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We discuss the dynamic traffic network equilibrium system problem.We introduce the equilibrium
definition based on Wardrop’s principles when there are some internal relationships between
different kinds of goods which transported through the same traffic network. Moreover, we also
prove that the equilibrium conditions of this problem can be equivalently expressed as a system
of evolutionary variational inequalities. By using the fixed point theory and projected dynamic
system theory, we get the existence and uniqueness of the solution for this equilibrium problem.
Finally, a numerical example is given to illustrate our results.

1. Introduction

The problem of users of a congested transportation network seeking to determine their travel
paths of minimal cost from origins to their respective destinations is a classical network
equilibrium problem. The first author who studied the transportation networks was Pigou
[1] in 1920, who considered a two-node, two-link transportation network, and it was further
developed by Knight [2]. But it was only during most recent decades that traffic network
equilibrium problems have attracted the attention of several researchers. In 1952, Wardrop
[3] laid the foundations for the study of the traffic theory. He proposed two principles until
now named after him. Wardrop’s principles were stated as follows.

(i) First Principle. The journey times of all routes actually used are equal, and less than
those which would be experienced by a single vehicle on any unused route.

(ii) Second Principle. The average journey time is minimal.

The rigorous mathematical formulation of Wardrop’s principles was elaborated by
Beckmann et al. [4] in 1956. They showed the equivalence between the traffic equilibrium



2 Fixed Point Theory and Applications

stated as Wardrop’s principles and the Kuhn-Tucker conditions of a particular optimization
problem under some symmetry assumptions. Hence, in this case, the equilibrium flows could
be obtained as the solution of a mathematical programming problem. Dafermos and Sparrow
[5] coined the terms “user-optimized” and “system-optimized” transportation networks to
distinguish between two distinct situations in which users act unilaterally, in their own self-
interest, in selecting their routes, and inwhich users select routes according to what is optimal
from a societal point of view, in that the total costs in the system are minimized. In the latter
problem, marginal costs rather than average costs are employed.

In 1979, Smith [6] proved that the equilibrium solution could be expressed in terms
of variational inequalities. This was a crucial step, because it allowed the application of
the powerful tool of variational inequalities to the study of traffic equilibrium problems
in the most general framework. From that starting point, many authors, such as Dafermos
[7], Giannessi and Maugeri [8, 9], Nagurney [10], and Nagurney and Zhang [11], and so on,
paid attention to the study of many features of the traffic equilibrium problem via variational
inequality approaches.

Later in 1999, Daniele et al. [12] studied the time-dependent traffic equilibrium
problems. This new concept arose from the observation that the physical structure of the
networks could remain unchanged, but the phenomena which occur in these networks
varied with time. They got a strict connection between equilibrium problems in dynamic
networks and the evolutionary variational inequalities; in this sense that the time-dependent
equilibrium conditions of this problem are equivalently expressed as evolutionary variational
inequalities.

Most recently, many researches focused on the vector equilibrium problems. They
examined the traffic equilibrium problem based on a vector cost consideration rather than
the traditional single cost criterion. The vector equilibrium problem takes time, distance,
expenses and other criterion as the component of the vector cost. Some results on vector
equilibrium problem can be found in [13–17]. But the vector equilibrium model can not
solve the equilibrium problem when there are many interactional kinds of goods transported
through the same traffic network.

