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Using fixed point methods, we prove the stability and superstability of C∗-ternary additive,
quadratic, cubic, and quartic homomorphisms in C∗-ternary rings for the functional equation
f(2x + y) + f(2x − y) + (m − 1)(m − 2)(m − 3)f(y) = 2m−2[f(x + y) + f(x − y) + 6f(x)], for each
m = 1, 2, 3, 4.

1. Introduction

Following the terminology of [1], a nonempty set G with a ternary operation [·, ·, ·] :
G × G × G → G is called a ternary groupoid, which is denoted by (G, [·, ·, ·]). The ternary
groupoid (G, [·, ·, ·]) is said to be commutative if [x1, x2, x3] = [xσ(1), xσ(2), xσ(3)] for all
x1, x2, x3 ∈ G and all permutations σ of {1, 2, 3}. If a binary operation o is defined on G
such that [x, y, z] = (x ◦ y) ◦ oz for all x, y, z ∈ G, then we say that [·, ·, ·] is derived from
◦. We say that (G, [·, ·, ·]) is a ternary semigroup if the operation [·, ·, ·] is associative, that is,
if [[x, y, z], u, v] = [x, [y, z, u], v] = [x, y, [z, u, v]] holds for all x, y, z, u, v ∈ G (see [2]).
Since it is extensively discussed in [3], the full description of a physical system S implies
the knowledge of three basis ingredients: the set of the observables, the set of the states,
and the dynamics that describes the time evolution of the system by means of the time
dependence of the expectation value of a given observable on a given statue. Originally, the
set of the observable was considered to be a C∗-algebra [4]. In many applications, however,
it was shown not to be the most convenient choice and the C∗-algebra was replaced by a von
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Neumann algebra because the role of the representation turns out to be crucial mainly when
long-range interactions are involved (see [5] and references therein). Here we used a different
algebraic structure.

A C∗-ternary ring is a complex Banach space A, equipped with a ternary product
(x, y, z) → [x, y, z] of A3 into A, which is C-linear in the outer variables, conjugate C-linear
in the middle variable and associative in the sense that [x, y, [z,w, v]] = [x, [w, z, y], v] =
[[x, y, z], w, v] and satisfies ‖[x, y, z]‖ ≤ ‖x‖ · ‖y‖ · ‖z‖ and ‖[x, y, z]‖ = ‖x‖3.

If a C∗-ternary ring (A, [·, ·, ·]) has an identity, that is, an element e ∈ A such that
x = [x, e, e] = [e, e, x] for all x ∈ A, then it is routine to verify that A, endowed with x ◦ y :=
[x, e, y] and x∗ := [e, x, e], is a unital C∗-algebra. Conversely, if (A, ◦) is a unital C∗-algebra,
then [x, y, z] := x ◦ y∗ ◦ z makes A into a C∗-ternary algebra.

Consider the functional equation I1(f) = I2(f)(I) in a certain general setting. A
function g is an approximate solution of (I) if I1(g) and I2(g) are close in some sense.
The Ulam stability problem asks whether or not there exists a true solution of (I) near g.
A functional equation is said to be superstable if every approximate solution of the equation is
an exact solution of the functional equation. The problem of stability of functional equations
originated from a question of Ulam [6] concerning the stability of group homomorphisms.

Let (G1, ∗) be a group and (G2, �, d) be a metric group with the metric d(·, ·). Given
ε > 0, does there exist a δ(ε) > 0 such that, if a mapping h : G1 → G2 satisfies the inequality

d
(
h
(
x ∗ y), h(x) � h(y)) < δ (1.1)

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(h(x),H(x)) < ε for
all x ∈ G1?

If the answer is affirmative, we say that the equation of homomorphism H(x ∗ y) =
H(x)�H(y) is stable. The concept of stability for a functional equation arises when we replace
the functional equation by an inequality which acts as a perturbation of the equation. Thus
the stability question of functional equations is that how do the solutions of the inequality
differ from those of the given functional equation?

In 1941, Hyers [7] gave a first affirmative answer to the question of Ulam for Banach
spaces.

