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Three concepts of multivalued contractions in complete metric spaces are introduced, and
the conditions guaranteeing the existence of fixed points for the multivalued contractions are
established. The results obtained in this paper extend genuinely a few fixed point theorems due
to Ćirić (2009) Feng and Liu (2006) and Klim and Wardowski (2007). Five examples are given to
explain our results.

1. Introduction and Preliminaries

Let (X, d) be a metric space, and let CL(X), CB(X), and C(X) denote the families of all
nonempty closed, all nonempty closed and bounded, and all nonempty compact subsets of
X, respectively. For any U,V ∈ CL(X) and x ∈ X, let d(x,U) = inf{d(x, y) : y ∈ U} and

H(U,V ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

max

{

sup
u∈U

d(u, V ), sup
v∈V

d(v,U)

}

, if the maximum exists,

+∞, otherwise.

(1.1)

Such a mapping H is called a generalized Hausdorff metric in CL(X) induced by d.
Throughout this paper, we assume that �,�+ , and � denote the sets of all real numbers,

nonnegative real numbers, and positive integers, respectively.
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The existence of fixed points for various multivalued contractive mappings had been
studied by many authors under different conditions. For details, we refer the reader to [1–7]
and the references therein. In 1969, Nadler Jr [7] extended the famous Banach Contraction
Principle from single-valued mapping to multivalued mapping and proved the following
fixed point theorem for the multivalued contraction.

Theorem 1.1 (see [7]). Let (X, d) be a complete metric space, and let T be a mapping from X into
CB(X). Assume that there exists c ∈ [0, 1) such that

H
(
T(x), T

(
y
)) ≤ cd

(
x, y

)
, ∀x, y ∈ X. (1.2)

Then, T has a fixed point.

In 1989, Mizoguchi and Takahashi [6] generalized the Nadler fixed point theorem and
got a fixed point theorem for the multivalued contraction as follows.

Theorem 1.2 (see [6]). Let (X, d) be a complete metric space, and let T be a mapping from X into
CB(X). Assume that there exists a map ϕ : (0,+∞) → [0, 1) such that

lim sup
r→ t+

ϕ(r) < 1, ∀t ∈ �+ ,

H
(
T(x), T

(
y
)) ≤ ϕ

(
d
(
x, y

))
d
(
x, y

)
, ∀x, y ∈ X.

(1.3)

Then, T has a fixed point.

In 2006, Feng and Liu [3] obtained a new extension of the Nadler fixed point theorem
and proved the following fixed point theorem.

Theorem 1.3 (see [3]). Let (X, d) be a complete metric space, and let T be a multivalued mapping
from X into CL(X). If there exist constants b, c ∈ (0, 1), c < b, such that for any x ∈ X there is
y ∈ T(x) satisfying

bd
(
x, y

) ≤ f(x), f
(
y
) ≤ cd

(
x, y

)
, (1.4)

then T has a fixed point in X provided a function f(x) = d(x, T(x)), x ∈ X is lower semicontinuous.

In 2007, Klim and Wardowski [5] improved the result of Feng and Liu and proved the
following results.

Theorem 1.4 (see [5]). Let (X, d) be a complete metric space, and let T be a multivalued mapping
from X into CL(X). Assume that

(a) the mapping f : X → �
+ , defined by f(x) = d(x, T(x)), x ∈ X, is lower semi-continuous;

(b) there exist b ∈ (0, 1) and ϕ : �+ → [0, b) satisfying

lim sup
r→ t+

ϕ(r) < b, t ∈ �+ , (1.5)
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and for any x ∈ X there is y ∈ T(x) satisfying

bd
(
x, y

) ≤ d(x, Tx), f
(
y
) ≤ ϕ

(
d
(
x, y

))
d
(
x, y

)
. (1.6)

Then, T has a fixed point in X.

Theorem 1.5 (see [5]). Let (X, d) be a complete metric space, and let T be a mapping from X into
C(X). Assume that

(a) the mapping f : X → �
+ , defined by f(x) = d(x, T(x)), x ∈ X, is lower semi-continuous;

(b) there exists a function ϕ : �+ → [0, 1) satisfying

lim sup
r→ t+

ϕ(r) < 1, ∀t ∈ �+ , (1.7)

and for any x ∈ X there is y ∈ T(x) satisfying

d
(
x, y

)
= f(x), f

(
y
) ≤ ϕ

(
d
(
x, y

))
d
(
x, y

)
. (1.8)

Then, T has a fixed point in X.

In 2008 and 2009, Ćirić [1, 2] introduced new multivalued nonlinear contractions and
established a few nice fixed point theorems for the multivalued nonlinear contractions, one
of which is as follows.