In fact, there are more than one kind of goods transported through the traffic network
in reality. As we know, the transportation cost of one kind of goods can be affected by other
kinds of goods under the same traffic network. In detail, the flows of different kinds of goods
are not independent. For example, the transportation costs of one certain kind of goods is not
only relatedwith the flow and demand of itself, but also relatedwith the flow and the demand
of its substitution. Because the increasing of the flow and the demand of the substitution will
put a whole lot of pressure on the transportation of the certain kind of goods under the same
traffic network, the marginal cost will increase. Therefore, it is reasonable to consider the
traffic equilibrium problem when there are many kinds of goods transported through the
same traffic network. Generally, we called this problem dynamic traffic network equilibrium
system. In this paper, we introduce the equilibrium definition about this problem based
on Wardrop’s principles and propose a mathematical model about this traffic equilibrium
problem in dynamic networks. We employ marginal costs rather than average costs in our
research. Moreover, we also prove that the equilibrium conditions of this problem can be
equivalently expressed as a system of evolutionary variational inequalities. Furthermore, we
show the existence and uniqueness of the solution for this equilibrium problem. Finally, we
give a numerical example to illustrate our results.

The rest of the paper is organized as follows. In Section 2, we recall some necessary
knowledge about traffic equilibrium. In Section 3, we propose the basic model about
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the dynamic traffic network equilibrium system. The issues regarding (i) the variational
inequality approaches to express the equilibrium system and (ii) the existence and
uniqueness conditions of the solution for the equilibrium system are discussed in this section
too. In Section 4, we give an example to illustrate our main results. We give conclusion in
Section 5.

2. Preliminaries

Suppose that a traffic network consists of a set N of nodes, a set Ω of origin-destination
(O/D) pairs, and a set R of routes. Each route r ∈ R links one given origin-destination pair
ω ∈ Ω. The set of all r ∈ R which links the same origin-destination pair ω ∈ Ω is denoted
by R(ω). Assume that n is the number of the route in R and m is the number of origin-
destination (O/D) pairs in Ω. Let vector H = (H1,H2, . . . ,Hr, . . . ,Hn)

T ∈ Rn denote the flow
vector, where Hr , r ∈ R, denotes the flow in route r ∈ R. A feasible flow has to satisfy the
capacity restriction principle: λr ≤ Hr ≤ μr , for all r ∈ R, and a traffic conservation law:
∑

r∈R(ω) Hr = ρω, for all ω ∈ Ω, where λ and μ are given in Rn, ρω ≥ 0 is the travel demand
related to the given pair ω ∈ Ω, and ρ ∈ Rm denotes the travel demand vector. Thus the set of
all feasible flows is given by

K :=
{
H ∈ Rn | λ ≤ H ≤ μ,ΦH = ρ

}
, (2.1)

where Φ = (δω,r)m×n is defined as

δω,r :=

⎧
⎨

⎩

1, if r ∈ R(ω),

0, else.
(2.2)

Let mapping C : K → Rn be the cost function. C(H) ∈ Rn is the cost vector respected
to feasible flow H ∈ K. Cr(H) gives the marginal cost of transporting one additional unit of
flow through route r ∈ R.

Definition 2.1 (see [12]). H ∈ Rn is called an equilibrium flow if and only if for all ω ∈ Ω and
q, s ∈ R(ω) there holds

Cq(H) < Cs(H) =⇒ Hq = μq or Hs = λs. (2.3)

Such a definition represents Wardrop’s equilibrium principles in a generalized version.

Lemma 2.2 (see [12]). LetK be given by (2.1). IfH ∈ Rn is an equilibrium flow, then the following
conditions are equivalent:

(1) for all ω ∈ Ω and q, s ∈ R(ω), there holds Cq(H) < Cs(H) ⇒ Hq = μq or Hs = λs,

(2) H ∈ K and 〈C(H), F −H〉 ≥ 0, for all F ∈ K.

Remark 2.3. Lemma 2.2 characterizes that the equilibrium flow defined by Wardrop’s
equilibrium principle is equivalent to a variational inequality formulation.
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Lemma 2.4 (see [18]). If K is nonempty, convex, and closed, then H∗ is an equilibrium flow in the
sense of Definition 2.1 if and only if there is α > 0 such that

H∗ = PK(H∗ − αC(H∗)), (2.4)

where PK : Rn → K is the projection operator from Rn to K.