Let X and Y be Banach spaces. Assume that f : X → Y satisfies

∥∥f
(
x + y

) − f(x) − f
(
y
)∥∥ ≤ ε (1.2)

for all x, y ∈ X and some ε > 0. Then there exists a unique additive mapping T : X → Y such
that ‖f(x) − T(x)‖ ≤ ε for all x ∈ X.

A generalized version of the theorem of Hyers for approximately additive mappings
was given by Aoki [8] in 1950 (see also [9]). In 1978, a generalized solution for approximately
linear mappings was given by Th. M. Rassias [10]. He considered a mapping f : X → Y
satisfying the condition

∥∥f
(
x + y

) − f(x) − f
(
y
)∥∥ ≤ ε

(‖x‖p + ∥∥y
∥∥p) (1.3)

for all x, y ∈ X, where ε ≥ 0 and 0 ≤ p < 1. This result was later extended to all p /= 1 and
generalized by Gajda [11], Th. M. Rassias and Šemrl [12], and Isac and Th. M. Rassias [13].
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In 2000, Lee and Jun [14] have improved the stability problem for approximately
additive mappings. The problem when p = 1 is not true. Counter examples for the
corresponding assertion in the case p = 1 were constructed by Gadja [11], Th. M. Rassias
and Šemrl [12].

On the other hand, J. M. Rassias [15–17] considered the Cauchy difference controlled
by a product of different powers of norm. Furthermore, a generalization of Th. M. Rassias
theorems was obtained by Gǎvruţa [18], who replaced

ε
(‖x‖p + ‖y‖p) (1.4)

and ε‖x‖p‖y‖p by a general control function ϕ(x, y). In 1949 and 1951, Bourgin [19, 20] is the
first mathematician dealing with stability of (ring) homomorphism f(xy) = f(x)f(y). The
topic of approximation of functional equations on Banach algebras was studied by a number
of mathematicians (see [21–33]).

The functional equation:

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)

(1.5)

is related to a symmetric biadditive mapping [34, 35]. It is natural that this equation is called a
quadratic functional equation. For more details about various results concerning such problems,
the readers refer to [36–43].

In 2002, Jun and Kim [44] introduced the following cubic functional equation:

f
(
2x + y

)
+ f

(
2x − y

)
= 2f

(
x + y

)
+ 2f

(
x − y

)
+ 12f(x) (1.6)

and they established the general solution and the generalized Hyers-Ulam-Rassias stability
for the functional equation (1.6). Obviously, the mapping f(x) = cx3 satisfies the functional
equation (1.6), which is called the cubic functional equation. In 2005, Lee et al. [45] considered
the following functional equation

f
(
2x + y

)
+ f

(
2x − y

)
= 4f

(
x + y

)
+ 4f

(
x − y

)
+ 24f(x) − 6f

(
y
)
. (1.7)

It is easy to see that the mapping f(x) = dx4 is a solution of the functional equation (1.7),
which is called the quartic functional equation.

2. Preliminaries

In 2007, Park and Cui [46] investigated the generalized stability of a quadratic mapping f :
A → B, which is called a C∗-ternary quadratic mapping if f is a quadratic mapping satisfies

f
([
x, y, z

])
=
[
f(x), f

(
y
)
, f(z)

]
(2.1)

for all x, y, z ∈ A. Let (A, [·, ·, ·]) be a C∗-ternary ring derived from a unital commutative
C∗-algebra A and let f : A → A satisfy f(x) = x2 for all x ∈ A. It is easy to show that the
mapping f : A → A is a C∗-ternary quadratic mapping.
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Recently, in 2010, Bae and Park [47] investigated the following functional equations

f
(
2x + y

)
+ f

(
2x − y

)
= 2m−2[f

(
x + y

)
+ f

(
x − y

)
+ 6f(x)

]
(2.2)

for each m = 1, 2, 3, and

f
(
2x + y

)
+ f

(
2x − y

)
+ 6f

(
y
)
= 4

[
f
(
x + y

)
+ f

(
x − y

)
+ 6f(x)

]
(2.3)

and they have obtained the stability of the functional equations (2.2) and (2.3).
We can rewrite the functional equations (2.2) and (2.3) by

f
(
2x + y

)
+ f

(
2x − y

)
+ (m − 1)(m − 2)(m − 3)f

(
y
)

= 2m−2[f
(
x + y

)
+ f

(
x − y

)
+ 6f(x)

]
.

