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We prove the generalized Hyers-Ulam stability of the Pexiderized Cauchy functional equation
f(x + y) = g(x) + h(y) in non-Archimedean spaces.

1. Introduction

The stability problem of functional equations was originated from a question of Ulam [1]
concerning the stability of group homomorphisms.

Let G1 be a group and let G2 be a metric group with the metric d(·, ·). Given ε > 0,
does there exist a δ > 0 such that, if a function h : G1 → G2 satisfies the inequality
d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2

with d(h(x),H(x)) < ε for all x ∈ G1?
In other words, we are looking for situations when the homomorphisms are stable,

that is, if a mapping is almost a homomorphism, then there exists a true homomorphism
near it. If we turn our attention to the case of functional equations, we can ask the following
question.

When the solutions of an equation differing slightly from a given one must be close to
the true solution of the given equation.

For Banach spaces, the Ulam problem was first solved by Hyers [2] in 1941, which
states that, if δ > 0 and f : X → Y is a mapping, where X,Y are Banach spaces, such that

∥
∥f

(

x + y
) − f(x) − f

(

y
)∥
∥
Y ≤ δ (1.1)
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for all x, y ∈ X, then there exists a unique additive mapping T : X → Y such that

∥
∥f(x) − T(x)

∥
∥
Y ≤ δ (1.2)

for all x ∈ X. Rassias [3] succeeded in extending the result of Hyers by weakening the
condition for the Cauchy difference to be unbounded. A number of mathematicians were
attracted to this result of Rassias and stimulated to investigate the stability problems of
functional equations. The stability phenomenon that was introduced and proved by Rassias
is called the generalized Hyers-Ulam stability. Forti [4] and Găvruţa [5] have generalized the
result of Rassias, which permitted the Cauchy difference to become arbitrary unbounded.
The stability problems of several functional equations have been extensively investigated by
a number of authors, and there are many interesting results concerning this problem. A large
list of references can be found, for example, in [3, 6–30].

Definition 1.1. A field K equipped with a function (valuation) | · | from K into [0,∞) is called
a non-Archimedean field if the function | · | : K → [0,∞) satisfies the following conditions:

(1) |r| = 0 if and only if r = 0;

(2) |rs| = |r||s|;
(3) |r + s| ≤ max{|r|, |s|} for all r, s ∈ K.

Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N.

Definition 1.2. Let X be a vector space over scaler field K with a non-Archimedean nontrivial
valuation | · |. A function ‖ · ‖ : X → R is a non-Archimedean norm (valuation) if it satisfies the
following conditions:

(1)′ ‖x‖ = 0 if and only if x = 0;

(2)′ ‖rx‖ = |r|‖x‖;
(3)′ the strong triangle inequality, namely,

∥
∥x + y

∥
∥ ≤ max

{‖x‖,∥∥y∥∥} (1.3)

for all x, y ∈ X and r ∈ K.

The pair (X, ‖ · ‖) is called a non-Archimedean space if ‖ · ‖ is non-Archimedean norm
on X.

It follows from (3)′ that

‖xn − xm‖ ≤ max
{∥
∥xj+1 − xj

∥
∥ : m ≤ j ≤ n − 1

}

(1.4)

for all xn, xm ∈ X, where m,n ∈ N with n > m. Therefore, a sequence {xn} is a Cauchy
sequence in non-Archimedean space (X, ‖·‖) if and only if the sequence {xn+1−xn} converges
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to zero in (X, ‖ · ‖). In a complete non-Archimedean space, every Cauchy sequence is
convergent.

In 1897, Hensel [31] discovered the p-adic number as a number theoretical analogue
of power series in complex analysis. Fix a prime number p. For any nonzero rational number
x, there exists a unique integer nx ∈ Z such that x = (a/b)pnx , where a and b are integers not
divisible by p. Then |x|p := p−nx defines a non-Archimedean norm on Q. The completion of Q
with respect to metric d(x, y) = |x − y|p, which is denoted by Qp, is called p-adic number field.
In fact, Qp is the set of all formal series x =

∑∞
k≥nx

akp
k, where |ak| ≤ p − 1 are integers. The

addition and multiplication between any two elements ofQp are defined naturally. The norm
|∑∞

k≥nx
akp

k|p = p−nx is a non-Archimedean norm on Qp, and it makes Qp a locally compact
field (see [32, 33]).