Furthermore, we can get the dynamic model based on the assumption that the flow is
time dependent. First of all, we need to define the flow function over time. Now the traffic
network is considered at all times t ∈ T, where T := [0, T]. For each time t ∈ T, we have a
flow vectorH(t) ∈ Rn.H(·) : T → Rn is the flow function over time. The feasible flows have
to satisfy the time-dependent capacity constraints and traffic conservation law, that is,

λ(t) ≤ H(t) ≤ μ(t), ΦH(t) = ρ(t), a.e. t ∈ T, (2.5)

where λ, μ, ρ : T → Rn are given, λ(·) ≤ μ(·), and Φ is defined as (2.2).
We choose the reflexive Banach space Lp(T, Rn) (for short L) with p > 1 as the

functional set of the flow functions for technical reasons. The dual space Lq(T, Rn), where
1/p + 1/q = 1, will be denoted by L∗. On L∗ × L, Daniele et al. [12] employed the definition
of evolutionary variational inequalities as follows:

〈〈G,F〉〉 :=
∫

T
〈G(t), F(t)〉dt, G ∈ L∗, F ∈ L. (2.6)

The set of feasible flows is defined as

K :=
{
H ∈ L | λ(t) ≤ H(t) ≤ μ(t),ΦH(t) = ρ(t), a.e. t ∈ T

}
. (2.7)

In order to guarantee that K/= ∅, the following assumption is employed (see [12])

Φλ(t) ≤ ρ(t) ≤ Φμ(t), a.e. t ∈ T, (2.8)

where λ, μ ∈ L and for all ω ∈ Ω, ρω ≥ 0 in Lp(T, Rm). It can be shown that K is convex,
closed, and bounded, hence weakly compact. Furthermore, the mapping C : K → L∗ assigns
each flow function H(·) ∈ K to the cost function C(H(·)) ∈ L∗.

Definition 2.5 (see [12]). H ∈ L is an equilibrium flow if and only if for all ω ∈ Ω and
q, s ∈ R(ω) there holds:

Cq(H(t)) < Cs(H(t)) =⇒ Hq(t) = μq(t) orHs(t) = λs(t), a.e. t ∈ T. (2.9)
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Lemma 2.6 (see [12]). H ∈ K is an equilibrium flow which is defined by Definition 2.5, then the
following statements are equivalent:

(1) for all ω ∈ Ω and q, s ∈ R(ω), there holds:

Cq(H(t)) < Cs(H(t)) =⇒ Hq(t) = μq(t) or Hs(t) = λs(t), t ∈ T; (2.10)

(2) H ∈ K and 〈〈C(H), F −H〉〉 ≥ 0, for all F ∈ K.

The statement (1) in Lemma 2.6 is called Wardrop’s condition for the time-dependent
traffic network equilibrium by Daniele et al. [12]. Lemma 2.6 shows that the time-dependent
traffic network equilibrium can be equivalently expressed as an evolutionary variational
inequality. Then we can get the following corollary from Lemmas 2.2 and 2.6 directly.

Corollary 2.7 (see [18]). If H ∈ K is an equilibrium flow, then the following inequalities are
equivalent:

(1) 〈〈C(H), F −H〉〉 ≥ 0, for all F ∈ K,

(2) 〈C(H(t)), F(t) −H(t)〉 ≥ 0, a.e. t ∈ T, for all F ∈ K.

Corollary 2.7 is interesting because we can use it to find the solutions of the
evolutionary variational inequality.

3. Dynamic Traffic Network Equilibrium System

There are more than one kind of goods transported through the traffic network in reality. As
we know, the transportation cost of one kind of goods can be affected by other kinds of goods
under the same traffic network. For example, the transportation costs of certain kind of goods
is not only related with the flow and the demand of itself, but also related with the flow and
the demand of its substitution. Therefore, it is reasonable to consider the equilibrium problem
when several kinds of goods are transported through the same traffic network.