Theorem 1.6 (see [2]). Let (X, d) be a complete metric space, and let T be a mapping from X into
CL(X). Assume that

(a) the mapping f : X → �
+ , defined by f(x) = d(x, T(x)), x ∈ X, is lower semi-continuous;

(b) there exists a function ϕ : �+ → [a, 1), 0 < a < 1, satisfying

lim sup
r→ t+

ϕ(r) < 1, ∀t ∈ �+ ; (1.9)

and for any x ∈ X there is y ∈ T(x) satisfying

√

ϕ
(
f(x)

)
d
(
x, y

) ≤ f(x), f
(
y
) ≤ ϕ

(
f(x)

)
d
(
x, y

)
. (1.10)

Then T has a fixed point in X.

The aim of this paper is both to introduce three new multivalued contractions in
complete metric spaces and to prove the existence of fixed points for the multivalued
contractions under weaker conditions than the ones in [2, 3, 5]. Five nontrivial examples are
given to show that the results presented in this paper generalize substantially and unify the
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corresponding fixed point theorems of Ćirić [2], Feng and Liu [3], and Klim and Wardowski
[5] and are different from those results of Mizoguchi and Takahashi [6] and Nadler Jr [7].

Next we recall and introduce the following result in [4] and some notions and
terminologies.

Lemma 1.7 (see [4]). Let (X, d) be a complete metric space and D ∈ CL(X). Then, for each x ∈ X
and k > 1 there exists an element a ∈ D such that

d(x, a) ≤ kd(x,D). (1.11)

In the rest of this paper, for a multivalued mapping T : X → CL(X), we put

A =

⎧
⎪⎨

⎪⎩

[0,diam(X)], if diam(X) < +∞,

[0,+∞), if diam(X) = +∞,

B =

⎧
⎪⎨

⎪⎩

[
0, sup f(X)

]
, if sup f(X) < +∞,

[0,+∞), if sup f(X) = +∞,

(1.12)

where diam(X) = sup{d(x, y) : x, y ∈ X} and f(x) = d(x, T(x)), for all x ∈ X. The function
f : X → �

+ is said to be T-orbitally lower semicontinuous at z ∈ X if {xn}n≥0 ⊂ X is an arbitrary
orbit of T with limn→∞xn = z impling that f(z) ≤ lim infn→∞f(xn).

2. Main Results

In this section, we establish three fixed point theorems for three newmultivalued contractions
in complete metric spaces.

Theorem 2.1. Let T be a multivalued mapping from a complete metric space (X, d) into CL(X) such
that

for each x ∈ X there exists y ∈ T(x) satisfying
α
(
f(x)

)
d
(
x, y

) ≤ f(x) and f
(
y
) ≤ β

(
f(x)

)
d
(
x, y

)
,

(2.1)

where α : B → (0, 1] and β : B → [0, 1) satisfy that

lim inf
r→ 0+

α(r) > 0, lim sup
r→ t+

β(r)
α(r)

< 1, ∀t ∈ [
0, sup f(X)

)
. (2.2)

Then,

(a1) for each x0 ∈ X there exists an orbit {xn}n≥0 of T and z ∈ X such that limn→∞xn = z;

(a2) z is a fixed point of T inX if and only if the function f is T-orbitally lower semi-continuous
at z.
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Proof. Put

γ(t) =
β(t)
α(t)

, ∀t ∈ [
0, sup f(X)

)
. (2.3)

It follows from (2.1) that for each x0 ∈ X there exists x1 ∈ T(x0) satisfying

α
(
f(x0)

)
d(x0, x1) ≤ f(x0), f(x1) ≤ β

(
f(x0)

)
d(x0, x1), (2.4)

which together with (2.3) yield that

f(x1) ≤ β
(
f(x0)

) f(x0)
α
(
f(x0)

) = γ
(
f(x0)

)
f(x0). (2.5)

Continuing this process, we choose easily an orbit {xn}n≥0 of T satisfying

xn+1 ∈ T(xn), α
(
f(xn)

)
d(xn, xn+1) ≤ f(xn),

f(xn+1) ≤ β
(
f(xn)

)
d(xn, xn+1), ∀n ≥ 0,

(2.6)

which imply that

f(xn+1) ≤ β
(
f(xn)

)
d(xn, xn+1) ≤ β

(
f(xn)

) f(xn)
α
(
f(xn)

) = γ
(
f(xn)

)
f(xn), ∀n ≥ 0. (2.7)

Now, we claim that

lim
n→∞

f(xn) = 0. (2.8)