In [34], Arriola and Beyer showed that, if f : Qp → R is a continuous mapping for
which there exists a fixed ε such that |f(x + y) − f(x) − f(y)| ≤ ε for all x, y ∈ Qp, then there
exists a unique additive mapping T : Qp → R such that |f(x) − T(x)| ≤ ε for all x ∈ Qp. The
stability problem of the Cauchy functional equation and quadratic functional equation has
been investigated by Moslehian and Rassias [19] in non-Archimedean spaces.

According to Theorem 6 in [16], a mapping f : X → Y satisfying f(0) = 0 is a solution
of the Jensen functional equation

2f
(
x + y

2

)

= f(x) + f
(

y
)

(1.5)

for all x, y ∈ X if and only if it satisfies the additive Cauchy functional equation f(x + y) =
f(x) + f(y).

In this paper, by using the idea of Găvruţa [5], we prove the stability of the Jensen
functional equation and the Pexiderized Cauchy functional equation:

f
(

x + y
)

= g(x) + h
(

y
)

. (1.6)

2. Generalized Hyers-Ulam Stability of the Jensen Functional Equation

Throughout this section, let X be a normed space with norm ‖ · ‖X and Y a complete non-
Archimedean space with norm ‖ · ‖Y .

Theorem 2.1. Let ϕ : X2 → [0,∞) be a function such that

lim
n→∞

|2|nϕ
( x

2n
,
y

2n
)

= 0 (2.1)

for all x, y ∈ X and the limit

lim
n→∞

max
{

|2|jϕ
(
x

2j
, 0
)

: 0 ≤ j < n

}

(2.2)
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for all x ∈ X, which is denoted by ϕ̃(x), exist. Suppose that a mapping f : X → Y with f(0) = 0
satisfies the inequality

∥
∥
∥
∥
2f

(
x + y

2

)

− f(x) − f
(

y
)
∥
∥
∥
∥
Y

≤ ϕ
(

x, y
)

(2.3)

for all x, y ∈ X. Then the limit

T(x) := lim
n→∞

2nf
( x

2n
)

(2.4)

exists for all x ∈ X and T : X → Y is an additive mapping satisfying

∥
∥f(x) − T(x)

∥
∥
Y ≤ ϕ̃(x) (2.5)

for all x ∈ X. Moreover, if

lim
k→∞

lim
n→∞

max
{

|2|jϕ
(
x

2j
, 0
)

: k ≤ j < n + k

}

= 0 (2.6)

for all x ∈ X, then T is a unique additive mapping satisfying (2.5).

Proof. Letting y = 0 in (2.3), we get

∥
∥
∥2f

(x

2

)

− f(x)
∥
∥
∥
Y
≤ ϕ(x, 0) (2.7)

for all x ∈ X. If we replace x in (2.7) by x/2n and multiply both sides of (2.7) to |2|n, then we
have

∥
∥
∥
∥
2n+1f

(
x

2n+1

)

− 2nf
( x

2n
)
∥
∥
∥
∥
Y

≤ |2|nϕ
( x

2n
, 0
)

(2.8)

for all x ∈ X and all nonnegative integers n. It follows from (2.1) and (2.8) that the sequence
{2nf(x/2n)} is a Cauchy sequence in Y for all x ∈ X. Since Y is complete, the sequence
{2nf(x/2n)} converges for all x ∈ X. Hence one can define the mapping T : X → Y by (2.4).

By induction on n, one can conclude that

∥
∥
∥2nf

( x

2n
)

− f(x)
∥
∥
∥
Y
≤ max

{

|2|kϕ
(

x

2k
, 0
)

: 0 ≤ k < n

}

(2.9)

for all n ∈ N and x ∈ X. By passing the limit n → ∞ in (2.9) and using (2.2), we obtain (2.5).
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Now, we show that T is additive. It follows from (2.1), (2.3), and (2.4) that

∥
∥
∥
∥
2T

(
x + y

2

)

− T(x) − T
(

y
)
∥
∥
∥
∥
Y

= lim
n→∞

|2|n
∥
∥
∥
∥
2f

(
x + y

2n+1

)

− f
( x

2n
)

− f
( y

2n
)
∥
∥
∥
∥
Y

≤ lim
n→∞

|2|nϕ
( x

2n
,
y

2n
)

= 0

(2.10)

for all x, y ∈ X. Therefore, the mapping T : X → Y is additive.
To prove the uniqueness of T , let U : X → Y be another additive mapping satisfying

(2.5). Since

lim
k→∞

|2|kϕ̃
(

x

2k

)