3.1. Basic Model

Without loss of generality, we consider the case that there are only two kinds of goods
transported through the network. We choose space L2(T, Rn) as the functional set of the flow
function. Define

Ki :=
{
H ∈ L2(T, Rn) | λi(t) ≤ H(t) ≤ μi(t), ΦH(t) = ρi(t), a.e. t ∈ T

}
, i = 1, 2. (3.1)

Thus the set of feasible flows is given by K1 ×K2. We call that (H1,H2) ∈ K1 ×K2 is a flow of
the dynamic traffic network system.

Let mapping Ci : K1 × K2 → L2(T, Rn) denote the marginal transportation cost
function of the ith kind of goods for i = 1, 2. Then Ci(H1,H2) ∈ L2(T, Rn) is the cost vector
with respect to feasible flow (H1,H2) ∈ K1×K2 andCir(H1,H2) is themarginal transportation
cost of the ith kind of goods under the rth route.
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Definition 3.1. (H1,H2) ∈ K1 × K2 is an equilibrium flow if and only if for all ω ∈ Ω and
q, s, p, r ∈ R(ω) there holds

C1q(H1(t),H2(t)) < C1s(H1(t),H2(t)) =⇒ H1q(t) = μ1q(t) or H1s(t) = λ1s(t), a.e. t ∈ T,

C2p(H1(t),H2(t)) < C2r(H1(t),H2(t)) =⇒ H2p(t) = μ2p(t) or H2r(t) = λ2r(t), a.e. t ∈ T.

(3.2)

Remark 3.2. If the traffic network transports only one kind of good, thenDefinition 3.1 reduces
to Definition 2.5. So, the dynamic traffic equilibrium system (3.2) generalizes the model in
[12] to the case of several related goods.

The following result establishes relationship between the system of dynamic traffic
equilibrium problem and a system of evolutionary variational inequalities.

Theorem 3.3. (H1,H2) ∈ K1 ×K2 is an equilibrium flow if and only if

〈〈C1(H1,H2), F1 −H1〉〉 ≥ 0, ∀F1 ∈ K1,

〈〈C2(H1,H2), F2 −H2〉〉 ≥ 0, ∀F2 ∈ K2.
(3.3)

Proof. First assume that (3.3) holds and (3.2) does not hold. Then there exist ω ∈ Ω and
q, s ∈ R(ω) together with a set E ⊆ T having positive measure such that

Ciq(H1(t),H2(t)) < Cis(H1(t),H2(t)), Hiq(t) < μiq(t), His(t) > λis(t), a.e. t ∈ E, i = 1, 2.
(3.4)

For t ∈ E, let δi(t) = min{μiq(t) −Hiq(t),His(t) − λis(t)}. Then δi(t) > 0, a.e. t ∈ E. We define a
vector Fi ∈ Ki whose components are

Fiq(t) = Hiq(t) + δi(t), Fis(t) = His(t) − δi(t), Fir(t) = Hir(t), a.e. t ∈ E (3.5)

when r /= q, s, and we can construct Fi ∈ Ki such that Fi = Hi outside E. Thus,

〈〈Ci(H1,H2), Fi −Hi〉〉 =
∫

T
〈Ci(H1(t),H2(t)), Fi(t) −Hi(t)〉dt

=
∫

E

δi(t)
(
Ciq(H1(t),H2(t)) − Cis(H1(t),H2(t))

)
dt

< 0,

(3.6)

and so (3.3) is not satisfied. Therefore, it is proved that (3.3) implies (3.2).



Fixed Point Theory and Applications 7

Next, assume that (3.2) holds. That is

Ciq(H1(t),H2(t)) < Cis(H1(t),H2(t))

=⇒ Hiq(t) = μiq(t), or

H is(t) = λis(t), a.e. t ∈ T, i = 1, 2.

(3.7)

Let Fi ∈ Ki for i = 1, 2. Then (3.3) holds from Lemma 2.6.