Notice that the ranges of α, β, (2.2), and (2.3) ensure that

0 ≤ γ(t) < 1, ∀t ∈ [
0, sup f(X)

)
. (2.9)

Using (2.7) and (2.9), we conclude that {f(xn)}n≥0 is a nonnegative and nonincreasing
sequence, which means that

lim
n→∞

f(xn) = a (2.10)
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for some a ≥ 0. Suppose that a > 0. Taking limits superior as n → ∞ in (2.7) and using (2.2),
(2.3), (2.9), and (2.10), we get that

a = lim sup
n→∞

f(xn+1) ≤ lim sup
n→∞

[
γ
(
f(xn)

)
f(xn)

]

≤ lim sup
n→∞

γ
(
f(xn)

)
lim sup
n→∞

f(xn) = a lim sup
n→∞

γ
(
f(xn)

)
< a,

(2.11)

which is a contradiction. Thus, a = 0; that is, (2.8) holds.
Next, we show that {xn}n≥0 is a Cauchy sequence. Let

b = lim sup
n→∞

γ
(
f(xn)

)
, c = lim inf

n→∞
α
(
f(xn)

)
. (2.12)

It follows from (2.2), (2.3), (2.9), and (2.12) that

0 ≤ b < 1, c > 0. (2.13)

Let p ∈ (0, c) and q ∈ (b, 1). In light of (2.12) and (2.13), we deduce that there exists some
n0 ∈ � such that

γ
(
f(xn)

)
< q, α

(
f(xn)

)
> p, ∀n ≥ n0, (2.14)

which together with (2.6) and (2.7) yield that

f(xn+1) ≤ qf(xn), d(xn, xn+1) ≤
f(xn)
p

, ∀n ≥ n0, (2.15)

which imply that

f(xn+1) ≤ qn+1−n0f(xn0), d(xn, xn+1) ≤
f(xn0)

p
qn−n0 , ∀n ≥ n0, (2.16)

which give that

d(xn, xm) ≤
m−1∑

k=n

d(xk, xk+1) ≤
f(xn0)

p

m−1∑

k=n

qk−n0 ≤ f(xn0)
p
(
1 − q

)qn+1−n0 , ∀m > n ≥ n0, (2.17)

which implies that {xn}n≥0 is a Cauchy sequence because q < 1. It follows from completeness
of (X, d) that there is some z ∈ X such that limn→∞xn = z.

Suppose that f is T-orbitally lower semi-continuous in z. It follows from (2.8) that

0 ≤ d(z, T(z)) = f(z) ≤ lim inf
n→∞

f(xn) = 0, (2.18)
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which means that z ∈ T(z) because T(z) is closed.
Suppose that z is a fixed point of T in X. For any orbit {yn}n≥0 of T with yn+1 ∈ T(yn)

and limn→∞yn = z, we have

f(z) = d(z, T(z)) = 0 ≤ lim inf
n→∞

d
(
yn, T

(
yn

))
= lim inf

n→∞
f
(
yn

)
, (2.19)

that is, f is T-orbitally lower semi-continuous in z. This completes the proof.

Theorem 2.2. Let T be a multivalued mapping from a complete metric space (X, d) into CL(X) such
that

f
(
y
) ≤ ϕ

(
f(x)

)
d
(
x, y

)
, ∀(x, y) ∈ X × Tx, (2.20)

where ϕ : B → (0, 1) satisfies that

lim inf
r→ 0+

ϕ(r) > 0, lim sup
r→ t+

ϕ(r) < 1, ∀t ∈ [
0, sup f(X)

)
. (2.21)

Then,

(a1) for each x0 ∈ X there exists an orbit {xn}n≥0 of T and z ∈ X such that limn→∞xn = z;

(a2) z is a fixed point of T inX if and only if the function f is T-orbitally lower semi-continuous
at z.

Proof. It follows from Lemma 1.7 that for each x ∈ X there exists y ∈ Tx with

d
(
x, y

) ≤ f(x)
√

ϕ
(
f(x)

) , (2.22)

which together with (2.20) and (2.21) ensures that (2.1) and (2.2) hold with α = √
ϕ and β = ϕ.

Thus, Theorem 2.2 follows from Theorem 2.1. This completes the proof.

