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We prove a common fixed point theorem for mappings under φ-contractive conditions in fuzzy
metric spaces. We also give an example to illustrate the theorem. The result is a genuine
generalization of the corresponding result of S.Sedghi et al. (2010)

1. Introduction

Since Zadeh [1] introduced the concept of fuzzy sets, many authors have extensively
developed the theory of fuzzy sets and applications. George and Veeramani [2, 3] gave
the concept of fuzzy metric space and defined a Hausdorff topology on this fuzzy metric
space which have very important applications in quantum particle physics particularly in
connection with both string and E-infinity theory.

Bhaskar and Lakshmikantham [4], Lakshmikantham and Ćirić [5] discussed the
mixed monotone mappings and gave some coupled fixed point theorems which can be used
to discuss the existence and uniqueness of solution for a periodic boundary value problem.
Sedghi et al. [6] gave a coupled fixed point theorem for contractions in fuzzy metric spaces,
and Fang [7] gave some common fixed point theorems under φ-contractions for compatible
and weakly compatible mappings in Menger probabilistic metric spaces. Many authors [8–
23] have proved fixed point theorems in (intuitionistic) fuzzy metric spaces or probabilistic
metric spaces.

In this paper, using similar proof as in [7], we give a new common fixed point theorem
under weaker conditions than in [6] and give an example which shows that the result is a
genuine generalization of the corresponding result in [6].
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2. Preliminaries

First we give some definitions.

Definition 1 (see [2]). A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is continuous t-norm if ∗
is satisfying the following conditions:

(1) ∗ is commutative and associative;

(2) ∗ is continuous;
(3) a ∗ 1 = a for all a ∈ [0, 1];

(4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2 (see [24]). Let sup0<t<1Δ(t, t) = 1. A t-norm Δ is said to be of H-type if the family
of functions {Δm(t)}∞m=1 is equicontinuous at t = 1, where

Δ1(t) = tΔt, Δm+1(t) = tΔ(Δm(t)), m = 1, 2, . . . , t ∈ [0, 1]. (2.1)

The t-norm ΔM = min is an example of t-norm of H-type, but there are some other
t-norms Δ of H-type [24].

Obviously,Δ is a H-type t norm if and only if for any λ ∈ (0, 1), there exists δ(λ) ∈ (0, 1)
such that Δm(t) > 1 − λ for all m ∈ �, when t > 1 − δ.

Definition 3 (see [2]). A 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an arbitrary
nonempty set, ∗ is a continuous t-norm, and M is a fuzzy set on X2 × (0,+∞) satisfying the
following conditions, for each x, y, z ∈ X and t, s > 0:

(FM-1) M(x, y, t) > 0;

(FM-2) M(x, y, t) = 1 if and only if x = y;

(FM-3) M(x, y, t) = M(y, x, t);

(FM-4) M(x, y, t) ∗M(y, z, s) ≤ M(x, z, t + s);

(FM-5) M(x, y, ·) : (0,∞) → [0, 1] is continuous.

Let (X,M, ∗) be a fuzzy metric space. For t > 0, the open ball B(x, r, t) with a center
x ∈ X and a radius 0 < r < 1 is defined by

B(x, r, t) =
{
y ∈ X : M

(
x, y, t

)
> 1 − r

}
. (2.2)

A subsetA ⊂ X is called open if, for each x ∈ A, there exist t > 0 and 0 < r < 1 such that
B(x, r, t) ⊂ A. Let τ denote the family of all open subsets of X. Then τ is called the topology
on X induced by the fuzzy metric M. This topology is Hausdorff and first countable.

