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We prove convergence theorems of modified Ishikawa iterative sequence for two nonexpansive
semigroups in Hilbert spaces by the two hybrid methods. Our results improve and extend the
corresponding results announced by Saejung (2008) and some others.

1. Introduction

Let C be a subset of real Hilbert spaces H with the inner product 〈·, ·〉 and the norm ‖ · ‖.
T : C → C is called a nonexpansive mapping if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥ ∀x, y ∈ C. (1.1)

We denote by F(T) the set of fixed points of T , that is, F(T) = {x ∈ C : x = Tx}.
Let {T(t) : t ≥ 0} be a family of mappings from a subset C of H into itself. We call it a

nonexpansive semigroup on C if the following conditions are satisfied:

(i) T(0)x = x for all x ∈ C;

(ii) T(s + t) = T(s)T(t) for all s, t ≥ 0;

(iii) for each x ∈ C the mapping t 
→ T(t)x is continuous;

(iv) ‖T(t)x − T(t)y‖ ≤ ‖x − y‖ for all x, y ∈ C and t ≥ 0.
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The Mann’s iterative algorithm was introduced by Mann [1] in 1953. This iterative process is
now known as Mann’s iterative process, which is defined as

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, (1.2)

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=0 is in the interval
[0, 1].

In 1967, Halpern [2] first introduced the following iterative scheme:

x0 = u ∈ C chosen arbitrarily,

xn+1 = αnu + (1 − αn)Txn,
(1.3)

see also Browder [3]. He pointed out that the conditions limn→∞αn = 0 and
∑∞

n=1 αn = ∞ are
necessary in the sence that, if the iteration (1.3) converges to a fixed point of T , then these
conditions must be satisfied.

On the other hand, in 2002, Suzuki [4]was the first to introduce the following implicit
iteration process in Hilbert spaces:

xn = αnu + (1 − αn)T(tn)(xn), n ≥ 1, (1.4)

for the nonexpansive semigroup. In 2005, Xu [5] established a Banach space version of the
sequence (1.4) of Suzuki [4].

In 2007, Chen and He [6] studied the viscosity approximation process for a
nonexpansive semigroup and prove another strong convergence theorem for a nonexpansive
semigroup in Banach spaces, which is defined by

xn+1 = αnf(xn) + (1 − αn)T(tn)xn, ∀n ∈ N, (1.5)

where f : C → C is a fixed contractive mapping.
Recently He and Chen [7] is proved a strong convergence theorem for nonexpansive

semigroups in Hilbert spaces by hybrid method in the mathematical programming. Very
recently, Saejung [8] proved a convergence theorem by the new iterative method introduced
by Takahashi et al. [9]without Bochner integrals for a nonexpansive semigroup {T(t) : t ≥ 0}
with F :=

⋂∞
t=0F(T(t))/= ∅ in Hilbert spaces:

x0 ∈ H taken arbitrary,

C1 = C,

x1 = PC1x0,

yn = αnxn + (1 − αn)T(tn)xn,

Cn+1 =
{

z ∈ Cn :
∥
∥yn − z

∥
∥ ≤ ‖xn − z‖},

xn+1 = PCn+1(x0),

(1.6)

where PC denotes the metric projection from H onto a closed convex subset C of H.
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In 1974, Ishikawa [10] introduced a new iterative scheme, which is defined recursively
by

yn = βnxn +
(

1 − βn
)

Txn,

xn+1 = αnxn + (1 − αn)Tyn,
(1.7)

where the initial guess x0 is taken in C arbitrarily and the sequences {αn} and {βn} are in the
interval [0, 1].

In this paper, motivated by the iterative sequences (1.6) given by Saejung in [8] and
Ishikawa [10], we introduce the modified Ishikawa iterative scheme for two nonexpansive
semigroups in Hilbert spaces. Further, we obtain strong convergence theorems by using the
hybrid methods. This result extends and improves the result of Saejung [8] and some others.

2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the
next section.