Furthermore, we can get the following corollary directly from Corollary 2.7 and
Theorem 3.3.

Corollary 3.4. (H1,H2) ∈ K1 ×K2 is an equilibrium flow if and only if, for all Fi ∈ Ki with i = 1, 2,

〈C1(H1(t),H2(t)), F1(t) −H1(t)〉 ≥ 0, a.e. t ∈ T,

〈C2(H1(t),H2(t)), F2(t) −H2(t)〉 ≥ 0, a.e. t ∈ T.
(3.8)

3.2. Existence and Uniqueness Theorem

In this subsection, we discuss the existence and uniqueness of the solution for the dynamic
traffic equilibrium system (3.3). In order to get our main results, the following definitions will
be employed.

Definition 3.5. Ci(x, y) (i = 1, 2) is said to be θ-strictly monotone with respect to x on K1 ×K2

if there exists θ > 0 such that

〈〈
Ci

(
x1, y

)
− Ci

(
x2, y

)
, x1 − x2

〉〉
≥ θ‖x1 − x2‖2L2 , ∀x1, x2 ∈ K1, y ∈ K2, (3.9)

where

‖x‖2L2 =
∫

T
‖x(t)‖2dt (3.10)

and ‖ · ‖ is Euclidean norm.

Definition 3.6. Ci(x, y) (i = 1, 2) is said to be L-Lipschitz continuous with respect to x on
K1 ×K2 if there exists L > 0 such that

∥
∥Ci(x1, y) − Ci(x2, y)

∥
∥
L2 ≤ L‖x1 − x2‖L2 , ∀x1, x2 ∈ K1, y ∈ K2. (3.11)

Remark 3.7. Based on Definitions 3.5 and 3.6, we can similarly define the θ-strict monotonicity
and L-Lipschitz continuity of Ci(x, y) with respect to y on K1 ×K2 for i = 1, 2.
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Theorem 3.8. (H1,H2) ∈ K1 × K2 is an equilibrium flow if and only if there exist α > 0 and β > 0
such that

H1 = PK1(H1 − αC1(H1,H2)),

H2 = PK2

(
H2 − βC2(H1,H2)

)
,

(3.12)

where PKi : L
2(T;Rn) → Ki is a projection operator for i = 1, 2.

Proof. The proof is analogous to that of Theorem 5.2.4 of [18].

Let ‖(x, y)‖1 be the norm on space K1 ×K2 defined as follows:

∥
∥(x, y)

∥
∥
1 = ‖x‖L2 +

∥
∥y

∥
∥
L2 , ∀x ∈ K1, y ∈ K2. (3.13)

It is easy to see that (K1 ×K2 , ‖ · ‖1) is a Banach space.

Theorem 3.9. Suppose that C1(H1,H2) is θ1-strictly monotone and L11-Lipschitz continuous with
respect toH1, and L12-Lipschitz continuous with respect toH2 onK1×K2. Suppose thatC2(H1,H2)
is L21-Lipschitz continuous with respect toH1, θ2-strictly monotone, and L22-Lipschitz continuous
with respect toH2 on K1 ×K2. If there exist γ > 0 and η > 0 such that

√
1 − 2γθ1 + γ2L2

11 + ηL21 < 1,
√
1 − 2ηθ2 + η2L2

22 + γL12 < 1,
(3.14)

then problem (3.3) admits unique solution.

