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We introduce a new type of the system of generalized strong vector quasiequilibrium problems
with set-valued mappings in real locally convex Hausdorff topological vector spaces. We establish
an existence theorem by using Kakutani-Fan-Glicksberg fixed-point theorem and discuss the
closedness of strong solution set for the system of generalized strong vector quasiequilibrium
problem. The results presented in the paper improve and extend the main results of Long et al.
(2008).

1. Introduction

The equilibrium problem is a generalization of classical variational inequalities. This
problem contains many important problems as special cases, for instance, optimization,
Nash equilibrium, complementarity, and fixed-point problems (see [1–3] and the references
therein). Recently, there has been an increasing interest in the study of vector equilibrium
problems. Many results on existence of solutions for vector variational inequalities and vector
equilibrium problems have been established (see, e.g., [4–16]).

Let X and Z be real locally convex Hausdorff space, K ⊂ X a nonempty subset and
C ⊂ Z be a closed convex pointed cone. Let F : K ×K → 2Z be a given set-valued mapping.
Ansari et al. [17] introduced the following set-valued vector equilibrium problems (VEPs) to
find x ∈ K such that

F
(
x, y

)
/⊆ − intC ∀y ∈ K, (1.1)
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or to find x ∈ K such that

F
(
x, y

) ⊂ C ∀y ∈ K. (1.2)

If intC is nonempty, and x satisfies (1.1), then we call x a weak efficient solution for
(VEP), and if x satisfies (1.2), then we call x a strong solution for VEP. Moreover, they also
proved an existence theorem for a strong vector equilibrium problem (1.2) (see [17]).

In 2000, Ansari et al. [5] introduced the system of vector equilibrium problems
(SVEPs), that is, a family of equilibrium problems for vector-valued bifunctions defined
on a product set, with applications in vector optimization problems and Nash equilibrium
problem [11] for vector-valued functions. The (SVEP) contains system of equilibrium
problems, systems of vector variational inequalities, system of vector variational-like
inequalities, system of optimization problems and the Nash equilibrium problem for vector-
valued functions as special cases. But, by using (SVEP), we cannot establish the existence
of a solution to the Debreu type equilibrium problem [7] for vector-valued functions
which extends the classical concept of Nash equilibrium problem for a noncooperative
game. Moreover, Ansari et al. [18] introduced the following concept of system of vector
quasiequilibrium problems.

Let I be any index set and for each i ∈ I, let Xi be a topological vector space. Consider
a family of nonempty convex subsets {Ki}i∈I with Ki ⊂ Xi. We denote by K =

∏
i∈IKi and

X =
∏

i∈IXi. For each i ∈ I, let Yi be a topological vector space and let Ci : K → 2Yi and
Si : K → 2Ki be multivalued mappings and Fi : K × K → Yi be a bifunction. The system of
vector quasiequilibrium problems (SVQEPs), that is, to find x ∈ K such that for each i ∈ I,

xi ∈ Si(x) : Fi

(
x, yi

)
/∈ − intCi(x) ∀yi ∈ Si(x). (1.3)

If Si(x) = Ki for all x ∈ K, then (SVQEP) reduces to (SVEP) (see [5]) and if the index set
I is singleton, then (SVQEP) becomes the vector quasiequilibrium problem. Many authors
studied the existence of solutions for systems of (vector) quasiequilibrium problems, see, for
example, [19–23] and references therein.

On the other hand, it is well known that a strong solution of vector equilibrium
problem is an ideal solution, It is better than other solutions such as efficient solution, weak
efficient solution, proper efficient solution and supper efficient solution (see [13]). Thus, it is
important to study the existence of strong solution and properties of the strong solution set.
In general, the ideal solutions do not exist.

Very recently, the generalized strong vector quasiequilibrium problem (GSVQEPs) is
introduced by Long et al. [16]. Let X, Y , and Z are real locally convex Hausdorff topological
vector spaces, K ⊂ X and D ⊂ Y are nonempty compact convex subsets, and C ⊂ Z is a
nonempty closed convex cone. Let S : K → 2K, T : K → 2D, and F : K × D × K → 2Z are
three set-valued mappings. They considered the GSVQEP: finding x ∈ K, y ∈ T(x) such that
x ∈ S(x) and

F
(
x, y, z

) ⊂ C, ∀z ∈ S(x). (1.4)

