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Fixed point results with the concept of generalized weakly contractive conditions in complete
ordered metric spaces are derived. These results generalize the existing fixed point results in the
literature.

1. Introduction and Preliminaries

There are a lot of generalizations of the Banach contraction mapping principle in the
literature. One of the most interesting of them is the result of Khan et al. [1]. They addressed a
new category of fixed point problems for a single self-map with the help of a control function
which they called an altering distance function.

A function ϕ : [0,∞) → [0,∞) is called an altering distance function if ϕ is continuous,
nondecreasing, and ϕ(0) = 0 holds.

Khan et al. [1] given the following result.

Theorem 1.1. Let (X, d) be a complete metric space, let ϕ be an altering distance function, and let
T : X → X be a self-mapping which satisfies the following inequality:

ϕ
(
d
(
Tx,Ty

))
≤ cϕ

(
d
(
x, y

))
, (1.1)

for all x, y ∈ X and for some 0 < c < 1. Then T has a unique fixed point.
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In fact, Khan et al. [1] proved a more general theorem of which the above result is
a corollary. Another generalization of the contraction principle was suggested by Alber and
Guerre-Delabriere [2] in Hilbert Spaces by introducing the concept of weakly contractive
mappings.

A self-mapping T on a metric spaceX is called weakly contractive if for each x, y ∈ X,

d
(
Tx,Ty

)
≤ d

(
x, y

)
− φ

(
d
(
x, y

))
, (1.2)

where φ : [0,∞) → [0,∞) is positive on (0,∞) and φ(0) = 0.
Rhoades [3] showed that most results of [2] are still valid for any Banach space.

Also, Rhoades [3] proved the following very interesting fixed point theorem which contains
contractions as special case φ(t) = (1 − k)t.

Theorem 1.2. Let (X, d) be a complete metric space. IfT : X → X is a weakly contractive mapping,
and in addition, φ is continuous and nondecreasing function, then T has a unique fixed point.

In fact, Alber and Guerre-Delabriere [2] assumed an additional condition on φ which
is limt→∞φ(t) = ∞. But Rhoades [3] obtained the result noted in Theorem 1.2 without using
this particular assumption. Also, the weak contractions are closely related to maps of Boyd
and Wong [4] and Reich type [5]. Namely, if φ is a lower semicontinuous function from the
right, then ψ(t) = t − φ(t) is an upper semicontinuous function from the right, and moreover,
(1.2) turns into d(Tx,Ty) ≤ ψ(d(x, y)). Therefore, the weak contraction is of Boyd andWong
type. And if we define β(t) = 1 − φ(t)/t for t > 0 and β(0) = 0, then (1.2) is replaced by
d(Tx,Ty) ≤ β(d(x, y))d(x, y). Therefore, the weak contraction becomes a Reich-type one.

Recently, the following generalized result was given by Dutta and Choudhury [6]
combining Theorem 1.1 and Theorem 1.2.

Theorem 1.3. Let (X, d) be a complete metric space, and letT : X → X be a self-mapping satisfying
the inequality

ϕ
(
d
(
Tx,Ty

))
≤ ϕ

(
d
(
x, y

))
− φ

(
d
(
x, y

))
, (1.3)

for all x, y ∈ X, where ϕ, φ : [0,∞) → [0,∞) are both continuous and nondecreasing functions
with ϕ(t) = 0 = φ(t) if and only if t = 0. Then, T has a unique fixed point.

Also, Zhang and Song [7] given the following generalized version of Theorem 1.2.

Theorem 1.4. Let (X, d) be a complete metric space, and let T, S : X → X be two mappings such
that for each x, y ∈ X,

d
(
Tx,Sy

)
≤ Φ

(
x, y

)
− φ

(
Φ
(
x, y

))
, (1.4)

where φ : [0,∞) → [0,∞) is a lower semicontinuous function with φ(t) > 0 for t > 0 and φ(0) = 0,

Φ
(
x, y

)
= max

{
d
(
x, y

)
, d(x,Tx), d

(
y,Sy

)
,
1
2
[
d
(
y,Tx

)
+ d

(
x,Sy

)]
}
. (1.5)

Then, there exists a unique point z ∈ X such that z = Tz = Sz.
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Very recently, Abbas and Doric [8] and Abbas and Ali Khan [9] have obtained
common fixed points of four and twomappings, respectively, which satisfy generalized weak
contractive condition.

In recent years, many results appeared related to fixed point theorem in complete
metric spaces endowed with a partial ordering � in the literature [10–25]. Most of them are a
hybrid of two fundamental principle: Banach contraction theorem and the weakly contractive
condition. Indeed, they deal with a monotone (either order-preserving or order-reversing)
mapping satisfying, with some restriction, a classical contractive condition, and such that for
some x0 ∈ X, either x0 � Tx0 or Tx0 � x0, where T is a self-map on metric space. The first
result in this direction was given by Ran and Reurings [22, Theorem 2.1] who presented its
applications to matrix equation. Subsequently, Nieto and Rodŕiguez-López [18] extended the
result of Ran and Reurings [22] for nondecreasing mappings and applied to obtain a unique
solution for a first-order ordinary differential equation with periodic boundary conditions.

