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In the paper by Olaleru and Akewe (2007), the authors tried to generalize Gregus fixed point
theorem. In this paper we give a counterexample on their main statement.

1. Introduction

Let X be a Banach space and C be a closed convex subset of X. In 1980 Greguš [1] proved the
following results.

Theorem 1.1. Let T : C → C be a mapping satisfying the inequality

∥
∥Tx − Ty

∥
∥ ≤ a

∥
∥x − y

∥
∥ + b‖x − Tx‖ + c

∥
∥y − Ty

∥
∥, (1.1)

for all x, y ∈ C, where 0 < a < 1, b, c ≥ 0, and a + b + c = 1. Then T has a unique fixed point.

Several papers have been written on the Gregus fixed point theorem. For example,
see [2–6]. We can combine the Gregus condition by the following inequality, where T is a
mapping on metric space (X, d):
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, (1.2)

for all x, y ∈ X, where 0 < a < 1, b, c, e, f ≥ 0, and a + b + c + e + f = 1.
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Definition 1.2. Let X be a topological vector space on K(= C or R). The mapping F : X → R

is said to be an F-norm such that for all x, y ∈ X

(i) F(x) ≥ 0,

(ii) F(x) = 0 → x = 0,

(iii) F(x + y) ≤ F(x) + F(y),

(iv) F(λx) ≤ F(x) for all λ ∈ Kwith |λ| ≤ 1,

(v) if λn → 0 and λn ∈ K, then F(λnx) → 0.

In 2007, Olaleru and Akewe [7] considered the existence of fixed point of T when T is
defined on a closed convex subset C of a complete metrizable topological vector space X and
satisfies condition (1.2) and extended the Gregus fixed point.

Theorem 1.3. Let C be a closed convex subset of a complete metrizable topological vector spaceX and
T : C → C a mapping that satisfies

F
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)
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)

(1.3)

for all x, y ∈ X, where F is an F-norm on X, 0 < a < 1, b, c, e, f ≥ 0, and a + b + c + e + f = 1.
Then T has a unique fixed point.

Here, we give an example to show that the above mentioned theorem is not correct.

2. Counterexample

Example 2.1. Let X = R endowed with the Euclidean metric and C = X. Let T : C → C
defined by Tx = x + 1. Let 0 < a < 1 and e > 0 such that a + 2e = 1. Then for all x ∈ C such
that y > x, we have that
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∣
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(2.1)

We have two cases, y > x + 1 or y ≤ x + 1.
If y > x + 1, then y − x = y − x − 1 + 1, and hence inequality (2.1) is true. If y ≤ x + 1,

then 0 < y−x ≤ 1, and so y−x ≤ |y−x−1|+1, and hence inequality (2.1) is true. So condition
(1.3) holds for b = c = 0 and e = f , but T has not fixed point.
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[2] Lj.B. Ćirić, “On a generalization of a Greguš fixed point theorem,” Czechoslovak Mathematical Journal,
vol. 50, no. 3, pp. 449–458, 2000.

[3] B. Fisher and S. Sessa, “On a fixed point theorem of Greguš,” International Journal of Mathematics and
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