= lim
k→∞

lim
n→∞

|2|k max
{

|2|jϕ
(

x

2k+j
, 0
)

: 0 ≤ j < n

}

= lim
k→∞

lim
n→∞

max
{

|2|jϕ
(
x

2j
, 0
)

: k ≤ j < k + n

} (2.11)

for all x ∈ X, it follows from (2.6) that

‖T(x) −U(x)‖Y = lim
k→∞

|2|k
∥
∥
∥
∥
f

(
x

2k

)

−U

(
x

2k

)∥
∥
∥
∥
Y

≤ lim
k→∞

|2|kϕ̃
(

x

2k

)

= 0 (2.12)

for all x ∈ X. So T = U. This completes the proof.

The following theorem is an alternative result of Theorem 2.1, and its proof is similar
to the proof of Theorem 2.1.

Theorem 2.2. Let ψ : X2 → [0,∞) be a function such that

lim
n→∞

1
|2|n ψ

(

2nx, 2ny
)

= 0 (2.13)

for all x, y ∈ X and the limit

lim
n→∞

max

{

1

|2|j
ψ
(

2jx, 0
)

: 0 < j ≤ n

}

(2.14)

for all x ∈ X, denoted by ψ̃(x), exist. Suppose that a mapping f : X → Y with f(0) = 0 satisfies the
inequality

∥
∥
∥
∥
2f

(
x + y

2

)

− f(x) − f
(

y
)
∥
∥
∥
∥
Y

≤ ψ
(

x, y
)

(2.15)
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for all x, y ∈ X. Then the limit

T(x) := lim
n→∞

1
2n

f(2nx) (2.16)

exists for all x ∈ X, and T : X → Y is an additive mapping satisfying

∥
∥f(x) − T(x)

∥
∥
Y ≤ ψ̃(x) (2.17)

for all x ∈ X. Moreover, if

lim
k→∞

lim
n→∞

max

{

1

|2|j
ψ
(

2jx, 0
)

: k < j ≤ n + k

}

= 0 (2.18)

for all x ∈ X, then T is a unique additive mapping satisfying (2.17).

3. Generalized Hyers-Ulam Stability of the Pexiderized Cauchy
Functional Equation

Throughout this section, let X be a normed space with norm ‖ · ‖X and Y a complete non-
Archimedean space with norm ‖ · ‖Y .

Theorem 3.1. Let Φ : X2 → [0,∞) be a function such that

lim
n→∞

|2|nΦ
( x

2n
,
y

2n
)

= 0 (3.1)

for all x, y ∈ X and the limits

Φ̃1(x) := lim
n→∞

max
0≤j<n

{

|2|jΦ
(

x

2j+1
,

x

2j+1

)

, |2|jΦ
(

x

2j+1
, 0
)

, |2|jΦ
(

0,
x

2j+1

)

, |2|jΦ(0, 0)
}

, (3.2)

Φ̃2(x) := lim
n→∞

max
0≤j<n

{

|2|jΦ
(

x

2j+1
,
−x
2j+1

)

, |2|jΦ
(

x

2j+1
, 0
)

, |2|jΦ
(
x

2j
,
−x
2j+1

)

, |2|jΦ(0, 0)
}

, (3.3)

Φ̃3(x) := lim
n→∞

max
0≤j<n

{

|2|jΦ
( −x
2j+1

,
x

2j+1

)

, |2|jΦ
( −x
2j+1

,
x

2j

)

, |2|jΦ
(

0,
x

2j+1

)

, |2|jΦ(0, 0)
}

(3.4)

exist for all x ∈ X. Suppose that mappings f, g, h : X → Y with f(0) = g(0) = h(0) = 0 satisfy the
inequality

∥
∥f

(

x + y
) − g(x) − h

(

y
)∥
∥
Y ≤ Φ

(

x, y
)

(3.5)

for all x, y ∈ X. Then the limits

T(x) := lim
n→∞

2nf
( x

2n
)

= lim
n→∞

2ng
( x

2n
)

= lim
n→∞

2nh
( x

2n
)

(3.6)
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exist for all x ∈ X and T : X → Y is an additive mapping satisfying

∥
∥f(x) − T(x)

∥
∥
Y ≤ Φ̃1(x), (3.7)

∥
∥g(x) − T(x)

∥
∥
Y ≤ Φ̃2(x), (3.8)

‖h(x) − T(x)‖Y ≤ Φ̃3(x) (3.9)

for all x ∈ X. Moreover, if

lim
k→∞

|2|kΦ̃1

(
x

2k

)

= lim
k→∞

|2|kΦ̃2

(
x

2k

)

= lim
k→∞

|2|kΦ̃3

(
x

2k

)

= 0 (3.10)

for all x ∈ X, then T is a unique additive mapping satisfying (3.7), (3.8), and (3.9).