It is known that every Hilbert space H satisfies the Opial’s condition [11], that is,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥, ∀y ∈ X, y /=x. (2.1)

Recall that the metric (nearest point) projection PC from a Hilbert space H to a closed
convex subset C of H is defined as follows. Given x ∈ H,PCx is the only point in C with the
property

‖x − PCx‖ = inf
{∥
∥x − y

∥
∥ : y ∈ C

}

. (2.2)

PCx is characterized as follows.

Lemma 2.1. Let H be a real Hilbert space, C a closed convex subset of H. Given x ∈ H and y ∈ C.
Then y = PCx if and only if there holds the inequality

〈

x − y, y − z
〉 ≥ 0, ∀z ∈ C. (2.3)

Lemma 2.2. There holds the identity in a Hilbert space H

∥
∥λx + (1 − λ)y

∥
∥
2 = λ‖x‖2 + (1 − λ)

∥
∥y

∥
∥
2 − λ(1 − λ)

∥
∥x − y

∥
∥
2 (2.4)

for all x, y ∈ H and λ ∈ [0, 1].
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Lemma 2.3 (see [12, Lemma 1]). Let {tn} be a real sequence and let τ be a real number such that
lim infntn ≤ τ ≤ lim supntn. Suppose that either of the following holds:

(i) lim supn(tn+1 − tn) ≤ 0 or

(ii) lim infn(tn+1 − tn) ≥ 0,

then τ is a cluster point of {tn}. Moreover, for ε > 0, k,m ∈ N, there exists m0 ≥ m such that
|tj − τ | < ε for every integer j withm0 ≤ j ≤ m0 + k.

3. Main Results

3.1. The Shrinking Projection Method

In this section, we prove strong convergence of an iterative sequence generated by the
shrinking hybrid projection method in mathematical programming.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let {T(t) : t ≥ 0} and
{S(t) : t ≥ 0} be nonexpansive semigroups on C with a nonempty common fixed point set F, that
is, F := (

⋂∞
t=0F(T(t))) ∩ (

⋂∞
t=0F(S(t)))/= ∅. Let {αn} ⊂ [0, a] ⊂ [0, 1), {βn} ⊂ [b, c] ⊂ (0, 1) and

{tn} be the sequences such that lim infn→∞tn = 0, lim supn→∞tn > 0, and limn→∞(tn+1 − tn) = 0.
Suppose that {xn} is a sequence generated by the following iterative scheme:

x0 ∈ H taken arbitrary,

C1 = C,

x1 = PC1(x0),

zn = βnxn +
(

1 − βn
)

T(tn)xn,

yn = αnxn + (1 − αn)S(tn)zn,

Cn+1 =
{

u ∈ Cn :
∥
∥yn − u

∥
∥ ≤ ‖xn − u‖},

xn+1 = PCn+1(x0),

(3.1)

then {xn} converges strongly to PF(x0).

Proof. We first show that Cn+1 is closed and convex for each n ≥ 0. From the definition of Cn+1

it is obvious that Cn+1 is closed for each n ≥ 0. We show that Cn+1 is convex for any n ≥ 0.
Since

∥
∥yn − u

∥
∥ ≤ ‖xn − u‖ ⇐⇒ 2〈xn − yn, u〉 ≤ ‖xn‖2 −

∥
∥yn

∥
∥
2
, (3.2)
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and hence Cn+1 is convex. Next we show that F ⊂ Cn+1 for all n ≥ 0. Let p ∈ F, then we have

∥
∥zn − p

∥
∥ =

∥
∥βnxn +

(

1 − βn
)

T(tn)xn − p
∥
∥

≤ βn
∥
∥xn − p

∥
∥ +

(

1 − βn
)∥
∥T(tn)xn − p

∥
∥

≤ βn
∥
∥xn − p

∥
∥ +

(

1 − βn
)∥
∥xn − p

∥
∥

≤ ∥
∥xn − p

∥
∥,

(3.3)

∥
∥yn − p

∥
∥ =

∥
∥αnxn + (1 − αn)S(tn)zn − p

∥
∥

≤ αn

∥
∥xn − p

∥
∥ + (1 − αn)

∥
∥S(tn)zn − p

∥
∥

≤ αn

∥
∥xn − p

∥
∥ + (1 − αn)

∥
∥zn − p

∥
∥.