Moreover, they gave an existence theorem for a generalized strong vector quasiequilibrium
problem without assuming that the dual of the ordering cone has a weak∗ compact base.
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Motivated and inspired by research works mentioned above, in this paper, we
introduce a different kind of systems of generalized strong vector quasiequilibrium problem
without assuming that the dual of the ordering cone has a weak∗ compact base. Let X, Y ,
and Z are real locally convex Hausdorff topological vector spaces, K ⊂ X and D ⊂ Y are
nonempty compact convex subsets, and C ⊂ Z is a nonempty closed convex cone. We also
suppose that S1, S2 : K → 2K, T1, T2 : K → 2D and F1, F2 : K × D ×K → 2Z are set-valued
mappings. We consider the following system of generalized strong vector quasiequilibrium
problem (SGSVQEPs): finding (x, u) ∈ K × K and v ∈ T1(x), y ∈ T2(u) such that x ∈ S1(x),
u ∈ S2(u) satisfying

F1
(
x, y, z

) ⊂ C ∀z ∈ S1(x),
F2(u, v, z) ⊂ C ∀z ∈ S2(u).

(1.5)

We call this (x, u) a strong solution for the (SGSVQEP).
At a quick glance, our required solution seems to be similar to such a thing of Ansari

et al. [5, 18], in the case of I = {1, 2} and K1 = K2. In fact, however, the main different point
comes from the independent choice of coordinate. In this paper, we establish an existence
theorem of strong solution set for the system of generalized strong vector quasiequilibrium
problem by using Kakutani-Fan-Glicksberg fixed-point theorem and discuss the closedness
of the solution set. Moreover, we apply our result to obtain the result of Long et al. [16].

2. Preliminaries

Throughout this paper,we suppose that X, Y , and Z are real locally convex Hausdorff
topological vector spaces, K ⊂ X and D ⊂ Y are nonempty compact convex subsets,
and C ⊂ Z is a nonempty closed convex cone. We also suppose that S1, S2 : K → 2K,
T1, T2 : K → 2D, and F1, F2 : K ×D ×K → 2Z are set-valued mappings.

Definition 2.1. Let X and Y be two topological vector spaces and K a nonempty subset of X
and let F : K → 2Y be a set-valued mapping.

(i) F is called upper C-continuous at x0 ∈ K if, for any neighbourhood U of the origin
in Y , there is a neighbourhood V of x0 such that, for all x ∈ V ,

F(x) ⊂ F(x0) +U +C. (2.1)

(ii) F is called lower C-continuous at x0 ∈ K if, for any neighbourhood U of the origin
in Y , there is a neighbourhood V of x0 such that, for all x ∈ V ,

F(x0) ⊂ F(x) +U −C. (2.2)

Definition 2.2. LetX and Y be two topological vector spaces andK a nonempty convex subset
of X. A set-valued mapping F : K → 2Y is said to be properly C-quasiconvex if, for any
x, y ∈ K and t ∈ [0, 1], we have

either F(x) ⊂ F
(
tx + (1 − t)y

)
+ C or F

(
y
) ⊂ F

(
tx + (1 − t)y

)
+ C. (2.3)
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Definition 2.3. Let X and Y be two topological vector spaces, and T : X → 2Y be a set-valued
mapping.

(i) T is said to be upper semicontinuous at x ∈ X if, for any open set V containing
T(x), there exists an open set U containing x such that, for all t ∈ U, T(t) ⊂ V ; T is
said to be upper semicontinuous on X if it is upper semicontinuous at all x ∈ X.

(ii) T is said to be lower semicontinuous at x ∈ X if, for any open set V with T(x)∩V /= ∅,
there exists an open setU containing x such that, for all t ∈ U, T(t)∩V /= ∅; T is said
to be lower semicontinuous on X if it is lower semicontinuous at all x ∈ X.

(iii) T is said to be continuous on X if, it is at the same time upper semicontinuous and
lower semicontinuous on X.

(iv) T is said to be closed if the graph, Graph(T), of T , that is, Graph(T) = {(x, y) : x ∈ X
and y ∈ T(x)}, is a closed set in X × Y .

Lemma 2.4 (see [12]). Let K be a nonempty compact subset of locally convex Hausdorff vector
topology space E. If S : K → 2K is upper semicontinuous and for any x ∈ K,S(x) is nonempty,
convex and closed, then there exists an x∗ ∈ K such that x∗ ∈ S(x∗).