Proof. It follows from (3.5) that

∥
∥
∥
∥
2f

(
x + y

2

)

− f(x) − f
(

y
)
∥
∥
∥
∥
Y

≤ max
{∥
∥
∥
∥
f

(
x + y

2

)

− g
(x

2

)

− h
(y

2

)
∥
∥
∥
∥
Y

,

∥
∥
∥
∥
f

(
x + y

2

)

− g
(y

2

)

− h
(x

2

)
∥
∥
∥
∥
Y

,

∥
∥
∥f(x) − g

(x

2

)

− h
(x

2

)∥
∥
∥
Y
,
∥
∥
∥f

(

y
) − g

(y

2

)

− h
(y

2

)∥
∥
∥
Y

}

≤ max
{

Φ
(x

2
,
y

2

)

,Φ
(y

2
,
x

2

)

,Φ
(x

2
,
x

2

)

,Φ
(y

2
,
y

2

)}

(3.11)

for all x, y ∈ X. Let

Ψf

(

x, y
)

:= max
{

Φ
(x

2
,
y

2

)

,Φ
(y

2
,
x

2

)

,Φ
(x

2
,
x

2

)

,Φ
(y

2
,
y

2

)}

(3.12)

for all x, y ∈ X. It follows from (3.1) and (3.2) that

lim
n→∞

|2|nΨf

( x

2n
,
y

2n
)

= 0,

Φ̃1(x) = lim
n→∞

max
{

|2|jΨf

(
x

2j
, 0
)

: 0 ≤ j < n

} (3.13)

for all x, y ∈ X. By Theorem 2.1, there exists an additive mapping T1 : X → Y satisfying (3.7)
and

T1(x) = lim
n→∞

2nf
( x

2n
)

(3.14)
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for all x ∈ X. From (3.5), we get

∥
∥
∥
∥
2g

(
x + y

2

)

− g(x) − g
(

y
)
∥
∥
∥
∥
Y

≤ max
{∥
∥
∥
∥
f
(y

2

)

− g

(
x + y

2

)

− h

(−x
2

)∥
∥
∥
∥
Y

,

∥
∥
∥
∥
f
(x

2

)

− g

(
x + y

2

)

− h

(−y
2

)∥
∥
∥
∥
Y

,

∥
∥
∥
∥
−f

(x

2

)

+ g(x) + h

(−x
2

)∥
∥
∥
∥
Y

,

∥
∥
∥
∥
−f

(y

2

)

+ g
(

y
)

+ h

(−y
2

)∥
∥
∥
∥
Y

}

≤ max
{

Φ
(
x + y

2
,−x

2

)

,Φ
(
x + y

2
,−y

2

)

,Φ
(

x,−x
2

)

,Φ
(

y,−y
2

)}

(3.15)

for all x, y ∈ X. Let

Ψg

(

x, y
)

:= max
{

Φ
(
x + y

2
,−x

2

)

,Φ
(
x + y

2
,−y

2

)

,Φ
(

x,−x
2

)

,Φ
(

y,−y
2

)}

(3.16)

for all x, y ∈ X. By (3.1) and (3.3), we have

lim
n→∞

|2|nΨg

( x

2n
,
y

2n
)

= 0,

Φ̃2(x) = lim
n→∞

max
{

|2|jΨg

(
x

2j
, 0
)

: 0 ≤ j < n

} (3.17)

for all x, y ∈ X. By Theorem 2.1, there exists an additive mapping T2 : X → Y satisfying (3.8)
and

T2(x) = lim
n→∞

2ng
( x

2n
)

(3.18)

for all x ∈ X. Similarly, (3.5) implies that

∥
∥
∥
∥
2h

(
x + y

2

)

− h(x) − h
(

y
)
∥
∥
∥
∥
Y

≤ max
{∥
∥
∥
∥
f
(y

2

)

− g

(−x
2

)

− h

(
x + y

2

)∥
∥
∥
∥
Y

,

∥
∥
∥
∥
f
(x

2

)

− g

(−y
2

)

− h

(
x + y

2

)∥
∥
∥
∥
Y

,

∥
∥
∥
∥
−f

(x

2

)