Example 1. Let (X, d) be a metric space. Define t-norm a∗b = ab and for all x, y ∈ X and t > 0,
M(x, y, t) = t/(t + d(x, y)). Then (X,M, ∗) is a fuzzy metric space. We call this fuzzy metric
M induced by the metric d the standard fuzzy metric.
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Definition 4 (see [2]). Let (X,M, ∗) be a fuzzy metric space, then

(1) a sequence {xn} in X is said to be convergent to x (denoted by limn→∞xn = x) if

lim
n→∞

M(xn, x, t) = 1, (2.3)

for all t > 0;

(2) a sequence {xn} in X is said to be a Cauchy sequence if for any ε > 0, there exists
n0 ∈ �, such that

M(xn, xm, t) > 1 − ε, (2.4)

for all t > 0 and n, m ≥ n0;

(3) a fuzzy metric space (X,M, ∗) is said to be complete if and only if every Cauchy
sequence in X is convergent.

Remark 1 (see [25]). (1) For all x, y ∈ X, M(x, y, ·) is nondecreasing.
(2) It is easy to prove that if xn → x, yn → y, tn → t, then

lim
n→∞

M
(
xn, yn, tn

)
= M

(
x, y, t

)
. (2.5)

(3) In a fuzzy metric space (X,M, ∗), whenever M(x, y, t) > 1 − r for x, y in X, t > 0,
0 < r < 1, we can find a t0, 0 < t0 < t such thatM(x, y, t0) > 1 − r.

(4) For any r1 > r2, we can find an r3 such that r1 ∗ r3 ≥ r2 and for any r4 we can find a
r5 such that r5 ∗ r5 ≥ r4 (r1, r2, r3, r4, r5 ∈ (0, 1)).

Definition 5 (see [6]). Let (X,M, ∗) be a fuzzymetric space.M is said to satisfy the n-property
on X2 × (0,∞) if

lim
n→∞

[
M

(
x, y, knt

)]np

= 1, (2.6)

whenever x, y ∈ X, k > 1 and p > 0.

Lemma 1. Let (X,M, ∗) be a fuzzy metric space andM satisfies the n-property; then

lim
t→+∞

M
(
x, y, t

)
= 1, ∀x, y ∈ X. (2.7)

Proof. If not, since M(x, y, ·) is nondecreasing and 0 ≤ M(x, y, ·) ≤ 1, there exists x0, y0 ∈ X

such that limt→+∞M(x0, y0, t) = λ < 1, then for k > 1, knt → +∞ when n → ∞ as t > 0 and
we get limn→∞[M(x0, y0, k

nt)]n
p

= 0, which is a contraction.
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Remark 2. Condition (2.7) cannot guarantee the n-property. See the following example.

Example 2. Let (X, d) be an ordinary metric space, a ∗ b ≤ ab for all a, b ∈ [0, 1], and ψ be
defined as following:

ψ(t) =

⎧
⎪⎨

⎪⎩

α
√
t, 0 < t ≤ 4,

1 − 1
ln t

, t > 4,
(2.8)

where α = (1/2)(1 − 1/ ln 4). Then ψ(t) is continuous and increasing in (0,∞), ψ(t) ∈ (0, 1)
and limt→+∞ψ(t) = 1. Let

M
(
x, y, t

)
=
[
ψ(t)

]d(x,y)
, ∀x, y ∈ X, t > 0, (2.9)

then (X,M, ∗) is a fuzzy metric space and

lim
t→+∞

M
(
x, y, t

)
= lim

t→+∞
[
ψ(t)

]d(x,y) = 1, ∀x, y ∈ X. (2.10)

But for any x /=y, p = 1, k > 1, t > 0,

lim
n→∞

[
M

(
x, y, knt

)]np

= lim
n→∞

[
ψ(knt)

]d(x,y)·np

= lim
n→∞

[
1 − 1

ln(knt)

]n·d(x,y)
= e−d(x,y)/ lnk

/= 1.

(2.11)

Define Φ = {φ : R+ → R+}, where R+ = [0,+∞) and each φ ∈ Φ satisfies the following
conditions:

(φ-1) φ is nondecreasing;

(φ-2) φ is upper semicontinuous from the right;

(φ-3)
∑∞

n=0 φ
n(t) < +∞ for all t > 0, where φn+1(t) = φ(φn(t)), n ∈ �.