Lemma 2.5 (see [24]). Let X and Y be two Hausdorff topological vector spaces and T : X → 2Y be
a set-valued mapping. Then, the following properties hold:

(i) if T is closed and T(X) is compact, then T is upper semicontinuous, where T(X) =
⋃

x∈X T(x) and E denotes the closure of the set E,

(ii) if T is upper semicontinuous and for any x ∈ X, T(x) is closed, then T is closed,

(iii) T is lower semicontinuous at x ∈ X if and only if for any y ∈ T(x) and any net {xα}, xα →
x, there exists a net {yα} such that yα ∈ T(xα) and yα → y.

3. Main Results

In this section, we apply Kakutani-Fan-Glicksberg fixed-point theorem to prove an existence
theorem of strong solutions for the system of generalized strong vector quasiequilibrium
problem. Moreover, we also prove the closedness of strong solution set for the system of
generalized strong vector quasiequilibrium problem.

Theorem 3.1. For each i = {1, 2}, let Si : K → 2K be continuous set-valued mappings such that
for any x ∈ K,Si(x) are nonempty closed convex subsets of K. Let Ti : K → 2D be upper semi
continuous set-valued mappings such that for any x ∈ K, Ti(x) are nonempty closed convex subsets
of D and Fi : K ×D ×K → 2Z be set-valued mappings satisfy the following conditions:

(i) for all (x, y) ∈ K ×D,Fi(x, y, Si(x)) ⊂ C,

(ii) for all (y, z) ∈ D ×K,Fi(·, y, z) are properly C-quasiconvex,
(iii) Fi(·, ·, ·) are upper C-continuous,
(iv) for all y ∈ D,Fi(·, y, ·) are lower (−C)-continuous.

Then, SGSVQEP has a solution. Moreover, the set of all strong solutions is closed.
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Proof. For any (x, y) ∈ K ×D, define set-valued mappings A,B : K ×D → 2K by

A
(
x, y

)
=
{
a ∈ S1(x) : F1

(
a, y, z

) ⊂ C, ∀z ∈ S1(x)
}
,

B
(
x, y

)
=
{
b ∈ S2(x) : F2

(
b, y, z

) ⊂ C, ∀z ∈ S2(x)
}
.

(3.1)

Step 1. Show thatA(x, y) and B(x, y) are nonempty.
For any x ∈ K, we note that S1(x) and S2(x) are nonempty. Thus, for any (x, y) ∈ K×D,

we have A(x, y) and B(x, y) are nonempty.

Step 2. Show thatA(x, y) and B(x, y) are convex subsets of K.
Let a1, a2 ∈ A(x, y) and λ ∈ [0, 1]. Put a = λa1 + (1 − λ)a2. Since a1, a2 ∈ S1(x) and

S1(x) is convex set, we have a ∈ S1(x). By (ii), F1(·, y, z) is properly C-quasiconvex. Without
loss of generality, we can assume that

F1
(
a1, y, z

) ⊂ F1
(
λa1 + (1 − λ)a2, y, z

)
+ C. (3.2)

We claim that a ∈ A(x, y). In fact, if a/∈A(x, y), then there exists z∗ ∈ S1(x) such that

F1
(
a, y, z∗

)
/⊆C. (3.3)

It follows that

F1
(
a1, y, z

∗) ⊂ F1
(
λa1 + (1 − λ)a2, y, z

∗) + C/⊆C + C ⊂ C, (3.4)

which contradicts to a1 ∈ A(x, y). Therefore a ∈ A(x, y) and henceA(x, y) is a convex subset
of K. Similarly, we have B(x, y) is convex subset of K.

Step 3. Show thatA(x, y) and B(x, y) are closed subsets of K.
Let {aα} be a sequence in A(x, y) such that aα → a∗. Thus, we have aα ∈ S1(x). Since

S1(x) is a closed subset ofK, it follows that a∗ ∈ S1(x). By the lower semicontinuity of S1 and
Lemma 2.5(iii), for any z∗ ∈ S1(x) and any net {xα} → x, there exists a net {zα} such that
zα ∈ S1(xα) and zα → z∗. This implies that

F1
(
aα, y, zα

) ⊂ C. (3.5)

Since F1(·, y, ·) is lower (−C)-continuous, for any neighbourhood U of the origin in Z, there
is a subnet {aβ, zβ} of {aα, zα} such that

