraction of Reilly [2]. Indeed, suppose that

∃λ∈[0,1)∀x,y∈X{p(T(x), T(y)) � λp(x, y)}. Hence, in particular, for x0 = 5, and y0 = 6, we get
T(x0) = 3, T(y0) = 5 and p(T(x0), T(y0)) = 1 � λ · 1 = λp(x0, y0). This gives λ � 1, which is
absurd.
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