It is easy to prove that, if φ ∈ Φ, then φ(t) < t for all t > 0.

Lemma 2 (see [7]). Let (X,M, ∗) be a fuzzy metric space, where ∗ is a continuous t-norm of H-type.
If there exists φ ∈ Φ such that if

M
(
x, y, φ(t)

) ≥ M
(
x, y, t

)
, (2.12)

for all t > 0, then x = y.

Definition 6 (see [5]). An element (x, y) ∈ X×X is called a coupled fixed point of the mapping
F : X ×X → X if

F
(
x, y

)
= x, F

(
y, x

)
= y. (2.13)



Fixed Point Theory and Applications 5

Definition 7 (see [5]). An element (x, y) ∈ X × X is called a coupled coincidence point of the
mappings F : X ×X → X and g : X → X if

F
(
x, y

)
= g(x), F

(
y, x

)
= g

(
y
)
. (2.14)

Definition 8 (see [7]). An element (x, y) ∈ X × X is called a common coupled fixed point of
the mappings F : X ×X → X and g : X → X if

x = F
(
x, y

)
= g(x), y = F

(
y, x

)
= g

(
y
)
. (2.15)

Definition 9 (see [7]). An element x ∈ X is called a common fixed point of the mappings
F : X ×X → X and g : X → X if

x = g(x) = F(x, x). (2.16)

Definition 10 (see [7]). The mappings F : X×X → X and g : X → X are said to be compatible
if

lim
n→∞

M
(
gF

(
xn, yn

)
, F

(
g(xn), g

(
yn

))
, t
)
= 1,

lim
n→∞

M
(
gF

(
yn, xn

)
, F

(
g
(
yn

)
, g(xn)

)
, t
)
= 1,

(2.17)

for all t > 0 whenever {xn} and {yn} are sequences in X, such that

lim
n→∞

F
(
xn, yn

)
= lim

n→∞
g(xn) = x, lim

n→∞
F
(
yn, xn

)
= lim

n→∞
g
(
yn

)
= y, (2.18)

for all x, y ∈ X are satisfied.

Definition 11 (see [7]). The mappings F : X ×X → X and g : X → X are called commutative
if

g
(
F
(
x, y

))
= F

(
gx, gy

)
, (2.19)

for all x, y ∈ X.

Remark 3. It is easy to prove that, if F and g are commutative, then they are compatible.

3. Main Results

For convenience, we denote

[
M

(
x, y, t

)]n = M(x, y, t) ∗M(x, y, t) ∗ · · · ∗M(x, y, t)
︸ ︷︷ ︸

n

,
(3.1)

for all n ∈ �.
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Theorem 1. Let (X,M, ∗) be a complete FM-space, where ∗ is a continuous t-norm of H-type
satisfying (2.7). Let F : X × X → X and g : X → X be two mappings and there exists φ ∈ Φ
such that

M
(
F
(
x, y

)
, F(u, v), φ(t)

) ≥ M
(
g(x), g(u), t

) ∗M(
g
(
y
)
, g(v), t

)
, (3.2)

for all x, y, u, v ∈ X, t > 0.
Suppose that F(X ×X) ⊆ g(X), and g is continuous, F and g are compatible. Then there exist

x, y ∈ X such that x = g(x) = F(x, x), that is, F and g have a unique common fixed point in X.

Proof. Let x0, y0 ∈ X be two arbitrary points in X. Since F(X × X) ⊆ g(X), we can choose
x1, y1 ∈ X such that g(x1) = F(x0, y0) and g(y1) = F(y0, x0). Continuing in this way we can
construct two sequences {xn} and {yn} in X such that

g(xn+1) = F
(
xn, yn

)
, g

(
yn+1

)
= F

(
yn, xn

)
, ∀n ≥ 0. (3.3)

The proof is divided into 4 steps.