(3.4)

Substituting (3.3) into (3.4), we have

∥
∥yn − p

∥
∥ ≤ ∥

∥xn − p
∥
∥. (3.5)

This means that p ∈ Cn+1 for all n ≥ 0. Thus, {xn} is well defined. Since xn = PCn(x0) and
xn+1 ∈ Cn+1 ⊂ Cn, we get

〈x0 − xn, xn − xn+1〉 ≥ 0 ∀n ∈ N. (3.6)

Consequently,

0 ≤ 〈x0 − xn, xn − xn+1〉
= 〈x0 − xn, xn − x0 + x0 − xn+1〉
= −〈xn − x0, xn − x0〉 + 〈x0 − xn, x0 − xn+1〉

≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − xn+1‖,

(3.7)

for n ∈ N. This implies that

‖x0 − xn‖ ≤ ‖x0 − xn+1‖ ∀n ∈ N. (3.8)

Therefore, {‖x0 −xn‖} is nondecreasing. From xn = PCn(x0), we also have 〈x0 −xn, xn −p〉 ≥ 0,
for all p ∈ Cn.

Since F ⊆ Cn, we get

〈

x0 − xn, xn − p
〉 ≥ 0 ∀p ∈ F. (3.9)
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Thus, for p ∈ F, we obtain

0 ≤ 〈

x0 − xn, xn − p
〉

= −〈xn − x0, xn − x0〉 +
〈

x0 − xn, x0 − p
〉

≤ −‖xn − x0‖2 + ‖x0 − xn‖
∥
∥x0 − p

∥
∥.

(3.10)

Thus, ‖xn − x0‖ ≤ ‖x0 − p‖, for all p ∈ F and n ∈ N. Then limn→∞‖xn − x0‖ exists and {xn} is
bounded.

Next, we show that ‖xn+1 − xn‖ → 0 as n → ∞. From (3.6)we have

‖xn − xn+1‖2 = ‖xn − x0 + x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 − 2〈x0 − xn, x0 − xn〉 − 2〈x0 − xn, xn − xn+1〉 + ‖x0 − xn+1‖2

≤ ‖xn − x0‖2 − 2‖xn − x0‖2 + ‖x0 − xn+1‖2

= −‖xn − x0‖2 + ‖x0 − xn+1‖2.

(3.11)

Since limn→∞‖xn − x0‖ exists, then

lim
n→∞

‖xn − xn+1‖ = 0. (3.12)

Further, as in the proof of [8, page 3], we have {xn}which is a Cauchy sequence. So, we have
xn ⇀ z. By definition of yn, we have

∥
∥yn − xn

∥
∥ = (1 − αn)‖S(tn)zn − xn‖. (3.13)

Since xn+1 ∈ Cn+1 and (3.12), we obtain

‖S(tn)zn − xn‖ =
1

1 − αn

∥
∥yn − xn

∥
∥

≤ 1
1 − αn

(∥
∥yn − xn+1

∥
∥ + ‖xn+1 − xn‖

)

≤ 1
1 − αn

(‖xn − xn+1‖ + ‖xn+1 − xn‖)

≤ 2
1 − αn

‖xn − xn+1‖ −→ 0 as n −→ ∞.

(3.14)

We now show that ‖T(tn)xn − xn‖ → 0.
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For p ∈ F, we have ‖xn − p‖ ≤ ‖xn − S(tn)zn‖ ≤ ‖S(tn)zn − p‖. This implies that
0 ≤ ‖xn − p‖ − ‖zn − p‖ ≤ ‖xn − S(tn)zn‖ → 0 and hence ‖xn − p‖2 − ‖zn − p‖2 → 0.Moreover,
since

∥
∥zn − p

∥
∥
2 = βn

∥
∥xn − p

∥
∥
2 +

(

1 − βn
)∥
∥T(tn)xn − p

∥
∥
2 − βn

(

1 − βn
)‖xn − T(tn)xn‖2, (3.15)

we have

bc‖xn − T(tn)xn‖2 ≤ βn
(

1 − βn
)‖xn − T(tn)xn‖2

≤ βn
∥
∥xn − p

∥
∥
2 +

(

1 − βn
)∥
∥T(tn)xn − p

∥
∥
2 − ∥

∥zn − p
∥
∥
2

≤ ∥
∥xn − p

∥
∥
2 − ∥

∥zn − p
∥
∥
2 −→ 0.