Further, Harjani and Sadarangani [26] proved the ordered version of Theorem 1.2,
Amini-Harandi and Emami [12] proved the ordered version of Rich type fixed point theorem,
and Harjani and Sadarangani [27] proved ordered version of Theorem 1.3.

The aim of this paper is to give a generalized ordered version of Theorem 1.4. We will
do this using the concept of weakly increasing mapping mentioned by Altun and Simsek [11]
(also see [28, 29]).

2. Main Results

Wewill begin with a single map. The following theorem is a generalized version of Theorems
2.1 and 2.2 of Harjani and Sadarangani [27].

Theorem 2.1. Let (X,�) be a partially ordered set, and suppose that there exists a metric d inX such
that (X, d) is a complete metric space. Let T : X → X be a nondecreasing mapping such that

ϕ
(
d
(
Tx,Ty

))
≤ ϕ

(
Θ
(
x, y

))
− φ

(
Θ
(
x, y

))
for y � x, (2.1)

where

Θ
(
x, y

)
= ad

(
x, y

)
+ bd(x,Tx) + cd

(
y,Ty

)
+ e

[
d
(
y,Tx

)
+ d

(
x,Ty

)]
, (2.2)

a > 0, b, c, e ≥ 0, a + b + c + 2e ≤ 1, ϕ, φ : [0,∞) → [0,∞), ϕ is continuous, nondecreasing, φ
is lower semicontinuous functions, and ϕ(t) = 0 = φ(t) if and only if t = 0. Also, suppose that there
exists x0 ∈ X with x0 � Tx0. If

T is continuous, (2.3)

or

{xn} ⊂ X is a nondecreasing sequence with xn −→ z in X, then xn � z ∀n (2.4)

holds. Then, T has a fixed point.
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Proof. If Tx0 = x0, then the proof is completed. Suppose that Tx0 /=x0. Now, since x0 � Tx0,
and T is nondecreasing, we have

x0 � Tx0 � T2x0 � · · · � Tnx0 � Tn+1x0 · · · . (2.5)

Put xn = Tnx0, and so xn+1 = Txn. If there exists n0 ∈ {1, 2, . . .} such that Θ(xn0 , xn0−1) = 0,
then it is clear that xn0−1 = xn0 = Txn0−1, and so we are finished. Now, we can suppose that

Θ(xn, xn−1) > 0, (2.6)

for all n ≥ 1.
First, we will prove that limn→∞d(xn+1, xn) = 0.
From (2.2), we have for n ≥ 1

Θ(xn, xn−1) = ad(xn, xn−1) + bd(xn,Txn) + cd(xn−1,Txn−1)

+ e[d(xn−1,Txn) + d(xn,Txn−1)]

= (a + c)d(xn, xn−1) + bd(xn, xn+1) + ed(xn−1, xn+1)

≤ (a + c + e)d(xn, xn−1) + (b + e)d(xn, xn+1).

(2.7)

Now, we claim that

d(xn+1, xn) ≤ d(xn, xn−1), (2.8)

for all n ≥ 1. Suppose that this is not true; that is, there exists n0 ≥ 1 such that d(xn0+1, xn0) >
d(xn0 , xn0−1). Now, since xn0 � xn0+1, we can use the (2.1) for these elements, then we have

ϕ(d(xn0+1, xn0)) = ϕ(d(Txn0 ,Txn0−1))

≤ ϕ(Θ(xn0 , xn0−1)) − φ(Θ(xn0 , xn0−1))

≤ ϕ((a + c + e)d(xn0 , xn0−1) + (b + e)d(xn0 , xn0+1))

− φ(Θ(xn0 , xn0−1))

≤ ϕ((a + b + c + 2e)d(xn0 , xn0+1)) − φ(Θ(xn0 , xn0−1))

≤ ϕ(d(xn0 , xn0+1)) − φ(Θ(xn0 , xn0−1)).

(2.9)

This implies φ(Θ(xn0 , xn0−1)) = 0, by the property of φ, we have Θ(xn0 , xn0−1) = 0, which this
contradict to (2.6). Therefore, (2.8) is true, and so the sequence {d(xn+1, xn)} is nonincreasing
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and bounded below. Thus there exists ρ ≥ 0 such that limn→∞d(xn+1, xn) = ρ. Now suppose
that ρ > 0. Therefore from (2.2)

lim
n→∞

ad(xn, xn−1) ≤ lim sup
n→∞

Θ(xn, xn−1)

= lim sup
n→∞

[(a + c)d(xn, xn−1) + bd(xn, xn+1) + ed(xn−1, xn+1)]

≤ lim sup
n→∞

[(a + c + e)d(xn, xn−1) + (b + e)d(xn, xn+1)].

(2.10)

This implies

0 < aρ ≤ lim sup
n→∞

Θ(xn, xn−1) ≤ (a + b + c + 2e)ρ ≤ ρ (2.11)

and so there exist ρ1 > 0 and a subsequence {xn(k)} of {xn} such that limk→∞Θ(xn(k), xn(k)−1) =
ρ1 ≤ ρ.