Step 1. Prove that {gxn} and {gyn} are Cauchy sequences.
Since ∗ is a t-norm of H-type, for any λ > 0, there exists a μ > 0 such that

(1 − μ) ∗ (1 − μ) ∗ · · · ∗ (1 − μ)
︸ ︷︷ ︸

k

≥ 1 − λ,
(3.4)

for all k ∈ �.
Since M(x, y, ·) is continuous and limt→+∞M(x, y, t) = 1 for all x, y ∈ X, there exists

t0 > 0 such that

M
(
gx0, gx1, t0

) ≥ 1 − μ, M
(
gy0, gy1, t0

) ≥ 1 − μ. (3.5)

On the other hand, since φ ∈ Φ, by condition (φ-3)we have
∑∞

n=1 φ
n(t0) < ∞. Then for

any t > 0, there exists n0 ∈ � such that

t >
∞∑

k=n0

φk(t0). (3.6)

From condition (3.2), we have

M
(
gx1, gx2, φ(t0)

)
= M

(
F
(
x0, y0

)
, F

(
x1, y1

)
, φ(t0)

)

≥ M
(
gx0, gx1, t0

) ∗M(
gy0, gy1, t0

)
,

M
(
gy1, gy2, φ(t0)

)
= M

(
F
(
y0, x0

)
, F

(
y1, x1

)
, φ(t0)

)

≥ M
(
gy0, gy1, t0

) ∗M(
gx0, gx1, t0

)
.

(3.7)
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Similarly, we can also get

M
(
gx2, gx3, φ

2(t0)
)
= M

(
F
(
x1, y1

)
, F

(
x2, y2

)
, φ2(t0)

)

≥ M
(
gx1, gx2, φ(t0)

) ∗M(
gy1, gy2, φ(t0)

)

≥ [
M

(
gx0, gx1, t0

)]2 ∗ [M(
gy0, gy1, t0

)]2
,

M
(
gy2, gy3, φ

2(t0)
)
= M

(
F
(
y1, x1

)
, F

(
y2, x2

)
, φ2(t0)

)

≥ [
M

(
gy0, gy1, t0

)]2 ∗ [M(
gx0, gx1, t0

)]2
.

(3.8)

Continuing in the same way we can get

M
(
gxn, gxn+1, φ

n(t0)
) ≥ [

M
(
gx0, gx1, t0

)]2n−1 ∗ [M(
gy0, gy1, t0

)]2n−1
,

M
(
gyn, gyn+1, φ

n(t0)
) ≥ [

M
(
gy0, gy1, t0

)]2n−1 ∗ [M(
gx0, gx1, t0

)]2n−1
.

(3.9)

So, from (3.5) and (3.6), for m > n ≥ n0, we have

M
(
gxn, gxm, t

)

≥ M

(

gxn, gxm,
∞∑

k=n0

φk(t0)

)

≥ M

(

gxn, gxm,
m−1∑

k=n

φk(t0)

)

≥ M
(
gxn, gxn+1, φ

n(t0)
) ∗M

(
gxn+1, gxn+2, φ

n+1(t0)
)
∗ · · · ∗M

(
gxm−1, gxm, φ

m−1(t0)
)

≥ [
M

(
gy0, gy1, t0

)]2n−1 ∗ [M(
gx0, gx1, t0

)]2n−1 ∗ [M(
gy0, gy1, t0

)]2n

∗ [M(
gx0, gx1, t0

)]2n ∗ · · · ∗ [M(
gy0, gy1, t0

)]2m−2 ∗ [M(
gx0, gx1, t0

)]2m−2

=
[
M

(
gy0, gy1, t0

)]2(m−n)(m+n−3) ∗ [M(
gx0, gx1, t0

)]2(m−n)(m+n−3)

≥ (1 − μ) ∗ (1 − μ) ∗ · · · ∗ (1 − μ)
︸ ︷︷ ︸

22(m−n)(m+n−3)