Theorem 2.3. Let T be a multivalued mapping from a complete metric space (X, d) into CL(X) such
that

for each x ∈ X there exists y ∈ T(x) satisfying
α
(
d
(
x, y

))
d
(
x, y

) ≤ f(x) and f
(
y
) ≤ β

(
d
(
x, y

))
d
(
x, y

)
,

(2.23)

where α : A → (0, 1] and β : A → [0, 1) satisfy that

lim inf
r→ t+

α(r) > 0, lim sup
r→ t+

β(r)
α(r)

< 1, ∀t ∈ [0,diam(X)), (2.24)
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and one of α and β is nondecreasing. Then,

(a1) for each x0 ∈ X there exists an orbit {xn}n≥0 of T and z ∈ X such that limn→∞xn = z;

(a2) z is a fixed point of T inX if and only if the function f is T-orbitally lower semi-continuous
at z.

Proof. Put

γ(t) =
β(t)
α(t)

, ∀t ∈ [0,diam(X)). (2.25)

It follows from the ranges of α, β, (2.24), and (2.25) that

0 ≤ γ(t) < 1, ∀t ∈ [0,diam(X)). (2.26)

As in the proof of Theorem 2.1, we select an orbit {xn}n≥0 of T satisfying

xn+1 ∈ T(xn), α(d(xn, xn+1))d(xn, xn+1) ≤ f(xn),

f(xn+1) ≤ β(d(xn, xn+1))d(xn, xn+1), ∀n ≥ 0,

(2.27)

which imply that

f(xn+1) ≤ β(d(xn, xn+1))
f(xn)

α(d(xn, xn+1))
= γ(d(xn, xn+1))f(xn), ∀n ≥ 0, (2.28)

d(xn+1, xn+2) ≤
f(xn+1)

α(d(xn+1, xn+2))
≤ β(d(xn, xn+1))
α(d(xn+1, xn+2))

d(xn, xn+1), ∀n ≥ 0. (2.29)

Using (2.26) and (2.28), we conclude easily that {f(xn)}n≥0 is a nonnegative and
nonincreasing sequence. Consequently there exists some θ ≥ 0 satisfying

lim
n→∞

f(xn) = θ. (2.30)

Now we claim that

d(xn+1, xn+2) ≤ d(xn, xn+1), ∀n ≥ 0. (2.31)
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Suppose to the contrary, that is, there exists some n0 ≥ 0 satisfying d(xn0+1, xn0+2) >
d(xn0 , xn0+1). Note that one of α and β is nondecreasing. In view of (2.25), (2.26), and (2.29),
we get that

d(xn0 , xn0+1) < d(xn0+1, xn0+2) ≤
β(d(xn0 , xn0+1))
α(d(xn0+1, xn0+2))

d(xn0 , xn0+1)

≤ max
{
γ(d(xn0 , xn0+1)), γ(d(xn0+1, xn0+2))

}
d(xn0 , xn0+1)

< d(xn0 , xn0+1),

(2.32)

which is a contradiction. Thus, (2.31) holds. Therefore, there exists some η ≥ 0 such that

lim
n→∞

d(xn, xn+1) = η+. (2.33)

Next, we show that θ = 0. Suppose that θ > 0. Taking limits superior as n → ∞ in
(2.28) and using (2.24), (2.25), (2.30), and (2.33), we get that

θ = lim sup
n→∞

f(xn+1) ≤ lim sup
n→∞

γ(d(xn, xn+1))lim sup
n→∞

f(xn)

= θlim sup
n→∞

γ(d(xn, xn+1)) < θ,

(2.34)

which is impossible. Thus, θ = 0. Let

b = lim sup
n→∞

γ(d(xn, xn+1)), c = lim inf
n→∞

α(d(xn, xn+1)). (2.35)

It follows from (2.24), (2.25), (2.33), and (2.35) that

0 ≤ b < 1, c > 0. (2.36)

Let p ∈ (0, c) and q ∈ (b, 1). By means of (2.35) and (2.36), we infer that there exists some
n0 ∈ N such that

γ(d(xn, xn+1)) < q, α(d(xn, xn+1)) > p, ∀n ≥ n0, (2.37)

which together with (2.27) and (2.28) yield that

f(xn+1) ≤ qf(xn), d(xn, xn+1) ≤
f(xn)
p

, ∀n ≥ n0. (2.38)

The rest of the proof is similar to that of Theorem 2.1 and is omitted. This completes the
proof.
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3. Remarks and Examples

In this section, we construct five examples to illustrate the superiority and applications of the
results presented in this paper.

Remark 3.1. In case α(t) = b and β(t) = c for all t ∈ [0, sup f(X)), where b and c are
constants in (0, 1) with c < b, then Theorem 2.1 reduces to a result, which is a generalization
of Theorem 1.3. The following example reveals that Theorem 2.1 extends both essentially
Theorem 1.3 and is different from Theorems 1.1 and 1.2.