By the lower semicontinuity of φ we have

φ
(
ρ1
)
≤ lim inf

k→∞
φ
(
Θ
(
xn(k), xn(k)+1

))
. (2.12)

From (2.1), we have

ϕ
(
d
(
xn(k)+1, xn(k)

))
= ϕ

(
d
(
Txn(k),Txn(k)−1

))

≤ ϕ
(
Θ
(
xn(k), xn(k)−1

))
− φ

(
Θ
(
xn(k), xn(k)−1

))
,

(2.13)

and taking upper limit as k → ∞, we have

ϕ
(
ρ
)
≤ ϕ

(
ρ1
)
− lim inf

k→∞
φ
(
Θ
(
xn(k), xn(k)+1

))

≤ ϕ
(
ρ1
)
− φ

(
ρ1
)

≤ ϕ
(
ρ
)
− φ

(
ρ1
)
,

(2.14)

that is, φ(ρ1) = 0. Thus, by the property of φ, we have ρ1 = 0, which is a contradiction.
Therefore, we have ρ = 0.

Next, we show that {xn} is Cauchy.
Suppose that this is not true. Then, there is an ε > 0 such that for an integer k, there

exist integers m(k) > n(k) > k such that

d
(
xn(k), xm(k)

)
> ε. (2.15)

For every integer k, letm(k) be the least positive integer exceeding n(k) satisfying (2.15) and
such that

d
(
xn(k), xm(k)−1

)
< ε. (2.16)
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Now,

ε < d
(
xn(k), xm(k)

)

≤ d
(
xn(k), xm(k)−1

)
+ d

(
xm(k)−1, xm(k)

)
.

(2.17)

Then, by (2.15) and (2.16), it follows that

lim
k→∞

d
(
xn(k), xm(k)

)
= ε. (2.18)

Also, by the triangle inequality, we have

∣
∣d
(
xn(k), xm(k)−1

)
− d

(
xn(k), xm(k)

)∣∣ < d
(
xm(k)−1, xm(k)

)
. (2.19)

By using (2.18), we get

lim
k→∞

d
(
xn(k), xm(k)−1

)
= ε. (2.20)

Now, by (2.2), we get

ad
(
xn(k), xm(k)−1

)
≤ Θ

(
xn(k), xm(k)−1

)

= ad
(
xn(k), xm(k)−1

)
+ bd

(
xn(k),Txn(k)

)
+ cd

(
xm(k)−1,Txm(k)−1

)
,

e
[
d
(
xm(k)−1,Txn(k)

)
+ d

(
xn(k),Txm(k)−1

)]

= ad
(
xn(k), xm(k)−1

)
+ bd

(
xn(k), xn(k)+1

)
+ cd

(
xm(k)−1, xm(k)

)
,

e
[
d
(
xm(k)−1, xn(k)+1

)
+ d

(
xn(k), xm(k)

)]

≤ ad
(
xn(k), xm(k)−1

)
+ bd

(
xn(k), xn(k)+1

)
+ cd

(
xm(k)−1, xm(k)

)
,

e
[
d
(
xm(k)−1, xn(k)

)
+ d

(
xn(k), xn(k)+1

)
+ d

(
xn(k), xm(k)

)]
,

(2.21)

and taking upper limit as k → ∞ and using (2.18) and (2.20), we have

0 < aε ≤ lim sup
k→∞

Θ
(
xn(k), xm(k)−1

)
≤ (a + 2e)ε ≤ ε. (2.22)

This implies that there exist ε1 > 0 and a subsequence {xn(k(p))} of {xn(k)} such that

lim
p→∞

Θ
(
xn(k(p)), xm(k(p))−1

)
= ε1 ≤ ε. (2.23)

By the lower semicontinuity of φ, we have

φ(ε) ≤ lim inf
k→∞

φ
(
Θ
(
xn(k), xm(k)−1

))
. (2.24)
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Now, by (2.1), we get

ϕ(ε) = lim sup
p→∞

ϕ
(
d
(
xn(k(p)), xm(k(p))

))

≤ lim sup
p→∞

ϕ
(
d
(
xn(k(p)), xn(k(p))+1

)
+ d

(
Txn(k(p)),Txm(k(p))−1

))

= lim sup
p→∞

ϕ
(
d
(
Txn(k(p)),Txm(k(p))−1

))

≤ lim sup
p→∞

[
ϕ
(
Θ
(
xn(k(p)), xm(k(p))−1

))
− φ

(
Θ
(
xn(k(p)), xm(k(p))−1

))]

= ϕ(ε1) − lim inf
p→∞

φ
(
Θ
(
xn(k(p)), xm(k(p))−1

))

≤ ϕ(ε1) − φ(ε1)

≤ ϕ(ε) − φ(ε1),

(2.25)

which is a contradiction. Thus, {xn} is a Cauchy sequence. From the completeness ofX, there
exists z ∈ X such that xn → z as n → ∞. If T is continuous, then it is clear that Tz = z. If
(2.4) holds, then we have xn � z for all n. Therefore, for all n, we can use (2.1) for xn and z.
Since

Θ(z, xn) = ad(z, xn) + bd(z,Tz) + cd(xn,Txn) + e[d(xn,Tz) + d(z,Txn)]

= ad(z, xn) + bd(z,Tz) + cd(xn, xn+1) + e[d(xn,Tz) + d(z, xn+1)],
(2.26)

and so limn→∞Θ(z, xn) = (b + e)d(z,Tz), we have

ϕ(d(Tz, z)) = lim sup
n→∞

ϕ(d(Tz, xn+1))

= lim sup
n→∞

ϕ(d(Tz,Txn))

≤ lim sup
n→∞

[
ϕ(Θ(z, xn)) − φ(Θ(z, xn))

]

≤ ϕ((b + e)d(Tz, z)) − φ((b + e)d(Tz, z))

≤ ϕ(d(Tz, z)) − φ((b + e)d(Tz, z)).