(3.16)

And since S(tn) is a nonexpansive mapping, we obtain

‖xn − S(tn)xn‖ ≤ ‖xn − S(tn)zn‖ + ‖S(tn)zn − S(tn)xn‖,
≤ ‖xn − S(tn)zn‖ + ‖zn − xn‖.

(3.17)

Since ‖zn − xn‖ = (1 − βn)‖T(tn)xn − xn‖ → 0 and ‖xn − S(tn)zn‖ → 0, we obtain

lim
n→∞

‖xn − S(tn)xn‖ = 0. (3.18)

As in the proof of [12, Theorem 4], by Lemma 2.3, we can choose a sequence {tnk} of positive
real numbers such that

tnk −→ 0,
1
tnk

‖xnk − T(tnk)xnk‖ −→ 0, as k −→ ∞. (3.19)

In similar way, we also have

tnk −→ 0,
1
tnk

‖xnk − S(tnk)xnk‖ −→ 0, as k −→ ∞. (3.20)
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Next, we show that z ∈ F. To see this, we fix t > 0,

‖xnk − T(t)z‖ ≤
[t/tnk ]−1∑

j=0

∥
∥T

(

jtnk

)

xnk − T
((

j + 1
)

tnk

)

xnk

∥
∥

+
∥
∥
∥
∥
T

([
t

tnk

]

tnk

)

xnk − T

([
t

tnk

]

tnk

)

z

∥
∥
∥
∥
+
∥
∥
∥
∥
T

([
t

tnk

]

tnk

)

z − T(t)z
∥
∥
∥
∥

≤
[

t

tnk

]

‖xnk − T(tnk)xnk‖ + ‖xnk − z‖ +
∥
∥
∥
∥
T

(

t −
[

t

tnk

]

tnk

)

z − z

∥
∥
∥
∥

≤ t

tnk

‖xnk − T(tnk)xnk‖ + ‖xnk − z‖ + sup{‖T(s)z − z‖ : 0 ≤ s ≤ tnk}.

(3.21)

As xnk → z and (3.19), we obtain xnk → T(t)z and so T(t)z = z. Similarly, we have S(t)z = z.
Thus z ∈ F.

Finally, we show that z = PF(x0). Since F ⊂ Cn+1 and xn+1 = PCn+1(x0),

‖xn+1 − x0‖ ≤ ∥
∥q − x0

∥
∥ ∀n ∈ N, q ∈ F. (3.22)

But xn → z as n → ∞, we have

‖z − x0‖ ≤ ∥
∥q − x0

∥
∥ ∀q ∈ F. (3.23)

Hence z = PF(x0) as required. This completes the proof.

Corollary 3.2. Let C be a closed convex subset of a real Hilbert space H. Let {T(t) : t ≥
0} be nonexpansive semigroups on C with a nonempty common fixed point set F, that is, F :=
⋂∞

t=0F(T(t))/= ∅. Let {αn} ⊂ [0, a] ⊂ [0, 1), {βn} ⊂ [b, c] ⊂ (0, 1) and {tn} be the sequences such
that lim infn→∞tn = 0, lim supn→∞tn > 0, and limn→∞(tn+1 − tn) = 0. Suppose that {xn} is a
sequence iteratively generated by the following iterative scheme:

x0 ∈ H taken arbitrary,

C1 = C,

x1 = PC1(x0),

yn = αnxn + (1 − αn)T(tn)zn,

zn = βnxn +
(

1 − βn
)

T(tn)xn,

Cn+1 =
{

u ∈ Cn :
∥
∥yn − u

∥
∥ ≤ ‖xn − u‖},

xn+1 = PCn+1(x0),

(3.24)

then {xn} converges strongly to PF(x0).