≥ 1 − λ,

(3.10)

which implies that

M
(
gxn, gxm, t

)
> 1 − λ, (3.11)

for all m,n ∈ � with m > n ≥ n0 and t > 0. So {g(xn)} is a Cauchy sequence.
Similarly, we can get that {g(yn)} is also a Cauchy sequence.
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Step 2. Prove that g and F have a coupled coincidence point.
Since X complete, there exist x, y ∈ X such that

lim
n→∞

F
(
xn, yn

)
= lim

n→∞
g(xn) = x, lim

n→∞
F
(
yn, xn

)
= lim

n→∞
g
(
yn

)
= y. (3.12)

Since F and g are compatible, we have by (3.12),

lim
n→∞

M
(
gF

(
xn, yn

)
, F

(
g(xn), g

(
yn

))
, t
)
= 1,

lim
n→∞

M
(
gF

(
yn, xn

)
, F

(
g
(
yn

)
, g(xn)

)
, t
)
= 1.

(3.13)

for all t > 0. Next we prove that g(x) = F(x, y) and g(y) = F(y, x).
For all t > 0, by condition (3.2), we have

M
(
gx, F

(
x, y

)
, φ(t)

)

≥ M
(
ggxn+1, F

(
x, y

)
, φ(k1t)

) ∗M(
gx, ggxn+1, φ(t) − φ(k1t)

)

= M
(
gF

(
xn, yn

)
, F

(
x, y

)
, φ(k1t)

) ∗M(
gx, ggxn+1, φ(t) − φ(k1t)

)

≥ M
(
gF

(
xn, yn

)
, F

(
gxn, gyn

)
, φ(k1t) − φ(k2t)

)

∗M(
F
(
gxn, gyn

)
, F

(
x, y

)
, φ(k2t)

) ∗M(
gx, ggxn+1, φ(t) − φ(k1t)

)

≥ M
(
gF

(
xn, yn

)
, F

(
gxn, gyn

)
, φ(k1t) − φ(k2t)

)

∗M(
ggxn, gx, k2t

) ∗M(
ggyn, gy, k2t

) ∗M(
gx, ggxn+1, φ(t) − φ(k1t)

)
,

(3.14)

for all 0 < k2 < k1 < 1. Let n → ∞, since g and F are compatible, with the continuity of g, we
get

M
(
gx, F

(
x, y

)
, φ(t)

) ≥ 1, (3.15)

which implies that gx = F(x, y). Similarly, we can get gy = F(y, x).

Step 3. Prove that gx = y and gy = x.
Since ∗ is a t-norm of H-type, for any λ > 0, there exists an μ > 0 such that

(1 − μ) ∗ (1 − μ) ∗ · · · ∗ (1 − μ)
︸ ︷︷ ︸

k

≥ 1 − λ,
(3.16)

for all k ∈ �.
Since M(x, y, ·) is continuous and limt→+∞ M(x, y, t) = 1 for all x, y ∈ X, there exists

t0 > 0 such that M(gx, y, t0) ≥ 1 − μ andM(gy, x, t0) ≥ 1 − μ.
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On the other hand, since φ ∈ Φ, by condition (φ-3)we have
∑∞

n=1 φ
n(t0) < ∞. Then for

any t > 0, there exists n0 ∈ � such that t >
∑∞

k=n0
φk(t0). Since

M
(
gx, gyn+1, φ(t0)

)
= M

(
F
(
x, y

)
, F

(
yn, xn

)
, φ(t0)

)

≥ M
(
gx, gyn, t0

) ∗M(
gy, gxn, t0

)
,

(3.17)

letting n → ∞, we get

M
(
gx, y, φ(t0)

) ≥ M
(
gx, y, t0

) ∗M(
gy, x, t0

)
. (3.18)

Similarly, we can get

M
(
gy, x, φ(t0)

) ≥ M
(
gx, y, t0

) ∗M(
gy, x, t0

)
. (3.19)

From (3.18) and (3.19) we have

M
(
gx, y, φ(t0)

) ∗M(
gy, x, φ(t0)

) ≥ [
M

(
gx, y, t0

)]2 ∗ [M(
gy, x, t0

)]2
. (3.20)

By this way, we can get for all n ∈ �,

M
(
gx, y, φn(t0)

) ∗M(
gy, x, φn(t0)

) ≥
[
M

(
gx, y, φn−1(t0)

)]2
∗
[
M

(
gy, x, φn−1(t0)

)]2

≥ [
M

(
gx, y, t0

)]2n ∗ [M(
gy, x, t0

)]2n
.