Example 3.2. Let X = [0, 1] be endowed with the Euclidean metric d = | · |, and let T : X →
CL(X) be defined by

T(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
x2

3

}

, x ∈
[

0,
23
48

)

∪
(
23
48

, 1
]

,

{
1
12

,
131
432

}

, x =
23
48

.

(3.1)

It is easy to see that

f(x) = d(x, T(x)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − x2

3
, x ∈

[

0,
23
48

)

∪
(
23
48

, 1
]

,

19
108

, x =
23
48

(3.2)

is T-orbitally lower semi-continuous in X and B = [0, 2/3]. Define α : B → (0, 1] and β : B →
[0, 1) by

α(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
8
, t ∈

[

0,
1
13

)

,

3t
2
, t ∈

[
1
13

,
2
3

]

,

β(t) = max
{
1
9
,
13t
9

}

, t ∈
[

0,
2
3

]

.

(3.3)

Obviously,

lim inf
r→ 0+

α(r) =
1
8
> 0. (3.4)

For t ∈ [0, 1/13), we have

lim sup
r→ t+

β(r)
α(r)

= lim sup
r→ t+

1
9
· 8
1
=
8
9
< 1 (3.5)
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For t ∈ [1/13, 2/3), we infer that

lim sup
r→ t+

β(r)
α(r)

= lim sup
r→ t+

13r
9

· 2
3r

=
26
27

< 1. (3.6)

For x ∈ [0, 23/48) ∪ (23/48, 1], there exists y = x2/3 ∈ T(x) satisfying

α
(
f(x)

)
d
(
x, y

)
= α

(

x − x2

3

)(

x − x2

3

)

≤ x − x2

3
= f(x),

f
(
y
)
= d

(
y, T

(
y
))

=

∣
∣
∣
∣
∣

x2

3
− x4

27

∣
∣
∣
∣
∣
=
1
3

(

x +
x2

3

)(

x − x2

3

)

≤ max

{
1
9
,
13
9

(

x − x2

3

)}

d
(
x, y

)

= β
(
f(x)

)
d
(
x, y

)
.

(3.7)

For x = 23/48, there exists y = 1/12 ∈ T(x) satisfying

α
(
f(x)

)
d
(
x, y

)
=
19
72

· 19
48

<
19
108

= f(x),

f
(
y
)
= d

(
y, T

(
y
))

= d

(
1
12

,
1

432

)

=
35
432

<
4693
46656

= β
(
f(x)

)
d
(
x, y

)
.

(3.8)

That is, the conditions of Theorem 2.1 are fulfilled. It follows from Theorem 2.1 that T has
a fixed point in X. However, we cannot invoke each of Theorems 1.1–1.3 to show that the
mapping T has a fixed point in X.

In fact, for any b ∈ (0, 1), we consider two possible cases as follows.

Case 1. Let b ∈ (0, 4/9]. Take x0 = 1 and y0 ∈ T(x0) = {1/3}. Notice that c ∈ (0, 1) and c < b.
It is clear that

d
(
y0, T

(
y0
))

=
8
27

=
4
9
· 2
3
/≤2c
3

= cd
(
x0, y0

)
; (3.9)

Case 2. Let b ∈ (4/9, 1). Put x0 = 23/48 and y0 = 1/12 ∈ Tx0 = {1/12, 131/432}. It follows
that

bd
(
x0, y0

)
=

19b
48

/≤4
9
· 19
48

=
19
108

= f(x0). (3.10)
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Set x0 = 23/48 and y0 = 131/432 ∈ Tx0 = {1/12, 131/432}. Note that c ∈ (0, 1) and c < b. It is
easy to verify that

d
(
y0, T

(
y0
))

=

∣
∣
∣
∣
∣

131
432

− 1
3
· 131

2

4322

∣
∣
∣
∣
∣
=
152615
559872

/≤19c
108

= cd
(
x0, y0

)
. (3.11)

That is, the conditions of Theorem 1.3 do not hold.
Put x0 = 1/2 and y0 = 23/48. Clearly

H
(
T(x0), T

(
y0
))

=
95
432

/≤ c

48
= cd

(
x0, y0

)
, ∀c ∈ [0, 1),

H
(
T(x0), T

(
y0
))

=
95
432

/≤ϕ
(
d
(
x0, y0

))

48
= ϕ

(
d
(
x0, y0

))
d
(
x0, y0

)

(3.12)

for any ϕ : (0,+∞) → [0, 1) with lim supr→ t+ϕ(r) < 1, for all t ∈ �
+ . That is, the conditions

of Theorems 1.1 and 1.2 do not hold.