Proof. For any (H1,H2) ∈ K1 ×K2, let

F1(H1,H2) = PK1

(
H1 − γC1(H1,H2)

)
,

F2(H1,H2) = PK2

(
H2 − ηC2(H1,H2)

)
,

(3.15)

where PKi : L
2(T, Rn) → Ki is a projection operator for i = 1, 2. Define F : K1 ×K2 → K1 ×K2

as follows:

F(H1,H2) = (F1(H1,H2), F2(H1,H2)), ∀(H1,H2) ∈ K1 ×K2. (3.16)
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Since PKi is nonexpansive, it follows that, for any (H1,H2), (H̃1, H̃2) ∈ K1 ×K2,

∥
∥
∥F(H1,H2) − F(H̃1, H̃2)

∥
∥
∥
1

=
∥
∥
∥F1(H1,H2) − F1(H̃1, H̃2)

∥
∥
∥
L2

+
∥
∥
∥F2(H1,H2) − F2(H̃1, H̃2)

∥
∥
∥
L2

=
∥
∥
∥PK1(H1 − γC1(H1,H2)) − PK1(H̃1 − γC1(H̃1, H̃2))

∥
∥
∥
L2

+
∥
∥
∥PK2(H2 − ηC2(H1,H2)) − PK2(H̃2 − ηC2(H̃1, H̃2))

∥
∥
∥
L2

≤
∥
∥
∥H1 − H̃1 − γ[C1(H1,H2) − C1(H̃1, H̃2)]

∥
∥
∥
L2

+
∥
∥
∥H2 − H̃2 − η[C2(H1,H2) − C2(H̃1, H̃2)]

∥
∥
∥
L2

≤
∥
∥
∥H1 − H̃1 − γ[C1(H1,H2) − C1(H̃1,H2)]

∥
∥
∥
L2

+ γ
∥
∥
∥C1(H̃1,H2) − C1(H̃1, H̃2)

∥
∥
∥
L2

+
∥
∥
∥H2 − H̃2 − η[C2(H1,H2) − C2(H1, H̃2)]

∥
∥
∥
L2

+ η
∥
∥
∥C2(H1, H̃2) − C2(H̃1, H̃2)

∥
∥
∥
L2
.

(3.17)

Since C1(H1,H2) is θ1-strictly monotone and L11-Lipschitz continuous with respect toH1, we
have

∥
∥
∥H1 − H̃1 − γ[C1(H1,H2) − C1(H̃1,H2)]

∥
∥
∥
2

L2

=
∥
∥
∥H1 − H̃1

∥
∥
∥
2

L2
− 2γ

〈〈
C1(H1,H2) − C1

(
H̃1,H2

)
,H1 − H̃1

〉〉

+ γ2
∥
∥
∥C1(H1,H2) − C1(H̃1,H2))

∥
∥
∥
2

L2

≤
∥
∥
∥H1 − H̃1

∥
∥
∥
2

L2
− 2γθ1

∥
∥
∥H1 − H̃1

∥
∥
∥
2

L2
+ γ2L2

11

∥
∥
∥H1 − H̃1

∥
∥
∥
2

L2

=
[
1 − 2γθ1 + γ2L2

11

]∥
∥
∥H1 − H̃1

∥
∥
∥
2

L2
.

(3.18)

Thus,

∥
∥
∥H1 − H̃1 − γ[C1(H1,H2) − C1(H̃1,H2)]

∥
∥
∥
L2

≤
√
1 − 2γθ1 + γ2L2

11

∥
∥
∥H1 − H̃1

∥
∥
∥
L2
.

(3.19)

Furthermore, C1(H1,H2) is L12-Lipschitz continuous with respect toH2, we get

∥
∥
∥H1 − H̃1 − γ[C1(H1,H2) − C1(H̃1,H2)]

∥
∥
∥
L2

+ γ
∥
∥
∥(C1(H̃1,H2) − C1(H̃1, H̃2))

∥
∥
∥
L2

≤
√
1 − 2γθ1 + γ2L2

11

∥
∥
∥H1 − H̃1

∥
∥
∥
L2

+ γL12

∥
∥
∥H2 − H̃2

∥
∥
∥
L2
.

(3.20)
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Similarly, we can prove that

∥
∥
∥H2 − H̃2 − η[C2(H1,H2) − C2(H1, H̃2)]

∥
∥
∥
L2

+ η
∥
∥
∥C2(H1, H̃2) − C2(H̃1, H̃2)

∥
∥
∥
L2

≤
√
1 − 2ηθ2 + η2L2

22

∥
∥
∥H2 − H̃2

∥
∥
∥
L2

+ ηL21

∥
∥
∥H1 − H̃1

∥
∥
∥
L2
.