(3.21)

Then, we have

M
(
gx, y, t

) ∗M(
gy, x, t

) ≥ M

(

gx, y,
∞∑

k=n0

φk(t0)

)

∗M
(

gy, x,
∞∑

k=n0

φk(t0)

)

≥ M
(
gx, y, φn0(t0)

) ∗M(
gy, x, φn0(t0)

)

≥ [
M

(
gx, y, t0

)]2n0 ∗ [M(
gy, x, t0

)]2n0

≥ (1 − μ) ∗ (1 − μ) ∗ · · · ∗ (1 − μ)
︸ ︷︷ ︸

22n0

≥ 1 − λ.

(3.22)

So for any λ > 0 we have

M
(
gx, y, t

) ∗M(
gy, x, t

) ≥ 1 − λ, (3.23)

for all t > 0. We can get that gx = y and gy = x.
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Step 4. Prove that x = y.
Since ∗ is a t-norm of H-type, for any λ > 0, there exists an μ > 0 such that

(1 − μ) ∗ (1 − μ) ∗ · · · ∗ (1 − μ)
︸ ︷︷ ︸

k

≥ 1 − λ,
(3.24)

for all k ∈ �.
Since M(x, y, ·) is continuous and limt→+∞M(x, y, t) = 1, there exists t0 > 0 such that

M(x, y, t0) ≥ 1 − μ.
On the other hand, since φ ∈ Φ, by condition (φ-3)we have

∑∞
n=1 φ

n(t0) < ∞. Then for
any t > 0, there exists n0 ∈ � such that t >

∑∞
k=n0

φk(t0).
Since for t0 > 0,

M
(
gxn+1, gyn+1, φ(t0)

)
= M

(
F
(
xn, yn

)
, F

(
yn, xn

)
, φ(t0)

)

≥ M
(
gxn, gyn, t0

) ∗M(
gyn, gxn, t0

)
.

(3.25)

Letting n → ∞ yields

M
(
x, y, φ(t0)

) ≥ M
(
x, y, t0

) ∗M(
y, x, t0

)
. (3.26)

Thus we have

M
(
x, y, t

) ≥ M

(

x, y,
∞∑

k=n0

φk(t0)

)

≥ M
(
x, y, φn0(t0)

)

≥ [
M

(
x, y, t0

)]2n0 ∗ [M(
y, x, t0

)]2n0

≥ (1 − μ) ∗ (1 − μ) ∗ · · · ∗ (1 − μ)
︸ ︷︷ ︸

22n0

≥ 1 − λ,

(3.27)

which implies that x = y.
Thus we have proved that F and g have a unique common fixed point in X.
This completes the proof of the Theorem 1.

Taking g = I (the identity mapping) in Theorem 1, we get the following consequence.

Corollary 1. Let (X,M, ∗) be a complete FM-space, where ∗ is a continuous t-norm of H-type
satisfying (2.7). Let F : X ×X → X and there exists φ ∈ Φ such that

M
(
F
(
x, y

)
, F(u, v), φ(t)

) ≥ M(x, u, t) ∗M(
y, v, t

)
, (3.28)

for all x, y, u, v ∈ X, t > 0.
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Then there exist x ∈ X such that x = F(x, x), that is, F admits a unique fixed point in X.

Let φ(t) = kt, where 0 < k < 1, the following by Lemma 1, we get the following.