(2.4)

Obviously, the monomial f(x) = axm (x ∈ R) is a solution of the functional equation (2.4) for
each m = 1, 2, 3, 4.

For m = 1, 2, Bae and Park [47, 48] showed that the functional equation (2.4) is
equivalent to the additive equation and quadratic equation, respectively.

If m = 3, the functional equation (2.4) is equivalent to the cubic equation [44].
Moreover, Lee et al. [45] solved the solution of the functional equation (2.4) form = 4.

In this paper, using the idea of Park and Cui [46], we study the further generalized
stability of C∗-ternary additive, quadratic, cubic, and quartic mappings over C∗-ternary
algebra via fixed point method for the functional equation (2.4). Moreover, we establish the
superstability of this functional equation by suitable control functions.

Definition 2.1. Let A and B be two C∗-ternary algebras.

(1) A mapping f : A → B is called a C∗-ternary additive homomorphism (briefly,
C∗-ternary 1-homomorphism) if f is an additive mapping satisfying (2.1) for all
x, y, z ∈ A.

(2) A mapping f : A → B is called a C∗-ternary quadratic mapping (briefly, C∗-ternary
2-homomorphism) if f is a quadratic mapping satisfying (2.1) for all x, y, z ∈ A.

(3) A mapping f : A → B is called a C∗-ternary cubic mapping (briefly, C∗-ternary 3-
homomorphism) if f is a cubic mapping satisfying (2.1) for all x, y, z ∈ A.

(4) A mapping f : A → B is called a C∗-ternary quartic homomorphism (briefly, C∗-
ternary 4-homomorphism) if f is a quartic mapping satisfying (2.1) for all x, y, z ∈
A.

Now, we state the following notion of fixed point theorem. For the proof, refer to [49]
(see also Chapter 5 in [50] and [51, 52]). In 2003, Radu [53] proposed a new method for
obtaining the existence of exact solutions and error estimations, based on the fixed point
alternative (see also [54–57]).

Let (X, d) be a generalized metric space. We say that a mapping T : X → X satisfies
a Lipschitz condition if there exists a constant L ≥ 0 such that d(Tx, Ty) ≤ Ld(x, y) for
all x, y ∈ X, where the number L is called the Lipschitz constant. If the Lipschitz constant
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L is less than 1, then the mapping T is called a strictly contractive mapping. Note that the
distinction between the generalizedmetric and the usual metric is that the range of the former
is permitted to include the infinity.

The following theorem was proved by Diaz and Margolis [49] and Radu [53].

Theorem 2.2. Suppose that (Ω, d) is a complete generalized metric space and T : Ω → Ω is a strictly
contractive mapping with the Lipschitz constant L. Then, for any x ∈ Ω, either

d
(
Tmx, Tm+1x

)
= ∞, ∀m ≥ 0, (2.5)

or there exists a natural numberm0 such that

(1) d(Tmx, Tm+1x) < ∞ for all m ≥ m0;

(2) the sequence {Tmx} is convergent to a fixed point y∗ of T ;

(3) y∗ is the unique fixed point of T in Λ = {y ∈ Ω : d(Tm0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Ty) for all y ∈ Λ.

3. Approximation of C∗-Ternary m-Homomorphisms between
C∗-Ternary Algebras

In this section, we investigate the generalized stability of C∗-ternary m-homomorphism
between C∗-ternary algebras for the functional equation (2.4).

Throughout this section, we suppose that X and Y are two C∗-ternary algebras. For
convenience, we use the following abbreviation: for any function f : X → Y ,

Δmf
(
x, y

)
= f

(
2x + y

)
+ f

(
2x − y

)
+ (m − 1)(m − 2)(m − 3)f

(
y
)

− 2m−2[f
(
x + y

)
+ f

(
x − y

)
+ 6f(x)

] (3.1)

for all x, y ∈ X.
From now on, let m be a positive integer less than 5.