Proof. Putting S(tn) = T(tn), in Theorem 3.1, we obtain the conclusion immediately.
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Corollary 3.3 (see [8, Theorem 2.1]). Let C be a closed convex subset of a real Hilbert space H.
Let {T(t) : t ≥ 0} be a nonexpansive semigroups on C with a nonempty common fixed point set
F, that is, F :=

⋂∞
t=0F(T(t))/= ∅. Let {αn} ⊂ [0, a] ⊂ [0, 1) and {tn} be the sequences such that

lim infn→∞tn = 0, lim supn→∞tn > 0, and limn→∞(tn+1 − tn) = 0. Suppose that {xn} is a sequence
iteratively generated by the following iterative scheme:

x0 ∈ H taken arbitrary,

C1 = C,

x1 = PC1(x0),

zn = αnxn + (1 − αn)T(tn)xn,

Cn+1 =
{

u ∈ Cn :
∥
∥yn − u

∥
∥ ≤ ‖xn − u‖},

xn+1 = PCn+1(x0),

(3.25)

then xn → PF(x0).

Proof. If S(tn) = T(tn) for all n ∈ N and T(t) = I for every t > 0 in Theorem 3.1 then (3.1)
reduced to (3.25). By using Theorem 3.1, we get the following conclusion.

3.2. The CQ Hybrid Method

In this section, we consider the modified Ishikawa iterative scheme computing by the CQ
hybrid method [13–15]. We use the same idea as Saejung’s Theorem 2.2 in [8] and our
Theorem 3.1 to obtain the following result and the proof is omitted.

Theorem 3.4. Let C be a closed convex subset of a real Hilbert space H. Let {T(t) : t ≥ 0} and
{S(t) : t ≥ 0} be nonexpansive semigroups on C with a nonempty common fixed point set F, that
is, F := (

⋂∞
t=0F(T(t))) ∩ (

⋂∞
t=0F(S(t)))/= ∅. Let {αn} ⊂ [0, a] ⊂ [0, 1), {βn} ⊂ [b, c] ⊂ (0, 1) and

{tn} be the sequences such that lim infn→∞tn = 0, lim supn→∞tn > 0, and limn→∞(tn+1 − tn) = 0.
Suppose that {xn} is a sequence generated by the following iterative scheme:

x0 ∈ H taken arbitrary,

yn = αnxn + (1 − αn)S(tn)zn,

zn = βnxn +
(

1 − βn
)

T(tn)xn,

Cn =
{

u ∈ C :
∥
∥yn − u

∥
∥ ≤ ‖xn − u‖},

Qn = {u ∈ C : 〈xn − x0, u − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(3.26)

then {xn} converges strongly to PF(x0).

Proof. First, we show that both Cn and Qn are closed and convex, and Cn ∩ Qn /= ∅ for all
n ∈ N ∪ {0}. It follows easily from the definition that Cn and Qn are just intersection of C
and the half-spaces see also [9]. As in the proof of the preceding theorem, we have F ⊂
Cn for all n ∈ N ∪ {0}. Clearly, F ⊂ C = Q0. Suppose that F ⊂ Qk for some k ∈ N ∪ {0},
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we have p ∈ Ck ∩Qk. In particular, 〈xk+1 − x0, p − xk+1〉 ≥ 0, that is, p ∈ Qk+1. It follows from
the induction that F ⊂ Qn for all n ∈ N ∪ {0}. This proves the claim.

Next, we show that ‖xn − T(tn)xn‖ → 0, and ‖xn − S(tn)xn‖ → 0.
We first claim that ‖xn+1 − xn‖ → 0. Indeed, as xn+1 ∈ Qn and xn = PQn(x0),

‖xn − x0‖ ≤ ‖xn+1 − x0‖ ∀n ∈ N. (3.27)

For fixed z ∈ F. It follows from F ⊂ Qn for all n ∈ N that

‖xn − x0‖ ≤ ‖z − x0‖ ∀n ∈ N. (3.28)

This implies that sequence {xn} is bounded and

lim
n→∞

‖xn − x0‖ exists. (3.29)