Corollary 2 (see [6]). Let a ∗ b ≥ ab for all a, b ∈ [0, 1] and (X,M, ∗) be a complete fuzzy metric
space such thatM has n-property. Let F : X ×X → X and g : X → X be two functions such that

M
(
F
(
x, y

)
, F(u, v), kt

) ≥ M
(
gx, gu, t

) ∗M(
gy, gv, t

)
, (3.29)

for all x, y, u, v ∈ X, where 0 < k < 1, F(X ×X) ⊂ g(X) and g is continuous and commutes with F.
Then there exists a unique x ∈ X such that x = g(x) = F(x, x).

Next we give an example to demonstrate Theorem 1.

Example 3. Let X = [−2, 2], a ∗ b = ab for all a, b ∈ [0, 1]. ψ is defined as (2.8). Let

M
(
x, y, t

)
=
[
ψ(t)

]|x−y|
, (3.30)

for all x, y ∈ [0, 1]. Then (X,M, ∗) is a complete FM-space.
Let φ(t) = t/2, g(x) = x and F : X ×X → X be defined as

F
(
x, y

)
=
x2

8
+
y2

8
− 2, ∀x, y ∈ X. (3.31)

Then F satisfies all the condition of Theorem 1, and there exists a point x = 2 − 2
√
3 which is

the unique common fixed point of g and F.

In fact, it is easy to see that F(X ×X) = [−2,−1],

M
(
F
(
x, y

)
, F(u, v), φ(t)

)
=
[
ψ(φ(t))

]|x2−u2+y2−v2 |/8
, (3.32)

For all t > 0 and x, y ∈ [−2, 2]. (3.28) is equivalent to

[
ψ

(
t

2

)]|x2−u2+y2−v2|/8
≥ [

ψ(t)
]|x−u| · [ψ(t)]|y−v|. (3.33)

Since ψ(t) ∈ (0, 1), we can get

[
ψ

(
t

2

)]|x2−u2+y2−v2 |/8
≥
[
ψ

(
t

2

)]|x−u|/2
·
[
ψ

(
t

2

)]|y−v|/2
. (3.34)

From (3.33), we only need to verify the following:

[
ψ

(
t

2

)]|x−u|/2
≥ [

ψ(t)
]|x−u|

, (3.35)
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that is,

ψ

(
t

2

)
≥ [

ψ(t)
]2
, ∀t > 0. (3.36)

We consider the following cases.

Case 1 (0 < t ≤ 4). Then (3.36) is equivalent to

α

√
t

2
≥
(
α
√
t
)2
, (3.37)

it is easy to verified.

Case 2 (t ≥ 8). Then (3.36) is equivalent to

1 − 1
ln t/2

≥
(
1 − 1

ln t

)2

, (3.38)

which is

2 ln t · ln t

2
≥ ln2t + ln

t

2
, (3.39)

since

ln2t + ln2 t

2
− 2 ln t · ln t

2
+ ln

t

2
− ln2 t

2
≤ 0, (3.40)

that is

ln22 + ln
t

2
− ln2 t

2
≤ 0, (3.41)

holds for all t ≥ 8. So (3.36) holds for t ≥ 8.

Case 3 (4 < t < 8). Then (3.36) is equivalent to

α

√
t

2
≥
(
1 − 1

ln t

)2

. (3.42)

Let t = ex, we only need to verify

α√
2
ex/2 −

(
1 − 1

x

)2

≥ 0, (3.43)

for all x that 2 ln 2 < x < 3 ln 2. We can verify it holds.
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Thus it is verified that the functions F, g, φ satisfy all the conditions of Theorem 1;
x = 2 − 2

√
3 is the common fixed point of F and g in X.
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[24] O. Hadžić and E. Pap, Fixed Point Theory in Probabilistic Metric Spaces, vol. 536 of Mathematics and its
Applications, Kluwer Academic, Dordrecht, The Netherlands, 2001.

[25] M. Grabiec, “Fixed points in fuzzy metric spaces,” Fuzzy Sets and Systems, vol. 27, no. 3, pp. 385–389,
1988.


	1. Introduction
	2. Preliminaries
	3. Main Results
	Acknowledgment
	References