(2.27)

By the property of φ, we have Tz = z. Thus, the proof is complete.

The following corollary is a generalized version of Theorems 1.2 and 1.3 of Harjani
and Sadarangani [26].

Corollary 2.2. Let (X,�) be a partially ordered set, and suppose that there exists a metric d in X
such that (X, d) is a complete metric space. Let T : X → X be a nondecreasing mapping such that

d
(
Tx,Ty

)
≤ Θ

(
x, y

)
− φ

(
Θ
(
x, y

))
for y � x, (2.28)
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where

Θ
(
x, y

)
= ad

(
x, y

)
+ bd(x,Tx) + cd

(
y,Ty

)
+ e

[
d
(
y,Tx

)
+ d

(
x,Ty

)]
, (2.29)

a > 0, b, c, e ≥ 0, a + b + c + 2e ≤ 1, φ : [0,∞) → [0,∞) is a lower semicontinuous functions, and
φ(t) = 0 if and only if t = 0. Also, suppose that there exists x0 ∈ X with x0 � Tx0. If

T is continuous, (2.30)

or

{xn} ⊂ X is a nondecreasing sequence with xn −→ z in X, then xn � z ∀n (2.31)

holds. Then, T has a fixed point.

Remark 2.3. In Theorem 1.1 [22], it is proved that if

every pair of elements has a lower bound and upper bound, (2.32)

then for every x ∈ X,

lim
n→∞

Tnx = y, (2.33)

where y is the fixed point of T such that

y = lim
n→∞

Tnx0, (2.34)

and hence, T has a unique fixed point. If condition (2.32) fails, it is possible to find examples
of functions T with more than one fixed point. There exist some examples to illustrate this
fact in [18].

Example 2.4. Let X = R, and consider a relation on X as follows:

x � y ⇐⇒
{(

x = y
)
or

(
x, y ∈ [0, 1] with x ≤ y

)
. (2.35)

It is easy to see that � is a partial order on X. Let d be Euclidean metric on X. Now, define a
self map ofX as follows:

Tx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2x − 3
2
, x > 1,

x

4
, 0 ≤ x ≤ 1,

0, x < 0.

(2.36)
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Now, we claim that the condition (2.1) of Theorem 2.1 is satisfied with ϕ(t) = t, φ(t) = t/2.
Indeed, if x, y /∈ [0, 1], then x � y ⇔ x = y. Therefore, since d(Tx,Ty) = 0, then the condition
(2.1) is satisfied. Again, if x ∈ [0, 1] and y /∈ [0, 1], then x and y are not comparative. Now, if
x, y ∈ [0, 1], then x � y ⇔ x ≤ y and

d
(
Tx,Ty

)
= d

(x
4
,
y

4

)

=
1
4
d
(
x, y

)

=
1
2
Θ
(
x, y

)
,

(
a =

1
2
, b = c = e = 0

)

= Θ
(
x, y

)
− 1
2
Θ
(
x, y

)

= Θ
(
x, y

)
− φ

(
Θ
(
x, y

))
.

(2.37)

Also, it is easy to see that the other conditions of Theorem 2.1 are satisfied, and so T has a
fixed point in X. Also, note that the weak contractive condition of Theorem 1.3 of this paper
and Corollary 2.2 of [7] is not satisfied.

Now, we will give a common fixed point theorem for two maps. For this, we need the
following definition, which is given in [28].

Definition 2.5. Let (X,�) be a partially ordered set. Two mappings S,T : X → X are said to
be weakly increasing if Sx � TSx and Tx � STx for all x ∈ X.

Note that two weakly increasing mappings need not be nondecreasing. There exist
some examples to illustrate this fact in [11].

Theorem 2.6. Let (X,�) be a partially ordered set, and suppose that there exists a metric d inX such
that (X, d) is a complete metric space. Let S,T : X → X are two weakly increasing mappings such
that

ϕ
(
d
(
Tx,Sy

))
≤ ϕ

(
Φ
(
x, y

))
− φ

(
Φ
(
x, y

))
, (2.38)

for all comparable x, y ∈ X, where

Φ
(
x, y

)
= ad

(
x, y

)
+ bd(x,Tx) + cd

(
y,Sy

)
+ e

[
d
(
y,Tx

)
+ d

(
x,Sy

)]
, (2.39)

a > 0, b, c, e ≥ 0, a + b + c + 2e ≤ 1,ϕ, φ : [0,∞) → [0,∞), ϕ is continuous, nondecreasing, φ is
lower semicontinuous functions, and ϕ(t) = 0 = φ(t) if and only if t = 0. If

S is continuous, (2.40)
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or

T is continuous, (2.41)

or

{xn} ⊂ X is a nondecreasing sequence with xn −→ z in X, then xn � z ∀n (2.42)

holds. Then, S and T have a common fixed point.

Remark 2.7. Note that in this theorem, we remove the condition “there exists an x0 ∈ X with
x0 � Tx0” of Theorem 2.1. Again, we can consider the result of Remark 2.3 for this theorem.