Remark 3.3. If α(t) =
√
ϕ(t) and β(t) = ϕ(t) for all t ∈ [0, sup f(X)), then Theorem 2.1 changes

into a result, which is an extension of Theorem 1.6. The following example demonstrates that
Theorem 2.1 generalizes substantially Theorem 1.6.

Example 3.4. LetX = [0, 1] be endowed with the Euclidean metric d = | · |. Let T : X → CL(X)
be defined by

T(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
x2

2

}

, x ∈
[

0,
7
8

)

∪
(
7
8
, 1
]

,

{
1
2
,
2
5

}

, x =
7
8
.

(3.13)

It is easy to see that

f(x) = d(x, T(x)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − x2

2
, x ∈

[

0,
7
8

)

∪
(
7
8
, 1
]

,

3
8
, x =

7
8

(3.14)

is T-orbitally lower semi-continuous in X and B = [0, sup f(X)] = [0, 1/2]. Define α : B →
(0, 1] and β : B → [0, 1) by

α(t) =
15
19

, β(t) =
3
4
, t ∈

[

0,
1
2

]

. (3.15)
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Obviously,

lim inf
r→ 0+

α(r) =
15
19

> 0,

lim sup
r→ t+

β(r)
α(r)

= lim sup
r→ t+

3
4
· 19
15

=
57
60

< 1, t ∈
[

0,
1
2

)

.

(3.16)

For x ∈ [0, 7/8) ∪ (7/8, 1], there exists y = x2/2 ∈ T(x) = {x2/2} satisfying

α
(
f(x)

)
d
(
x, y

)
= α

(

x − x2

2

)(

x − x2

2

)

≤ x − x2

2
= f(x),

f
(
y
)
= d

(
y, T

(
y
))

=

∣
∣
∣
∣
∣

x2

2
− x4

8

∣
∣
∣
∣
∣
=
1
2

(

x +
x2

2

)(

x − x2

2

)

≤ 3
4
·
(

x − x2

2

)

= β
(
f(x)

)
d
(
x, y

)
.

(3.17)

For x = 7/8, there exists y = 2/5 ∈ T(x) satisfying

α
(
f(x)

)
d
(
x, y

)
=
15
19

· 19
40

=
3
8
= f(x),

f
(
y
)
= d

(
y, T

(
y
))

= d

(
2
5
,
2
25

)

=
8
25

<
57
160

=
3
4
· 19
40

= β
(
f(x)

)
d
(
x, y

)
.

(3.18)

That is, the conditions of Theorem 2.1 are fulfilled. It follows from Theorem 2.1 that T has
a fixed point in X. However, Theorem 1.6 is inapplicable in ensuring the existence of fixed
points for the mapping T in X because there does not exist ϕ : �+ → [a, 1) and a ∈ (0, 1)
satisfying the assumptions of Theorem 1.6. In fact, for any ϕ : �+ → [a, 1) and a ∈ (0, 1), we
consider the following two possible cases.

Case 1. Let a ∈ (225/361, 1). Put x0 = 7/8. Note that ϕ(f(x0)) ⊆ [a, 1). If y0 = 2/5 ∈ Tx0 =
{1/2, 2/5}, we see that

√

ϕ
(
f(x0)

)
d
(
x0, y0

)
=
19
40

√

ϕ

(
3
8

)

/≤3
8
= f(x0). (3.19)

If y0 = 1/2 ∈ Tx0 = {1/2, 2/5}, then we infer that

d
(
y0, T

(
y0
))

=
∣
∣
∣
∣
1
2
− 1
8

∣
∣
∣
∣ =

3
8
/≤3
8
ϕ

(
3
8

)

= ϕ
(
f(x0)

)
d
(
x0, y0

)
. (3.20)
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Case 2. Let a ∈ (0, 225/361]. Put x0 = 7/8. Note that ϕ(f(x0)) ⊆ [a, 1). Suppose that
ϕ(f(x0)) ∈ [a, 225/361]. Let y0 = 1/2 ∈ T(x0) = {1/2, 2/5}. It is clear that

d
(
y0, T

(
y0
))

=
∣
∣
∣
∣
1
2
− 1
8

∣
∣
∣
∣ =

3
8
= d

(
x0, y0

)
/≤ϕ(f(x0)

)
d
(
x0, y0

)
. (3.21)

Take y0 = 2/5 ∈ T(x0) = {1/2, 2/5}. Obviously,

d
(
y0, T

(
y0
))

=
∣
∣
∣
∣
2
5
− 2
25

∣
∣
∣
∣ =

8
25

/≤19
40

ϕ

(
3
8

)

= ϕ
(
f(x0)

)
d
(
x0, y0

)
. (3.22)

Suppose that ϕ(f(x0)) ∈ (225/361, 1). As in the proof of Case 1 stated first, we conclude
similarly the conclusion of Case 1 stated after then. Therefore, the assumptions of Theorem 1.6
do not hold.