Theorem 3.1. Let f : X → Y be a mapping for which there exist functions ϕm : X × X → [0,∞)
and ψm : X ×X ×X → [0,∞) such that

∥∥Δmf
(
x, y

)∥∥ ≤ ϕm

(
x, y

)
, (3.2)

∥∥f
([
x, y, z

]) − [
f(x), f

(
y
)
, f(z)

]∥∥ ≤ ψm

(
x, y, z

)
(3.3)

for all x, y, z ∈ X. If there exists a constant 0 < L < 1 such that

ϕm

(x
2
,
y

2

)
≤ L

2m
ϕm

(
x, y

)
,

ψm

(x
2
,
y

2
,
z

2

)
≤ L

23m
ψm

(
x, y, z

)
(3.4)
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for all x, y, z ∈ X, then there exists a unique C∗-ternarym-homomorphism F : X → Y such that

∥
∥f(x) − F(x)

∥
∥ ≤ L

2m+1(1 − L)
ϕm(x, 0) (3.5)

for all x ∈ X.

Proof. It follows from (3.4) that

lim
n→∞

2mnϕm

( x

2n
,
y

2n
)
= 0, (3.6)

lim
n→∞

23mnψm

( x

2n
,
y

2n
,
z

2n
)
= 0 (3.7)

for all x, y, z ∈ X. By (3.6), limn→∞2mnϕm(0, 0) = 0 and so ϕm(0, 0) = 0. Letting x = y = 0 in
(3.2), we get f(0) ≤ ϕm(0, 0) = 0 and so f(0) = 0.

LetΩ = {g : g : X → Y, g(0) = 0}. We introduce a generalized metric onΩ as follows:

d
(
g, h

)
= dϕm

(
g, h

)
= inf

{
K ∈ (0,∞) :

∥∥g(x) − h(x)
∥∥ ≤ Kϕm(x, 0), ∀x ∈ X

}
. (3.8)

It is easy to show that (Ω, d) is a generalized complete metric space [55].
Now, we consider the mapping T : Ω → Ω defined by Tg(x) = 2mg(x/2) for all x ∈ X

and g ∈ Ω. Note that, for all g, h ∈ Ω and x ∈ X,

d
(
g, h

)
< K =⇒ ∥∥g(x) − h(x)

∥∥ ≤ Kϕm(x, 0)

=⇒
∥∥∥2mg

(x
2

)
− 2mh

(x
2

)∥∥∥ ≤ 2mKϕm

(x
2
, 0
)

=⇒
∥∥
∥2mg

(x
2

)
− 2mh

(x
2

)∥∥∥ ≤ LKϕm(x, 0)

=⇒ d
(
Tg, Th

) ≤ LK.

(3.9)

Hence we see that

d
(
Tg, Th

) ≤ Ld
(
g, h

)
(3.10)

for all g, h ∈ Ω, that is, T is a strictly self-mapping ofΩwith the Lipschitz constant L. Putting
y = 0 in (3.2), we have

∥∥∥2f(2x) − 2m+1f(x)
∥∥∥ ≤ ϕm(x, 0) (3.11)
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for all x ∈ X and so

∥
∥
∥f(x) − 2mf

(x
2

)∥∥
∥ ≤ 1

2
ϕm

(x
2
, 0
)
≤ L

2m+1
ϕm(x, 0) (3.12)

for all x ∈ X, that is, d(f, Tf) ≤ L/2m+1 < ∞.
Now, from Theorem 2.2, it follows that there exists a fixed point F of T in Ω such that

F(x) = lim
n→∞

2mnf
( x

2n
)

(3.13)

for all x ∈ X since limn→∞d(Tnf,F) = 0.
On the other hand, it follows from (3.2), (3.6), and (3.13) that

∥∥ΔmF
(
x, y

)∥∥ = lim
n→∞

2mn
∥∥∥Δmf

( x

2n
,
y

2n
)∥∥∥ ≤ lim

n→∞
2mnϕm

( x

2n
,
y

2n
)
= 0 (3.14)

for all x, y ∈ X and so ΔmF(x, y) = 0. By the result in [44, 45, 47], F is m-mapping and so it
follows from the definition of F, (3.3) and (3.7) that

∥∥F
([
x, y, z

]) − [
F(x),F

(
y
)
,F(z)

]∥∥ = lim
n→∞

23mn

∥∥∥∥∥
f

([
x, y, z

]

23n

)

−
[
f
( x

2n
)
, f

( y

2n
)
, f

( z

2n
)]