Proof of Theorem 2.6. First of all we show that if S or T has a fixed point, then it is a common
fixed point of S and T. Indeed, let z be a fixed point of S. Now, assume d(z,Tz) > 0. If we
use (2.38) for x = y = z, we have

ϕ(d(Tz, z)) = ϕ(d(Tz,Sz))

≤ ϕ(Φ(z, z)) − φ(Φ(z, z))

≤ ϕ(d(Tz, z)) − φ((b + e)d(Tz, z)),

(2.43)

which is a contradiction. Thus, d(z,Tz) = 0, and so z is a common fixed point of S and T.
Similarly, if z is a fixed point of T, then it is also fixed point of S. Now, let x0 be an arbitrary
point ofX. If x0 = Sx0, the proof is finished, so assume that x0 /=Sx0.We can define a sequence
{xn} inX as follows:

x2n+1 = Sx2n, x2n+2 = Tx2n+1 for n ∈ {0, 1, . . .}. (2.44)

Without lost of generality, we can suppose that the successive term of {xn} are different.
Otherwise, we are again finished. Note that since S and T are weakly increasing, we have

x1 = Sx0 � TSx0 = Tx1 = x2,

x2 = Tx1 � STx1 = Sx2 = x3,
(2.45)

and continuing this process, we have

x1 � x2 � · · · � xn � xn+1 � · · · . (2.46)

Now, since x2n−1 and x2n are comparable, then we can use (2.38) for these points, then we
have

ϕ(d(Tx2n−1,Sx2n)) ≤ ϕ(Φ(x2n−1, x2n)) − φ(Φ(x2n−1, x2n)), (2.47)
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where

Φ(x2n−1, x2n) = ad(x2n−1, x2n) + bd(x2n−1,Tx2n−1) + cd(x2n,Sx2n)

+ e[d(x2n,Tx2n−1) + d(x2n−1,Sx2n)]

≤ (a + b + e)d(x2n−1, x2n) + (c + e)d(x2n, x2n+1).

(2.48)

Now, if d(x2n+1, x2n) > d(x2n, x2n−1) for some n ∈ {1, 2, . . .}, then

Φ(x2n−1, x2n) ≤ (a + b + c + 2e)d(x2n+1, x2n) ≤ d(x2n+1, x2n), (2.49)

and so, from (2.47) we have

ϕ(d(x2n, x2n+1)) ≤ ϕ(d(x2n+1, x2n)) − φ(Φ(x2n−1, x2n)), (2.50)

which is a contradiction. So, we have d(x2n+1, x2n) ≤ d(x2n, x2n−1) for all n ∈ {1, 2, . . .}.
Similarly, we have d(x2n+1, x2n+2) ≤ d(x2n, x2n+1) for all n ∈ {0, 1, . . .}. Therefore, we have
for all n ∈ {1, 2, . . .}

d(xn+1, xn) ≤ d(xn, xn−1), (2.51)

and so the sequence {d(xn+1, xn)} is nonincreasing and bounded below. Thus, there
exists ρ ≥ 0 such that limn→∞d(xn+1, xn) = ρ. This implies that limn→∞d(x2n, x2n+1) =
limn→∞d(x2n−1, x2n) = ρ. Suppose that ρ > 0. Therefore, from (2.39),

lim sup
n→∞

ad(x2n−1, x2n) ≤ lim sup
n→∞

Φ(x2n−1, x2n)

≤ lim sup
n→∞

{(a + b + e)d(x2n−1, x2n) + (c + e)d(x2n, x2n+1)}.
(2.52)

This implies 0 < aρ ≤ lim supn→∞Φ(x2n−1, x2n) ≤ (a + b + c + 2e)ρ ≤ ρ, and so
there exist ρ1 > 0 and a subsequence {Φ(x2n(k)−1, x2n(k))} of {Φ(x2n−1, x2n)} such that
limk→∞Φ(x2n(k)−1, x2n(k)) = ρ1 ≤ ρ.

By the lower semicontinuity of φ, we have

φ
(
ρ1
)
≤ lim inf

k→∞
φ
(
Φ
(
x2n(k)−1, x2n(k)

))
. (2.53)

Now, from (2.38), we have

ϕ
(
d
(
x2n(k), x2n(k)+1

))
= ϕ

(
d
(
Tx2n(k)−1,Sx2n(k)

))

≤ ϕ
(
Φ
(
x2n(k)−1, x2n(k)

))
− φ

(
Φ
(
x2n(k)−1, x2n(k)

))
,

(2.54)
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and taking upper limit as k → ∞, we have

ϕ
(
ρ
)
≤ ϕ

(
ρ1
)
− lim inf

k→∞
φ
(
Φ
(
x2n(k)−1, x2n(k)

))

≤ ϕ
(
ρ1
)
− φ

(
ρ1
)

≤ ϕ
(
ρ
)
− φ

(
ρ1
)
,

(2.55)

which is a contradiction. Therefore, we have

ρ = 0 = lim
n→∞

d(xn+1, xn). (2.56)