F1
(
a∗, y, z∗

) ⊂ F1
(
aβ, y, zβ

)
+U + C. (3.6)

From (3.5) and (3.6), we have

F1
(
a∗, y, z∗

) ⊂ U + C. (3.7)
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We claim that F1(a∗, y, z∗) ⊂ C. Assume that there exists p ∈ F1(a∗, y, z∗) and p /∈C. Thus, we
note that 0/∈ (C−p) andC−p is closed. HenceZ\(C−p) is open and 0 ∈ Z\(C−p). SinceZ is a
locally convex space, there exists a neighbourhoodU0 of the origin such thatU0 ⊂ Z \ (C−p)
is convex and U0 = −U0. This implies that 0/∈U0 + (C − p), that is, p /∈U0 + C, which is a
contradiction. Therefore F1(a∗, y, z∗) ⊂ C. This mean that a∗ ∈ A(x, y) and so A(x, y) is a
closed subset of K. Similarly, we have B(x, y) is a closed subset of K.

Step 4. Show thatA(x, y) and B(x, y) are upper semicontinuous.
Let {(xα, yα) : α ∈ I} ⊂ K × D be given such that (xα, yα) → (x, y) ∈ K × D, and

let aα ∈ A(xα, yα) such that aα → a. Since aα ∈ S1(xα) and S1 is upper semicontinuous,
it follows by Lemma 2.5(ii) that a ∈ S1(x). We now claim that a ∈ A(x, y). Assume that
a/∈A(x, y). Then, there exists z∗ ∈ S1(x) such that

F1
(
a, y, z∗

)
/⊆C, (3.8)

which implies that there is a neighbourhood U0 of the origin in Z such that

F1
(
a, y, z∗

)
+U0/⊆C. (3.9)

Since F1 is upper C-continuous, for any neighbourhood U of the origin in Z, there exists a
neighbourhood U1 of (a, y, z∗) such that

F1
(
â, ŷ, ẑ

) ⊂ F1
(
a, y, z∗

)
+U + C, ∀(â, ŷ, ẑ) ∈ U1. (3.10)

Without loss of generality, we can assume that U0 = U. This implies that

F1
(
â, ŷ, ẑ

) ⊂ F1
(
a, y, z∗

)
+U0 + C/⊆C + C ⊂ C, ∀(â, ŷ, ẑ) ∈ U1. (3.11)

Thus there is α0 ∈ I such that

F1
(
aα, yα, zα

)
/⊆C, ∀α ≥ α0, (3.12)

which contradicts to aα ∈ A(xα, yα). Hence a ∈ A(x, y) and, therefore,A is a closed mapping.
Since K is a compact set and A(x, y) is a closed subset ofK, we note that A(x, y) is compact.
Then, A(x, y) is also compact. Hence, by Lemma 2.5(i), A(x, y) is an upper semicontinuous
mapping. Similarly, we note that B(x, y) is an upper semicontinuous mapping.

Step 5. Show that SGSVQEP has a solution.
Define the set-valued mapping Ha : K ×D → 2K×D and Gb : K ×D → 2K×D by

Ha

(
x, y

)
=
(
A
(
x, y

)
, T1(a)

) ∀(x, y) ∈ K ×D,

Gb

(
x, y

)
=
(
B
(
x, y

)
, T2(b)

) ∀(x, y) ∈ K ×D.
(3.13)

Then,Ha andGb are upper semicontinuous and, for all (x, y) ∈ K×D,Ha(x, y), andGb(x, y)
are nonempty closed convex subsets of K ×D.
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Define the set-valued mapping M : (K ×D) × (K ×D) → 2(K×D)×(K×D) by

M
((
x, y

)
, (u, v)

)
=
(
Hu

(
x, y

)
, Gx(u, v)

)
, ∀((x, y), (u, v)) ∈ (K ×D) × (K ×D). (3.14)

Then, M is also upper semicontinuous and, for all ((x, y), (u, v)) ∈ (K × D) × (K × D),
M((x, y), (u, v)) is a nonempty closed convex subset of (K×D)×(K×D). By Lemma 2.4, there
exists a point ((x, y), (u, v)) ∈ (K ×D) × (K ×D) such that ((x, y), (u, v)) ∈ M((x, y), (u, v)),
that is

(
x, y

) ∈ Hu

(
x, y

)
, (u, v) ∈ Gx(u, v). (3.15)

This implies that x ∈ A(x, y), y ∈ T1(u), u ∈ B(u, v), and v ∈ T2(x). Then, there exists
(x, u) ∈ K ×K and y ∈ T1(u), v ∈ T2(x) such that x ∈ S1(x), u ∈ S2(u),

F1
(
x, y, z

) ⊂ C, ∀z ∈ S1(x), F2(u, v, z) ⊂ C, ∀z ∈ S2(u). (3.16)

Hence SGSVQEP has a solution.