∥∥∥∥∥

≤ lim
n→∞

23mnψm

( x

2n
,
y

2n
,
z

2n
)

= 0
(3.15)

for all x, y, z ∈ X and so F([x, y, z]) = [F(x),F(y),F(z)].
According to Theorem 2.2, since F is the unique fixed point of T in the set Λ = {g ∈ Ω :

d(f, g) < ∞}, F is the unique mapping such that

∥∥f(x) − F(x)
∥∥ ≤ Kϕm(x, 0) (3.16)

for all x ∈ X and K > 0. Again, using Theorem 2.2, we have

d
(
f,F

) ≤ 1
1 − L

d
(
f, Tf

) ≤ L

2m+1(1 − L)
(3.17)

and so

∥∥f(x) − F(x)
∥∥ ≤ L

2m+1(1 − L)
ϕm(x, 0) (3.18)

for all x ∈ X. This completes the proof.
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Corollary 3.2. Let θ, r, p be nonnegative real numbers with r, p > m and (3p − r)/2 ≥ m. Suppose
that f : X → Y is a mapping such that

∥
∥Δmf

(
x, y

)∥∥ ≤ θ
(‖x‖r + ∥

∥y
∥
∥r)

, (3.19)
∥
∥f

([
x, y, z

]) − [
f(x), f

(
y
)
, f(z)

]∥∥ ≤ θ
(‖x‖p · ∥∥y∥∥p · ‖z‖p) (3.20)

for all x, y, z ∈ X. Then there exists a unique C∗-ternarym-homomorphism F : X → Y satisfying

∥
∥f(x) − F(x)

∥
∥ ≤ θ

2(2r − 2m)
‖x‖r (3.21)

for all x ∈ X.

Proof. The proof follows from Theorem 3.1 by taking

ϕm

(
x, y

)
:= θ

(‖x‖r + ∥∥y
∥∥r)

, ψm

(
x, y, z

)
:= θ

(‖x‖p · ∥∥y∥∥p · ‖z‖p) (3.22)

for all x, y, z ∈ X. Then we can choose L = 2m−r and so the desired conclusion follows.

Remark 3.3. Let f : X → Y be a mapping with f(0) = 0 such that there exist functions
ϕm : X ×X → [0,∞) and ψm : X ×X ×X → [0,∞) satisfying (3.2) and (3.3). Let 0 < L < 1 be
a constant such that

ϕm

(
2x, 2y

) ≤ 2mLϕm

(
x, y

)
, ψm

(
2x, 2y, 2z

) ≤ 23mLψm

(
x, y, z

)
(3.23)

for all x, y, z ∈ X. By the similar method as in the proof of Theorem 3.1, one can show that
there exists a unique C∗-ternary m-homomorphism F : X → Y satisfying

∥∥f(x) − F(x)
∥∥ ≤ 1

2m+1(1 − L)
ϕm(x, 0) (3.24)

for all x ∈ X. For the case

ϕm

(
x, y

)
:= δ + θ

(‖x‖r + ∥∥y
∥∥r)

, ψm

(
x, y, z

)
:= δ + θ

(‖x‖p · ∥∥y∥∥p · ‖z‖p), (3.25)

where θ, δ are nonnegative real numbers and 0 < r, p < m and (3p − r)/2 ≤ m, there exists a
unique C∗-ternary m-homomorphism F : X → Y satisfying

∥∥f(x) − F(x)
∥∥ ≤ δ

2(2m − 2r)
+

θ

2(2m − 2r)
‖x‖r (3.26)

for all x ∈ X.

In the following, we formulate and prove a theorem in superstability of C∗-ternary
m-homomorphism in C∗-ternary rings for the functional equation (2.4).
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Theorem 3.4. Suppose that there exist functions ϕm : X ×X → [0,∞), ψm : X ×X ×X → [0,∞)
and a constant 0 < L < 1 such that

ϕm

(
0,

y

2

)
≤ L

2m
ϕm

(
0, y

)
,

ψm

(x
2
,
y

2
,
z

2

)
≤ L

23m
ψm

(
x, y, z

)
(3.27)

for all x, y, z ∈ X. Moreover, if f : X → Y is a mapping such that

∥
∥Δmf

(
x, y

)∥∥ ≤ ϕm

(
0, y

)
, (3.28)

∥
∥f

([
x, y, z

]) − [
f(x), f

(
y
)
, f(z)

]∥∥ ≤ ψm

(
x, y, z

)
(3.29)

for all x, y, z ∈ X, then f is a C∗-ternarym-homomorphism.