Next, we show that {xn} is a Cauchy sequence. For this, it is sufficient to show that
{x2n} is a Cauchy sequence. Suppose it is not true. Then, we can find an δ > 0 such that for
each even integer 2k, there exist even integers 2m(k) > 2n(k) > 2k such that

d
(
x2n(k), x2m(k)

)
≥ δ for k ∈ {1, 2, . . .}. (2.57)

We may also assume that

d
(
x2m(k)−2, x2n(k)

)
< δ, (2.58)

by choosing 2m(k) to be smallest number exceeding 2n(k) for which (2.57) holds. Now,
(2.56), (2.57), and (2.58) imply

0 < δ ≤ d
(
x2n(k), x2m(k)

)

≤ d
(
x2n(k), x2m(k)−2

)
+ d

(
x2m(k)−2, x2m(k)−1

)
+ d

(
x2m(k)−1, x2m(k)

)

≤ δ + d
(
x2m(k)−2, x2m(k)−1

)
+ d

(
x2m(k)−1, x2m(k)

)
,

(2.59)

and so

lim
k→∞

d
(
x2n(k), x2m(k)

)
= δ. (2.60)

Also, by the triangular inequality,

∣∣d
(
x2n(k), x2m(k)−1

)
− d

(
x2n(k), x2m(k)

)∣∣ ≤ d
(
x2m(k)−1, x2m(k)

)
,

∣∣d
(
x2n(k)+1, x2m(k)−1

)
− d

(
x2n(k), x2m(k)

)∣∣ ≤ d
(
x2m(k)−1, x2m(k)

)
+ d

(
x2n(k), x2n(k)+1

)
.

(2.61)

Therefore, we get

lim
k→∞

d
(
x2n(k), x2m(k)−1

)
= δ,

lim
k→∞

d
(
x2n(k)+1, x2m(k)−1

)
= δ.

(2.62)
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On the other hand, since x2n(k) and x2m(k)−1 are comparable, we can use the condition (2.38)
for these points. Since

lim
k→∞

Φ
(
x2m(k)−1, x2n(k)

)
= lim

k→∞

{
ad

(
x2m(k)−1, x2n(k)

)
+ bd

(
x2m(k)−1,Tx2m(k)−1

)

+ cd
(
x2n(k),Sx2n(k)

)

+e
[
d
(
x2n(k),Tx2m(k)−1

)
+ d

(
x2m(k)−1,Sx2n(k)

)]}

= lim
k→∞

{
ad

(
x2m(k)−1, x2n(k)

)
+ bd

(
x2m(k)−1, x2m(k)

)

+ cd
(
x2n(k), x2n(k)+1

)

+e
[
d
(
x2n(k), x2m(k)

)
+ d

(
x2m(k)−1, x2n(k)+1

)]}

= (a + 2e)δ,

(2.63)

we have

ϕ(δ) ≤ lim sup
k→∞

ϕ
(
d
(
x2n(k), x2m(k)

))

≤ lim sup
k→∞

ϕ
(
d
(
x2n(k), x2n(k)+1

)
+ d

(
x2n(k)+1, x2m(k)

))

≤ lim sup
k→∞

ϕ
(
d
(
x2n(k), x2n(k)+1

)
+ d

(
Sx2n(k),Tx2m(k)−1

))

= lim sup
k→∞

ϕ
(
d
(
Sx2n(k),Tx2m(k)−1

))

≤ lim sup
k→∞

[
ϕ
(
Φ
(
x2m(k)−1, x2n(k)

))
− φ

(
Φ
(
x2m(k)−1, x2n(k)

))]

= ϕ((a + 2e)δ) − lim inf
k→∞

φ
(
Φ
(
x2m(k)−1, x2n(k)

))

≤ ϕ((a + 2e)δ) − φ((a + 2e)δ)

≤ ϕ(δ) − φ((a + 2e)δ).

(2.64)

This is a contradiction. Thus, {x2n} is a Cauchy sequence inX, so {xn} is a Cauchy sequence.
Therefore, there exists a z ∈ Xwith limn→∞xn = z.

If S or T is continuous hold, then clearly, z = Sz = Tz. Now, suppose that (2.42) holds
and d(Sz, z) > 0. Since limn→∞xn = z, then from (2.42), x2n−1 � z for all n. Using (2.38), we
have

ϕ(d(Tx2n−1,Sz)) ≤ ϕ(Φ(x2n−1, z)) − φ(Φ(x2n−1, z)), (2.65)

or

ϕ(d(x2n,Sz)) ≤ ϕ(Φ(x2n−1, z)) − φ(Φ(x2n−1, z)), (2.66)
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so taking upper limit from the last inequality, we have

ϕ(d(z,Sz)) ≤ ϕ((c + e)d(z,Sz)) − φ((c + e)d(z,Sz)), (2.67)

which is a contradiction. Thus, d(z,Sz) = 0, and so z = Sz = Tz.

Corollary 2.8. Let (X,�) be a partially ordered set, and suppose that there exists a metric d in X
such that (X, d) is a complete metric space. Let S,T : X → X be two weakly increasing mappings
such that

ϕ
(
d
(
Tx,Sy

))
≤ ϕ

(
d
(
x, y

))
− φ

(
d
(
x, y

))
, (2.68)

for all comparable x, y ∈ X, where ϕ, φ : [0,∞) → [0,∞), ϕ is a continuous, nondecreasing, φ is
lower semicontinuous functions, and ϕ(t) = 0 = φ(t) if and only if t = 0. If

S is continuous, (2.69)

or

T is continuous, (2.70)

or

{xn} ⊂ X is a nondecreasing sequence with xn −→ z in X, then xn � z ∀n (2.71)

holds. Then, S and T have a common fixed point.