Remark 3.5. The following example is an application of Theorem 2.2.

Example 3.6. LetX = [0, 1] be endowed with the Euclidean metric d = | · |. Let T : X → CL(X)
be defined by

T(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{
x2

3

}

, x ∈
[

0,
23
48

)

∪
(
23
48

, 1
]

,

{
1
12

,
1
24

,
7
48

}

, x =
23
48

.

(3.23)

It is easy to see that

f(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

d(x, T(x)) = x − x2

3
, x ∈

[

0,
23
48

)

∪
(
23
48

, 1
]

,

1
3
, x =

23
48

(3.24)

is T-orbitally lower semi-continuous in X and B = [0, 2/3]. Define ϕ : B → (0, 1) by

ϕ(t) = max
{
1
9
,
13t
9

}

, t ∈
[

0,
2
3

]

. (3.25)

Clearly,

lim inf
r→ 0+

ϕ(r) = lim inf
r→ 0+

max
{
1
9
,
13t
9

}

=
1
9
> 0,

lim sup
r→ t+

ϕ(r) < 1, t ∈
[

0,
2
3

)

.

(3.26)
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For (x, y) ∈ ([0, 1] \ {23/48}) × T(x), we infer that

f
(
y
)
= d

(
y, T

(
y
))

=

∣
∣
∣
∣
∣

x2

3
− x4

27

∣
∣
∣
∣
∣
=
1
3

(

x +
x2

3

)(

x − x2

3

)

≤ max

{
1
9
,
13
9

(

x − x2

3

)}(

x − x2

3

)

= ϕ
(
f(x)

)
d
(
x, y

)
.

(3.27)

For (x, y) = (23/48, 1/12) ∈ X × T(x), we conclude that

f
(
y
)
= d

(
y, T

(
y
))

=
∣
∣
∣
∣
1
12

− 1
3
· 1
122

∣
∣
∣
∣ =

35
432

<
247
1296

=
13
27

· 19
48

= ϕ
(
f(x)

)
d
(
x, y

)
. (3.28)

For (x, y) = (23/48, 1/24) ∈ X × T(x), we obtain that

f
(
y
)
= d

(
y, T

(
y
))

=
∣
∣
∣
∣
1
24

− 1
3
· 1
242

∣
∣
∣
∣ =

71
1728

<
273
1296

=
13
27

· 21
48

= ϕ
(
f(x)

)
d
(
x, y

)
. (3.29)

For (x, y) = (23/48, 7/48) ∈ X × T(x), we get that

f
(
y
)
= d

(
y, T

(
y
))

=

∣
∣
∣
∣
∣

7
48

− 1
3
· 72

482

∣
∣
∣
∣
∣
=

959
6912

<
13
81

=
13
27

· 1
3
= ϕ

(
f(x)

)
d
(
x, y

)
. (3.30)

Therefore, all assumptions of Theorem 2.2 are satisfied. It follows from Theorem 2.2 that T
has a fixed point in X.

Remark 3.7. If α(t) = 1 and β(t) = ϕ(t) for all t ∈ [0,diam(X)), then Theorem 2.3 comes down
to a result, which extends Theorem 1.5. The following example shows that Theorem 2.3 is a
genuine generalization of Theorem 1.5.

Example 3.8. Let X = �
+ be endowed with the Euclidean metric d = | · |. Define T : X →

CL(X), α : �+ → (0, 1], and β : �+ → [0, 1) by

T(x) =
{
x

3

}

∪ [3x,+∞), x ∈ X,

α(t) = 1, β(t) =
4
9
, t ∈ �+ ,

(3.31)

respectively. Clearly,A = [0,+∞) and

f(x) = d(x, Tx) = x − x

3
=

2x
3
, ∀x ∈ X, (3.32)
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is continuous in X. Note that for each x ∈ X there exists y = x/3 ∈ T(x) such that

α
(
d
(
x, y

))
d
(
x, y

)
= 1 ·

(

x − x

3

)

=
2x
3

= f(x),

f
(
y
)
= d

(
y, Ty

)
=

x

3
− x

9
=

2x
9

≤ 4
9
· 2x
3

= β
(
d
(
x, y

))
d
(
x, y

)
.