Proof. It follows from (3.27) that

lim
n→∞

2mnϕm

(
0,

y

2n
)
= 0, (3.30)

lim
n→∞

23mnψm

( x

2n
,
y

2n
,
z

2n
)
= 0 (3.31)

for all x, y, z ∈ X. We have f(0) = 0 since ϕm(0, 0) = 0. Letting y = 0 in (3.28), we get
f(2x) = 2mf(x) for all x ∈ X. By using induction, we obtain

f(2nx) = 2mnf(x) (3.32)

for all x ∈ X and n ∈ N and so

f(x) = 2mnf
( x

2n
)

(3.33)

for all x ∈ X and n ∈ N. It follows from (3.29) and (3.33) that

∥∥f
([
x, y, z

]) − [
f(x), f

(
y
)
, f(z)

]∥∥

= 23mn

∥∥∥∥∥
f

([
x, y, z

]

23n

)

−
[
f
( x

2n
)
, f

( y

2n
)
, f

( z

2n
)]

∥∥∥∥∥

≤ 23mnψm

( x

2n
,
y

2n
,
z

2n
)

(3.34)

for all x, y, z ∈ X, and n ∈ N. Hence, letting n → ∞ in (3.34) and using (3.31), we have
f([x, y, z]) = [f(x), f(y), f(z)] for all x, y, z ∈ X.

On the other hand, we have

∥∥Δmf
(
x, y

)∥∥ = 2mn
∥∥∥Δmf

( x

2n
,
y

2n
)∥∥∥ ≤ 2mnϕm

(
0,

y

2n
)

(3.35)
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for all x, y ∈ X and n ∈ N. Thus, letting n → ∞ in (3.35) and using (3.30), we have
Δmf(x, y) = 0 for all x, y ∈ X. Therefore, f is a C∗-ternarym-homomorphism. This completes
the proof.

Corollary 3.5. Let θ, r, s be nonnegative real numbers with r > m and s > 3m. If f : X → Y is a
function such that

∥∥Δmf
(
x, y

)∥∥ ≤ θ
∥∥y

∥∥r
,

∥∥f
([
x, y, z

]) − [
f(x), f

(
y
)
, f(z)

]∥∥ ≤ θ
(‖x‖s + ∥∥y

∥∥s + ‖z‖s)

(3.36)

for all x, y, z ∈ X, then f is a C∗-ternarym-homomorphism.

Remark 3.6. Let θ, r be nonnegative real numbers with r < m. Suppose that there exists a
function ψm : X ×X ×X → [0,∞) and a constant 0 < L < 1 such that

ψm

(
2x, 2y, 2z

) ≤ 23mLψm

(
x, y, z

)
(3.37)

for all x, y, z ∈ X. Moreover, if f : X → Y is a mapping such that

∥∥Δmf
(
x, y

)∥∥ ≤ θ
∥∥y

∥∥r
,

∥∥f
([
x, y, z

]) − [
f(x), f

(
y
)
, f(z)

]∥∥ ≤ ψm

(
x, y, z

)
(3.38)

for all x, y, z ∈ X, then f is a C∗-ternary m-homomorphism.

In the rest of this section, assume that X is a unital C∗-ternary algebra with the unit e
and Y is a C∗-ternary algebra with the unit e′.

Theorem 3.7. Let θ, r, p be positive real numbers with r > m, p > m and (3p−r)/2 ≥ m (resp. (3p−
r)/2 ≤ m). Suppose that f : X → Y is a mapping satisfying (3.19) and (3.20). If there exist a real
number λ > 1 and x0 ∈ X such that limn→∞λmnf(x0/λ

n) = e′ (resp. limn→∞(1/λmn)f(λnx0) =
e′), then the mapping f : X → Y is a C∗-ternarym-homomorphism.