Corollary 2.9. Let (X,�) be a partially ordered set, and suppose that there exists a metric d in X
such that (X, d) is a complete metric space. Let S, T : X → X be two weakly increasing mappings
such that

d
(
Tx,Sy

)
≤ Φ

(
x, y

)
− φ

(
Φ
(
x, y

))
, (2.72)

for all comparable x, y ∈ X, where

Φ
(
x, y

)
= ad

(
x, y

)
+ bd(x,Tx) + cd

(
y,Sy

)
+ e

[
d
(
y,Tx

)
+ d

(
x,Sy

)]
, (2.73)

a > 0, b, c, e ≥ 0, a + b + c + 2e ≤ 1, φ : [0,∞) → [0,∞) is a lower semicontinuous functions, and
φ(t) = 0 if and only if t = 0. If

S is continuous, (2.74)

or

T is continuous, (2.75)
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or

{xn} ⊂ X is a nondecreasing sequence with xn −→ z in X, then xn � z ∀n (2.76)

holds. Then, S and T have a common fixed point.

3. Some Applications

In this section, we present some applications of previous sections, first we obtain some fixed
point theorems for single mapping and pair of mappings satisfying a general contractive
condition of integral type in complete partially ordered metric spaces. Second, we give an
existence theorem for common solution of two integral equations.

Set Υ = {Ψ : R+ → R
+ : Ψ is a Lebesgue integrable mapping which is summable and

nonnegative and satisfies
∫ε
0 Ψ(t)dt > 0, for each ε > 0}.

Theorem 3.1. Let (X,�) be a partially ordered set and suppose that there exists a metric d inX such
that (X, d) is a complete metric space. Let T : X → X be a nondecreasing mapping such that

∫ϕ(d(Tx,Ty))

0
Ψ(t)dt ≤

∫ϕ(Θ(x,y))

0
Ψ(t)dt −

∫φ(Θ(x,y))

0
Ψ(t)dt for y � x (3.1)

where

Θ
(
x, y

)
= ad

(
x, y

)
+ bd(x,Tx) + cd

(
y,Ty

)
+ e

[
d
(
y,Tx

)
+ d

(
x,Ty

)]
(3.2)

a > 0, b, c, e ≥ 0, a + b + c + 2e ≤ 1, ϕ, φ : [0,∞) → [0,∞), ϕ is continuous, nondecreasing, φ
is lower semicontinuous functions, and ϕ(t) = 0 = φ(t) if and only if t = 0. Also, suppose that there
exists x0 ∈ X with x0 � Tx0. If

T is continuous, (3.3)

or

{xn} ⊂ X is a nondecreasing sequence with xn −→ z in X, then xn � z ∀n (3.4)

holds. Then, T has a fixed point.

Proof. Define Λ : R+ → R
+ by Λ(x) =

∫x
0 Ψ(t)dt, then Λ is continuous and nondecreasing

with Λ(0) = 0. Thus, (3.1) becomes

Λ
(
ϕ
(
d
(
Tx,Ty

)))
≤ Λ

(
ϕ
(
Θ
(
x, y

)))
−Λ

(
φ
(
Θ
(
x, y

)))
, (3.5)
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which further can be written as

ϕ1
(
d
(
Tx,Ty

))
≤ ϕ1

(
Θ
(
x, y

))
− φ1

(
Θ
(
x, y

))
, (3.6)

where ϕ1 = Λ ◦ ϕ and φ1 = Λ ◦ φ. Hence by Theorem 2.1 has unique fixed fixed point.

Theorem 3.2. Let (X,�) be a partially ordered set, and suppose that there exists a metric d inX such
that (X, d) is a complete metric space. Let S, T : X → X be two weakly increasing mappings such
that

∫ϕ(d(Tx,Sy))

0
Ψ(t)dt ≤

∫ϕ(Θ(x,y))

0
Ψ(t)dt −

∫φ(Θ(x,y))

0
Ψ(t)dt for y � x, (3.7)

for all comparable x, y ∈ X, where

Φ
(
x, y

)
= ad

(
x, y

)
+ bd(x,Tx) + cd

(
y,Sy

)
+ e

[
d
(
y,Tx

)
+ d

(
x,Sy

)]
, (3.8)

a > 0, b, c, e ≥ 0, a + b + c + 2e ≤ 1, ϕ, φ : [0,∞) → [0,∞), ϕ is continuous, nondecreasing, φ is
lower semicontinuous functions, and ϕ(t) = 0 = φ(t) if and only if t = 0. If

S is continuous, (3.9)

or

T is continuous, (3.10)

or

{xn} ⊂ X is a nondecreasing sequence with xn −→ z in X, then xn � z ∀n (3.11)

holds. Then, S and T have a common fixed point.