+ g

(−x
2

)

+ h(x)
∥
∥
∥
∥
Y

,
∥
∥
∥−f

(y

2

)

+ g
(

−y
2

)

+ h
(

y
)
∥
∥
∥
Y

}

≤ max
{

Φ
(

−x
2
,
x + y

2

)

,Φ
(

−y
2
,
x + y

2

)

,Φ
(

−x
2
, x

)

,Φ
(

−y
2
, y

)}

(3.19)

for all x, y ∈ X. Let

Ψh

(

x, y
)

:= max
{

Φ
(

−x
2
,
x + y

2

)

,Φ
(

−y
2
,
x + y

2

)

,Φ
(

−x
2
, x

)

,Φ
(

−y
2
, y

)}

(3.20)
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for all x, y ∈ X. By (3.1) and (3.4), we have

lim
n→∞

|2|nΨh

( x

2n
,
y

2n
)

= 0,

Φ̃3(x) = lim
n→∞

max
{

|2|jΨh

(
x

2j
, 0
)

: 0 ≤ j < n

} (3.21)

for all x, y ∈ X. By Theorem 2.1, there exists an additive mapping T3 : X → Y satisfying (3.9)
and

T3(x) = lim
n→∞

2nh
( x

2n
)

(3.22)

for all x ∈ X. The uniqueness of T1, T2, and T3 follows from (3.10).
Now, we show that T1 = T2 = T3. Replacing x and y by 2nx and 0 in (3.5), respectively,

and dividing both sides of (3.5) by |2|n, we get

∥
∥
∥2nf

( x

2n
)

− 2ng
( x

2n
)∥
∥
∥
Y
≤ |2|nΦ

( x

2n
, 0
)

(3.23)

for all x ∈ X. By passing the limit n → ∞ in (3.23), we conclude that

T1(x) = T2(x) (3.24)

for all x ∈ X. Similarly, we get T1(x) = T3(x) for all x ∈ X. Therefore, (3.6) follows from (3.14),
(3.18), and (3.22). This completes the proof.

The next theorem is an alternative result of Theorem 3.1.

Theorem 3.2. Let Ψ : X2 → [0,∞) be a function such that

lim
n→∞

1
|2|nΨ

(

2nx, 2ny
)

= 0 (3.25)

for all x, y ∈ X and the limits

Ψ̃1(x) := lim
n→∞

max
0<j≤n

{

1

|2|j
Ψ
(

2j−1x, 2j−1x
)

,
1

|2|j
Ψ
(

2j−1x, 0
)

,
1

|2|j
Ψ
(

0, 2j−1x
)
}

,

Ψ̃2(x) := lim
n→∞

max
0<j≤n

{

1

|2|j
Ψ
(

2j−1x,−2j−1x
)

,
1

|2|j
Ψ
(

2j−1x, 0
)

,
1

|2|j
Ψ
(

2jx,−2j−1x
)
}

,

Ψ̃3(x) := lim
n→∞

max
0<j≤n

{

1

|2|j
Ψ
(

−2j−1x, 2j−1x
)

,
1

|2|j
Ψ
(

−2j−1x, 2jx
)

,
1

|2|j
Ψ
(

0, 2j−1x
)
}

(3.26)
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exist for all x ∈ X. Suppose that mappings f, g, h : X → Y with f(0) = g(0) = h(0) = 0 satisfy the
inequality

∥
∥f

(

x + y
) − g(x) − h

(

y
)∥
∥
Y ≤ Ψ

(

x, y
)

(3.27)

for all x, y ∈ X. Then the limits

T(x) := lim
n→∞

1
2n

f(2nx) = lim
n→∞

1
2n

g(2nx) = lim
n→∞

1
2n

h(2nx) (3.28)

exist for all x ∈ X and T : X → Y is an additive mapping satisfying

∥
∥f(x) − T(x)

∥
∥
Y ≤ Ψ̃1(x),

∥
∥g(x) − T(x)

∥
∥
Y ≤ Ψ̃2(x),

‖h(x) − T(x)‖Y ≤ Ψ̃3(x)

(3.29)

for all x ∈ X. Moreover, if

lim
k→∞

1

|2|k
Ψ̃1

(

2kx
)

= lim
k→∞

1

|2|k
Ψ̃2

(

2kx
)

= lim
k→∞

1

|2|k
Ψ̃3

(

2kx
)

= 0 (3.30)

for all x ∈ X, then T is a unique additive mapping satisfying the above inequalities.
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