Notice that

〈xn+1 − xn, xn − x0〉 ≥ 0. (3.30)

This implies that

‖xn+1 − xn‖2 = ‖xn+1 − x0‖2 − 2〈xn+1 − xn, xn − x0〉 − ‖x0 − xn‖2

≤ ‖xn+1 − x0‖2 − ‖xn − x0‖2 −→ 0.
(3.31)

By using the same argument of Saejung [8, Theorem 2.2, page 6] and in the proof of
Theorem 3.1, we have ‖T(tn)xn − xn‖ → 0 and ‖S(tn)xn − xn‖ → 0. And we can choose a
subsequence {nk} of {n} such that xnk ⇀ z ∈ C, tnk → 0, (1/tnk)‖xnk − T(tnk)xnk‖ → 0 and
(1/tnk)‖xnk − S(tnk)xnk‖ → 0 as k → ∞.

From (3.21), we obtain

lim sup
k→∞

‖xnk − T(t)z‖ ≤ lim sup
k→∞

‖xnk − z‖,

lim sup
k→∞

‖xnk − S(t)z‖ ≤ lim sup
k→∞

‖xnk − z‖.
(3.32)

By the Opial’s condition of H, we have z = T(t)z and z = S(t)z for all t > 0, that is, z ∈ F.
We note that

‖x0 − PF(x0)‖ ≤ ‖x0 − z‖ ≤ lim inf
k→∞

‖x0 − xnk‖ ≤ lim sup
k→∞

‖x0 − xnk‖ ≤ ‖x0 − PF(x0)‖. (3.33)

This implies that

lim
k→∞

‖x0 − xnk‖ = ‖x0 − PF(x0)‖ = ‖x0 − z‖. (3.34)
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Therefore,

xnk −→ PF(x0) = z, as k −→ ∞. (3.35)

Hence the whole sequence must converge to PF(x0) = z, as required. This completes the
proof.

Corollary 3.5. Let C be a closed convex subset of a real Hilbert space H. Let {T(t) : t ≥ 0}
be nonexpansive semigroups on C with a nonempty common fixed point set F, that is, F :=
⋂∞

t=0F(T(t))/= ∅. Let {αn} ⊂ [0, a] ⊂ [0, 1), {βn} ⊂ [b, c] ⊂ (0, 1) and {tn} be the sequences such that
lim infn→∞tn = 0, lim supn→∞tn > 0, and limn→∞(tn+1 − tn) = 0. Suppose that {xn} is a sequence
iteratively generated by the following iterative scheme:

x0 ∈ H taken arbitrary,

yn = αnxn + (1 − αn)T(tn)zn,

zn = βnxn +
(

1 − βn
)

T(tn)xn,

Cn =
{

u ∈ C :
∥
∥yn − u

∥
∥ ≤ ‖xn − u‖},

Qn = {u ∈ C : 〈xn − x0, u − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(3.36)

then {xn} converges strongly to PF(x0).

Proof. If S(tn) = T(tn) for all n ∈ N ∪ {0}, in Theorem 3.4 then (3.26) reduced to (3.36). So, we
obtain the result immediately.

We also deduce the following corollary.

Corollary 3.6 (see [8, Theorem 2.2]). Let C be a closed convex subset of a real Hilbert space H.
Let {T(t) : t ≥ 0} be a nonexpansive semigroups on C with a nonempty common fixed point set
F, that is, F :=

⋂∞
t=0F(T(t))/= ∅. Let {αn} ⊂ [0, a] ⊂ [0, 1) and {tn} be the sequences such that

lim infn→∞tn = 0, lim supn→∞tn > 0 and limn→∞(tn+1 − tn) = 0. Suppose that {xn} is a sequence
iteratively generated by the following iterative scheme:

x0 ∈ H taken arbitrary,

zn = αnxn + (1 − αn)T(tn)xn,

Cn =
{

u ∈ C :
∥
∥yn − u

∥
∥ ≤ ‖xn − u‖},

Qn = {u ∈ C : 〈xn − x0, u − xn〉 ≥ 0},
xn+1 = PCn∩Qn(x0),

(3.37)

then xn → PF(x0).
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