Proof. Define Λ : R+ → R
+ by Λ(x) =

∫x
0 Ψ(t)dt, then Λ is continuous and nondecreasing

with Λ(0) = 0. Thus, (3.7) becomes

Λ
(
ϕ
(
d
(
Tx,Sy

)))
≤ Λ

(
ϕ
(
Θ
(
x, y

)))
−Λ

(
φ
(
Θ
(
x, y

)))
, (3.12)

which further can be written as

ψ1
(
d
(
Tx,Sy

))
≤ ψ1

(
Θ
(
x, y

))
− ϕ1

(
Θ
(
x, y

))
, (3.13)

where φ1 = Λ ◦ φ and ϕ1 = Λ ◦ ϕ. Hence, Theorem 2.6 has unique fixed fixed point.
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Now, consider the integral equations

x(t) =
∫b

a

K1(t, s, x(s))ds + g(t), t ∈ [a, b],

x(t) =
∫b

a

K2(t, s, x(s))ds + g(t), t ∈ [a, b].

(3.14)

Let � be a partial order relation on R
n.

Theorem 3.3. Consider the integral equations (3.14).

(i) K1, K2 : [a, b] × [a, b] × R
n → R

n and g : Rn → R
n are continuous,

(ii) for each t, s ∈ [a, b],

K1(t, s, x(s)) � K2

(

t, s,

∫b

a

K1(s, τ, x(τ))dτ + g(s)

)

,

K2(t, s, x(s)) � K1

(

t, s,

∫b

a

K2(s, τ, x(τ))dτ + g(s)

)

,

(3.15)

(iii) there exist a continuous function p : [a, b] × [a, b] → R+ such that

|K1(t, s, u) −K2(t, s, v)| ≤ p(t, s)
√

ln
(
|u − v|2 + 1

)
(3.16)

for each t, s ∈ [a, b] and comparable u, v ∈ R
n,

(iv) supt∈[a,b]
∫b
a p(t, s)

2ds ≤ 1/(b − a).

Then, the integral equations (3.14) have a unique common solution x∗ in C([a, b],Rn).

Proof. LetX := C([a, b],Rn)with the usual supremum norm; that is, ‖x‖ = maxt∈[a,b]|x(t)|, for
x ∈ C([a, b],Rn). Consider on X the partial order defined by

x, y ∈ C([a, b],Rn), x � y iff x(t) � y(t) for any t ∈ [a, b]. (3.17)

Then, (X,�) is a partially ordered set. Also, (X, ‖ · ‖) is a complete metric space. Moreover,
for any increasing sequence {xn} in X converging to x∗ ∈ X, we have xn(t) � x∗(t) for any
t ∈ [a, b]. Also, for every x, y ∈ X, there exists c(x, y) ∈ X which is comparable to x and y
[21].
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Define T, S : X → X, by

Tx(t) =
∫b

a

K1(t, s, x(s))ds + g(t), t ∈ [a, b],

Sx(t) =
∫b

a

K2(t, s, x(s))ds + g(t), t ∈ [a, b].

(3.18)

Now, from (ii), we have for all t ∈ [a, b],

Tx(t) =
∫b

a

K1(t, s, x(s))ds + g(t)

�
∫b

a

K2

(

t, s,

∫b

a

K1(s, τ, x(τ))dτ + g(s)

)

ds + g(t)

=
∫b

a

K2(t, s, Tx(s))ds + g(t)

= STx(t),

Sx(t) =
∫b

a

K2(t, s, x(s))ds + g(t)

�
∫b

a

K1

(

t, s,

∫b

a

K2(s, τ, x(τ))dτ + g(s)

)

ds + g(t)

=

b∫

a

K1(t, s, Sx(s))ds + g(t)

= TSx(t).

(3.19)

Thus, we have Tx � STx and Sx � TSx for all x ∈ X. This shows that T and S are weakly
increasing. Also, for each comparable x, y ∈ X, we have

∣∣Tx(t) − Sy(t)
∣∣ =

∣∣∣∣∣

∫b

a

K1(t, s, x(s))ds −
∫b

a

K2
(
t, s, y(s)

)
ds

∣∣∣∣∣

≤
∫b

a

∣∣K1(t, s, x(s)) −K2
(
t, s, y(s)

)∣∣ds

≤
∫b

a

p(t, s)
√

ln
(∣∣x(s) − y(s)

∣∣2 + 1
)
ds

≤
(∫b

a

p(t, s)2ds

)1/2(∫b

a

ln
(∣∣x(s) − y(s)

∣∣2 + 1
)
ds

)1/2

.

(3.20)
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Hence,

∥
∥Tx − Sy

∥
∥2 ≤ sup

t∈[a,b]

∫b

a

p(t, s)2ds

(∫b

a

ln
(∣
∣x(s) − y(s)

∣
∣2 + 1

)
ds

)

≤ ln
(∥
∥x − y

∥
∥2 + 1

)

=
∥
∥x − y

∥
∥2 −

(∥
∥x − y

∥
∥2 − ln

(∥
∥x − y

∥
∥2 + 1

))
.

(3.21)

Put ϕ(x) = x2, φ(x) = x2 − ln(x2 + 1). Therefore,

ϕ
(∥∥Tx − Sy

∥
∥) ≤ ϕ

(∥∥x − y
∥
∥) − φ

(∥∥x − y
∥
∥), (3.22)

for each comparable x, y ∈ X. Therefore, all conditions of Corollary 2.8 are satisfied. Thus,
the conclusion follows.
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