Proof. By Corollary 3.2, there exists a unique C∗-ternary m-homomorphism F : X → Y such
that

∥∥f(x) − F(x)
∥∥ ≤ θ

2(2r − 2m)
‖x‖r (3.39)

for all x ∈ X. It follows from (3.39) that

F(x) = lim
n→∞

λmnf
( x

λn

) (
F(x) = lim

n→∞
1

λmn
f(λnx)

)
(3.40)

for all x ∈ X and λ > 1. Therefore, by the assumption, we get that F(x0) = e′.
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Let λ > 1 and limn→∞λmnf(x0/λ
n) = e′. It follows from (3.20) that

∥
∥[F(x),F

(
y
)
,F(z)

] − [
F(x),F

(
y
)
, f(z)

]∥∥

=
∥
∥F

([
x, y, z

]) − [
F(x),F

(
y
)
, f(z)

]∥∥

= lim
n→∞

λ2mn
∥
∥
∥f

([ x

λn
,
y

λn
, z
])

−
[
f
( x

λn

)
, f

( y

λn

)
, f(z)

]∥∥
∥

≤ θ lim
n→∞

λ2mn

[
1

λ2np
(‖x‖p · ∥∥y∥∥p) · ‖z‖p

]

= 0

(3.41)

for all x, y, z ∈ X and so F([x, y, z]) = [F(x),F(y), f(z)] for all x, y, z ∈ X. Letting x = y = x0

in the last equality, we get f(z) = F(z) for all z ∈ X.
Similarly, one can show that f(z) = F(z) for all z ∈ X when λ > 1 and

limn→∞(1/λmn)f(λnx0) = e′. Therefore, the mapping f : X → Y is a C∗-ternary m-
homomorphism. This completes the proof.

Theorem 3.8. Let θ, r, p be positive real numbers with r > m and p > 2m and (3p − r)/2 ≥
m (resp. (3p − r)/2 ≤ m). Suppose that f : X → Y is a mapping satisfying (3.19) and

∥∥f
([
x, y, z

]) − [
f(x), f

(
y
)
, f(z)

]∥∥ ≤ θ
(‖x‖p · ∥∥y∥∥p +

∥∥y
∥∥p · ‖z‖p + ‖x‖p · ‖z‖p) (3.42)

for all x, y, z ∈ X. If there exist a real number λ > 1 and x0 ∈ X such that limn→∞λmnf(x0/λ
n) =

e′ (resp. limn→∞(1/λmn)f(λnx0) = e′), then the mapping f : X → Y is a C∗-ternary m-
homomorphism.

Proof. By Theorem 3.1 there exists a unique C∗-ternary m-homomorphism F : X → Y such
that

∥∥f(x) − F(x)
∥∥ ≤ θ

2(2r − 2m)
‖x‖r (3.43)

for all x ∈ X. It follows from (3.43) that

F(x) = lim
n→∞

λmnf
( x

λn

) (
F(x) = lim

n→∞
1

λmn
f(λnx)

)
(3.44)

for all x ∈ X and λ > 1. Therefore, by the assumption, we get that F(x0) = e′.
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Let λ > 1 and limn→∞λmnf(x0/λ
n) = e′. It follows from (3.20) that

∥
∥[F(x),F

(
y
)
,F(z)

] − [
F(x),F

(
y
)
, f(z)

]∥∥

=
∥
∥F

([
x, y, z

]) − [
F(x),F

(
y
)
, f(z)

]∥∥

= lim
n→∞

λ2mn
∥
∥
∥f

([ x

λn
,
y

λn
, z
])

−
[
f
( x

λn

)
, f

( y

λn

)
, f(z)

]∥∥
∥

≤ θ lim
n→∞

λ2mn

[
1

λ2np
‖x‖p · ∥∥y∥∥p +

1
λnp

∥
∥y

∥
∥p · ‖z‖p + 1

λnp
‖x‖p · ‖z‖p

]

= 0

(3.45)

for all x, y, z ∈ X and so F([x, y, z]) = [F(x),F(y), f(z)] for all x, y, z ∈ X. Letting x = y = x0

in the last equality, we get f(z) = F(z) for all z ∈ X.
Similarly, one can show that f(z) = F(z) for all z ∈ X when λ > 1 and

limn→∞(1/λmn)f(λnx) = e′. Therefore, the mapping f : X → Y is a C∗-ternary m-
homomorphism. This completes the proof.
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