(3.21)

Let

M := max
{√

1 − 2γθ1 + γ2L2
11 + ηL21,

√
1 − 2ηθ2 + η2L2

22 + γL12

}

. (3.22)

Then, applying previous bounds to the final terms appearing in (3.17), we get

∥
∥
∥F(H1,H2) − F(H̃1, H̃2)

∥
∥
∥
1

=
∥
∥
∥F1(H1,H2) − F1(H̃1, H̃2)

∥
∥
∥
L2

+
∥
∥
∥F2(H1,H2) − F2(H̃1, H̃2)

∥
∥
∥
L2

≤
√
1 − 2γθ1 + γ2L2

11

∥
∥
∥H1 − H̃1

∥
∥
∥ + γL12

∥
∥
∥H2 − H̃2

∥
∥
∥
L2

+
√
1 − 2ηθ2 + η2L2

22

∥
∥
∥H2 − H̃2

∥
∥
∥ + ηL2

21

∥
∥
∥H1 − H̃1

∥
∥
∥
L2

=
(√

1 − 2γθ1 + γ2L2
11 + ηL21

)∥
∥
∥H1 − H̃1

∥
∥
∥
L2

+
(√

1 − 2ηθ2 + η2L2
22 + γL12

)∥
∥
∥H2 − H̃2

∥
∥
∥
L2

≤ M
(∥
∥
∥H1 − H̃1

∥
∥
∥
L2

+
∥
∥
∥H2 − H̃2

∥
∥
∥
L2

)

= M
∥
∥
∥(H1 − H̃1,H2 − H̃2)

∥
∥
∥
1

= M
∥
∥
∥(H1,H2) − (H̃1, H̃2)

∥
∥
∥
1
.

(3.23)

It follows from (3.14) that M < 1. Therefore, F(·) is a contraction mapping. By Banach fixed
point theorem, F(·) has a unique fixed point (H1,H2) on K1 ×K2. That is,

(
H1,H2

)
= F

(
H1,H2

)
=
(
F1

(
H1,H2

)
, F2

(
H1,H2

))
, (3.24)
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and so

H1 = F1

(
H1,H2

)
= PK1

(
H1 − γC1

(
H1,H2

))
,

H2 = F2

(
H1,H2

)
= PK2

(
H2 − ηC2

(
H1,H2

))
.

(3.25)

By Theorem 3.8, we know that (H1,H2) is an equilibrium flow. This completes the proof.

4. An Example

In order to illustrate our results, we consider a simple traffic network consisting of a single
O/D pair of nodes and two paths connecting these two nodes. The feasible sets are given by

K1 = K2 =
{
F ∈ L2

(
[0, 2];R2

)
| 0 ≤ F1(t) ≤ t, 0 ≤ F2(t) ≤ 3, F1(t) + F2(t) = t, a.e. t ∈ [0, 2]

}
.

(4.1)

Let us assume that the cost functions on the paths are defined by

C11(H1(t),H2(t)) = H11(t) + 0.01H21(t) + 0.01H22(t),

C12(H1(t),H2(t)) = H12(t) + 0.01H21(t) + 0.01H22(t),

C21(H1(t),H2(t)) = 0.01H11(t) + 0.01H12(t) +H21(t),

C22(H1(t),H2(t)) = 0.01H11(t) + 0.01H12(t) +H22(t),

(4.2)

where the following vector notation is introduced:

C1(H1(t),H2(t)) = (C11(H1(t),H2(t)), C12(H1(t),H2(t)))
T ,

C2(H1(t),H2(t)) = (C21(H1(t),H2(t)), C22(H1(t),H2(t)))
T ,

H1(t) = (H11(t),H12(t))
T ∈ K1,

H2(t) = (H21(t),H22(t))
T ∈ K2.