(3.33)

It is easy to verify that the assumptions of Theorem 2.3 are satisfied. Consequently,
Theorem 2.3 guarantees that T has a fixed point in X. But T does not satisfy the conditions of
Theorem 1.5 because T(x) is not compact for all x ∈ X.

Remark 3.9. In case α(t) = b and β(t) = ϕ(t) for all t ∈ [0,diam(X)), then Theorem 2.3 reduces
to a result, which extends Theorem 1.4. The following example reveals that Theorem 2.3
generalizes properly Theorem 1.4.

Example 3.10. Let (X, d) and T be as in example 3.1. Clearly,

f(x) = d(x, T(x)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x − x2

3
, x ∈

[

0,
23
48

)

∪
(
23
48

, 1
]

,

19
108

, x =
23
48

(3.34)

is T-orbitally lower semi-continuous in X and A = [0, 1]. Define α : A → (0, 1] and β : A →
[0, 1) by

α(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
10

, t ∈
[

0,
3
22

)

,

t, t ∈
[
3
22

, 1
]

,

β(t) = max
{

1
11

,
2t
3

}

, t ∈ [0, 1].

(3.35)

It is easy to verify that α is nondecreasing and

0 < lim inf
r→ t+

α(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
10

, t ∈
[

0,
3
22

)

,

t, t ∈
[
3
22

, 1
)

.

(3.36)

For t ∈ [0, 3/22), we have

lim sup
r→ t+

β(r)
α(r)

= lim sup
r→ t+

1
11

· 10
1

=
10
11

< 1. (3.37)
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For t ∈ [3/22, 1), we infer that

lim sup
r→ t+

β(r)
α(r)

= lim sup
r→ t+

2r
3

· 1
r
=
2
3
< 1. (3.38)

For x ∈ [0, 23/48) ∪ (23/48, 1], there exists y = x2/3 ∈ T(x) satisfying

α
(
d
(
x, y

))
d
(
x, y

)
= α

(

x − x2

3

)(

x − x2

3

)

≤ x − x2

3
= f(x),

f
(
y
)
= d

(
y, T

(
y
))

=

∣
∣
∣
∣
∣

x2

3
− x4

27

∣
∣
∣
∣
∣
=

1
3

(

x +
x2

3

)(

x − x2

3

)

≤ max

{
1
11

,
2
3

(

x − x2

3

)}

d
(
x, y

)

= β
(
d
(
x, y

))
d
(
x, y

)
.

(3.39)

For x = 23/48, there exists y = 1/12 ∈ T(x), satisfying

α
(
d
(
x, y

))
d
(
x, y

)
=
19
48

· 19
48

<
19
108

= f(x),

f
(
y
)
= d

(
y, T

(
y
))

= d

(
1
12

,
1

432

)

=
35
432

<
361
3456

=
19
72

· 19
48

= β
(
d
(
x, y

))
d
(
x, y

)
.

(3.40)

That is, the conditions of Theorem 2.3 are fulfilled. It follows from Theorem 2.3 that T has a
fixed point inX. However, we cannot use Theorem 1.4 to show that the mapping T has a fixed
point in X since there does not exist b ∈ (0, 1) and ϕ : �+ → [0, b) satisfying the assumptions
in Theorem 1.4. In fact, for any b ∈ (0, 1) and ϕ : �+ → [0, b), we consider two possible cases
as follows.

Case 1. Let b ∈ (0, 4/9]. Take x0 = 1 and y0 ∈ T(x0) = {1/3}. Note that ϕ(d(x0, y0)) < b. It is
clear that

d
(
y0, T

(
y0
))

=
8
27

=
4
9
· 2
3
/≤ϕ(d(x0, y0

))2
3
= ϕ

(
d
(
x0, y0

))
d
(
x0, y0

)
. (3.41)

Case 2. Let b ∈ (4/9, 1). Put x0 = 23/48 and y0 = 1/12 ∈ Tx0 = {1/12, 131/432}. It follows
that

bd
(
x0, y0

)
=

19b
48

/≤4
9
· 19
48

=
19
108

= f(x0); (3.42)
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Let x0 = 23/48 and y0 = 131/432 ∈ Tx0 = {1/12, 131/432}. Note that ϕ(d(x0, y0)) < b. It is
easy to verify that

d
(
y0, T

(
y0
))

=

∣
∣
∣
∣
∣

131
432

− 1
3
· 131

2

4322

∣
∣
∣
∣
∣
=
152615
559872

/≤ϕ(d(x0, y0
)) 19

108
= ϕ

(
d
(
x0, y0

))
d
(
x0, y0

)
. (3.43)

Therefore, the assumptions of Theorem 1.4 are not satisfied.
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