Step 6. Show that the set of solutions of SGSVQEP is closed.
Let {(xα, uα) : α ∈ I} be a net in the set of solutions of SGSVQEP such that (xα, uα)→

(x∗, u∗). By definition of the set of solutions of SGSVQEP, we note that there exist vα ∈ T1(xα),
yα ∈ T2(uα), xα ∈ S1(xα), and uα ∈ S2(uα) satisfying

F1
(
xα, yα, z

) ⊂ C, ∀z ∈ S1(xα), F2(uα, vα, z) ⊂ C, ∀z ∈ S2(uα). (3.17)

Since S1 and S2 are continuous closed valued mappings, we obtain x∗ ∈ S1(x∗) and u∗ ∈
S2(u∗). Let vα → v∗ and yα → y∗. Since T1 and T2 are upper semicontinuous closed valued
mappings, it follows by Lemma 2.5(ii) that T1 and T2 are closed. Thus, we note that v∗ ∈ T1(x∗)
and y∗ ∈ T2(u∗). Since F1(·, y∗, ·) and F2(·, v∗, ·) are lower (−C)-continuous, we have

F1
(
x∗, y∗, z

) ⊂ C, ∀z ∈ S1(x∗), F2(u∗, v∗, z) ⊂ C, ∀z ∈ S2(u∗). (3.18)

This means that (x∗, u∗) belongs to the set of solutions of SGSVQEP. Hence the set of solutions
of SGSVQEP is closed set. This completes the proof.

If we take S = S1 = S2, F = F1 = F2, and T = T1 = T2. Then, from Theorem 3.1, we
derive the following result.

Corollary 3.2. Let S : K → 2K be a continuous set-valued mapping such that for any x ∈ K,S(x)
is nonempty closed convex subset of K. Let T : K → 2D be an upper semicontinuous set-valued
mapping such that for any x ∈ K, T(x) is a nonempty closed convex subset ofD and F : K×D×K →
2Z be set-valued mapping satisfy the following conditions:

(i) for all (x, y) ∈ K ×D,F(x, y, S(x)) ⊂ C,

(ii) for all (y, z) ∈ D ×K,F(·, y, z) is properly C-quasiconvex,
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(iii) F(·, ·, ·) is an upper C-continuous,

(iv) for all y ∈ D,F(·, y, ·) is a lower (−C)-continuous,
(v) if x ∈ S(x) and u ∈ S(u) then T(x) = T(u).

Then, GSVQEP has a solution. Moreover, the set of all solution of GSVQEP is closed.

Now we give an example to explain that Theorem 3.1 is applicable.

Example 3.3. Let X = Y = Z = R, C = [0,+∞), and K = D = [0, 1]. For each x ∈ K, let
S1(x) = [x, 1], S2(x) = [0, x] and T1(x) = [1 − x, 1], T2(x) = [x, 1]. We consider the set-valued
mappings F1, F2 : K ×D ×K → 2Z defined by

F1
(
x, y, z

)
=
[
x − y + z,+∞) ∀(x, y, z) ∈ K ×D ×K,

F2
(
x, y, z

)
=
[
y − x + z,+∞) ∀(x, y, z) ∈ K ×D ×K.

(3.19)

Then, it is easy to check that all of condition (i)–(iv) in Theorem 3.1 are satisfied. Hence, by
Theorem 3.1, SGSVQEP has a solution. Let E be the set of all strong solutions for SGSVQEP.
Then, we note that

E =
{(
x, u, y, v

) ∈ K ×K × T2(u) × T1(x) : x ∈ S1(x), u ∈ S2(u) such that

F1
(
x, y, z

) ⊂ C, ∀z ∈ S1(x), F2(u, v, z) ⊂ C, ∀z ∈ S2(u)
}

=
⋃

1/3≤a≤0.5
({a} × [1 − a, 2a] × [0, 1 − a] × [1 − a, 1]).

(3.20)
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