(4.3)

By Corollary 3.4, for any F1 ∈ K1 and F2 ∈ K2,

C11(H1(t),H2(t))(F11(t) −H11(t)) + C12(H1(t),H2(t))(F12(t) −H12(t)) ≥ 0, a.e. t ∈ [0, 2],

C21(H1(t),H2(t))(F21(t) −H21(t)) + C22(H1(t),H2(t))(F22(t) −H22(t)) ≥ 0, a.e. t ∈ [0, 2].
(4.4)
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From the traffic conservation law, we get

Fi2(t) = t − Fi1(t), Gi2(t) = t −Gi1(t), a.e. t ∈ [0, 2]. (4.5)

Thus, for any F1 ∈ K1 and F2 ∈ K2, we have

(C11(H1(t),H2(t)) − C12(H1(t),H2(t)))(F11(t) −H11(t)) ≥ 0, a.e. t ∈ [0, 2],

(C21(H1(t),H2(t)) − C22(H1(t),H2(t)))(F21(t) −H21(t)) ≥ 0, a.e. t ∈ [0, 2].
(4.6)

It follows that, for any F1 ∈ K1 and F2 ∈ K2,

(2H11(t) − t)(F11(t) −H11(t)) ≥ 0, a.e. t ∈ [0, 2],

(2H21(t) − t)(F21(t) −H21(t)) ≥ 0, a.e. t ∈ [0, 2].
(4.7)

Now we can prove that problem (4.7) has unique solution by Theorem 3.9. In fact, let

θ1 = θ2 = 1, L11 = L22 = 1, L12 = L21 = 0.01, γ = η = 1. (4.8)

Then it is easy to check that C1(H1,H2) and C2(H1,H2) satisfy all the conditions of
Theorem 3.9.

Furthermore, we can obtain the unique exact solution of problem (4.7). Clearly, (4.7)
is equivalent to

F11(t)(2H11(t) − t) ≥ H11(t)(2H11(t) − t), a.e. t ∈ [0, 2],

F21(t)(2H21(t) − t) ≥ H21(t)(2H21(t) − t), a.e. t ∈ [0, 2],
(4.9)

for any F1 ∈ K1 and F2 ∈ K2. If H11(t) > (1/2)t, then F11(t) ≥ H11(t), for any 0 ≤ F11(t) ≤ t.
However, the inequality holds if and only if H11(t) = 0. It is in contradiction with H11(t) >
(1/2)t. If H11(t) < (1/2)t, then F11(t) ≤ H11(t), for any 0 ≤ F11(t) ≤ t. However, this is in
contradiction with H11(t) < (1/2)t. Therefore, H11(t) = (1/2)t. Similarly, we can prove that
H21(t) = (1/2)t. Thus,

H1(t) =
(
1
2
t,
1
2
t

)T

,

H2(t) =
(
1
2
t,
1
2
t

)T

,

(4.10)

is the unique solution of problem (4.7).

5. Conclusions

Since the transportation costs of certain kind of goods is not only related with the flow of
itself, but also related with the flow of other kinds of goods, the equilibrium problem when
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some kinds of goods are transported through the same traffic network should be considered.
In this paper, we study the dynamic traffic equilibrium system based onWardrop’s principles
and propose a basic model for the new equilibrium problem. In detail, the dynamic traffic
equilibrium system can be equivalently expressed as a system of evolutionary variational
inequalities. Thus some classical results of system of variational inequalities could be applied
to the study of dynamic traffic equilibrium system. By using the fixed point theory and
projected dynamic system theory, we get the existence and uniqueness of the solution for this
equilibrium problem. A numerical example is also given to illustrate our results about the
dynamic traffic equilibrium system. Our results improve and generalize the classic dynamic
traffic network equilibrium problem and the results of [12].
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