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We introduce a new iterative scheme for finding a common element of infinitely nonexpansive
mappings, the set of solutions of a mixed equilibrium problems, and the set of solutions of the
variational inequality for an a-inverse-strongly monotone mapping in a Hilbert Space. Then, the
strong converge theorem is proved under some parameter controlling conditions. The results of
this paper extend and improve the results of Jing Zhao and Songnian He(2009) and many others.
Using this theorem, we obtain some interesting corollaries.

1. Introduction

Let H be a real Hilbert space with norm || - || and inner product (-, -). And let C be a nonempty
closed convex subset of H. Let ¢ : C — R be a real-valued function andlet ©® : CxC — R
be an equilibrium bifunction, that is, ©(u, u) = 0 for each u € C. Ceng and Yao [1] considered
the following mixed equilibrium problem.

Find x* € C such that

O(x",y) +¢(y) —p(x") 20, VYyeC. (1.1)

The set of solutions of (1.1) is denoted by MEP(©, ¢). It is easy to see that x* is the solution
of problem (1.1) and x* € dom¢ = {x € @p(x) < +oo}. In particular, if ¢ = 0, the mixed
equilibrium problem (1.1) reduced to the equilibrium problem.

Find x* € C such that

O(x*,y) >0, VYyeC (1.2)
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The set of solutions of (1.2) is denoted by EP(©). If ¢ = 0 and O(x,y) = (Ax,y — x) for
all x,y € C, where A is a mapping from C to H, then the mixed equilibrium problem (1.1)
becomes the following variational inequality.

Find x* € C such that

(Ax*,y-x*), VyeC. (1.3)

The set of solutions of (1.3) is denoted by VI(A, C).

The variational inequality and the mixed equilibrium problems which include
fixed point problems, optimization problems, variational inequality problems have been
extensively studied in literature. See, for example, [2-8].

In 1997, Combettes and Hirstoaga [9] introduced an iterative method for finding
the best approximation to the initial data and proved a strong convergence theorem.
Subsequently, Takahashi and Takahashi [7] introduced another iterative scheme for finding
a common element of EP(©) and the set of fixed points of nonexpansive mappings.
Furthermore,Yao et al. [8, 10] introduced an iterative scheme for finding a common element
of EP(©) and the set of fixed points of finitely (infinitely) nonexpansive mappings.

Very recently, Ceng and Yao [1] considered a new iterative scheme for finding
a common element of MEP(O, ) and the set of common fixed points of finitely many
nonexpansive mappings in a Hilbert space and obtained a strong convergence theorem.

Now, we recall that a mapping A : C — H is said to be

(i) monotone if (Au - Av,u—-v) >0,for all u,v € C,

(ii) L-Lipschitz if there exists a constant L > 0 such that ||[Au — Av| < Llu -
vl|,for all u,v € C,

(iii) a-inverse strongly monotone if there exists a positive real number a such that ( Au—
Av,u—-v) > al|Au - Av|?, for all u,v € C.

It is obvious that any a-inverse strongly monotone mapping A is monotone and Lipscitz. A
mapping S : C — C is called nonexpansive if ||Su — Sv|| < |[u—v||, for all u,v € C. We denote
by F(S) := {x € C: Sx = x} the set of fixed point of S.

In 2006, Yao and Yao [11] introduced the following iterative scheme.

Let C be a closed convex subset of a real Hilbert space. Let A be an a-inverse strongly
monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such
that F(S) N VI(A, C) #0. Suppose that x; = u € C and {x,} and {y,} are given by

Yn = Pe(x, — AyAxy),
(1.4)
Xn+1 = Ay + ﬂnxn + YnSPC (yn - J\nAyn)r

where {a,}, {f.}, and {y,} are sequence in [0,1] and {\,} is a sequence in [0,21]. They proved
that the sequence {x,} defined by (1.4) converges strongly to a common element of F(S) N
VI(A, C) under some parameter controlling conditions.

Moreover, Plubtieng and Punpaeng [12] introduced an iterative scheme (1.5) for
finding a common element of the set of fixed point of nonexpansive mappings, the set of
solutions of an equilibrium problems, and the set of solutions of the variational of inequality
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problem for an a-inverse strongly monotone mapping in a real Hilbert space. Suppose that
x1 =u € Cand {x,}, {y,}, and {u,} are given by

O(un, y) + %(y— Un, Uy —Xp) >0, VyeC,

Yn = Pc(un — Xy Auy), (1.5)

Xn+1 = Ay + ﬂnxn + YnSPC (yn - -)LnAyn)r

where {a,}, {B.}, and {y,} are sequence in [0,1], {1,} is a sequence in [0,21], and {r,} C
(0,00). Under some parameter controlling conditions, they proved that the sequence {x,}
defined by (1.5) converges strongly to Pr(s)nvi(a,c)nEr@©)U-

On the other hand, Yao et al. [8] introduced an iterative scheme (1.7) for finding a
common element of the set of solutions of an equilibrium problem and the set of common
fixed point of infinitely many nonexpansive mappings in H. Let {T,},.; be a sequence of
nonexpansive mappings of C into itself and let {t,},-; be a sequence of real number in [0, 1].
For each n > 1, define a mapping W,, of C into itself as follows:

un,n+1 = I/
un,n = tnTnun,n+1 + (1 - tn)I/
un,n—l = tnflTnflun,n + (1 - tnfl)Ir

Uk = kTl + (1= te)1, (1.6)
Uy -1 = tkc TeeaiUp + (1 = tea) 1,

Upp =tTolUns + (1 -1)],
Wn = Lln,l = tlTllIng + (1 - tl)I.

Such a mapping W, is called the W-mapping generated by T, T,,—1,...,T1 and t,, t,-1,..., t.
In [8], given x¢ € H arbitrarily, the sequences {x,} and {u,} are generated by

O(uy, x) + l(x— Up, Uy —Xy) >0, VxeC,
Tn (1.7)

Xn+l = anf(xn) + ,ann + Yanun-

They proved that under some parameter controlling conditions, {x,} generated by (1.7)
converges strongly to z € N F(T,) N EP(©), where z = Pre F(T,)nEP©) f(z).
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Subsequently, Ceng and Yao [13] introduced an iterative scheme by the viscosity
approximation method:

O(uy, x) + rl(x—un,un—x,) >0, Vxe(C,
n

Yn = (1 - Yn)xn + Yanunl (18)

Xn+l = (1 —Qap — ﬂn)xn + “nf(]/n) + ,annyn/

where {a,}, {$.} and {y,} are sequence in (0,1) such that a,, + §, < 1. Under some parameter
controlling conditions, they proved that the sequence {x,} defined by (1.8) converges
strongly to z € N, F(T,,) N EP(©), where z = Pnnw:lF(Tn)nEP(@)f(Z).

Recently, Zhao and He [14] introduced the following iterative process.

Suppose that x; =u € C,

O(un,y) + %(y— U, Un —Xn) >0, VyeC,

Yn = SnPC(un - )LnAun) + (1 - Sn)xn/ (19)

Xn+1 = AU + ﬁnxn + Yan (PC (]/n - -)LnAyn))/

where {s,}, {a,}, {Bn}, and {y,} € [0,1] such that a, + B, + y» = 1. Under some parameter
controlling conditions, they proved that the sequence {x,} defined by (1.9) converges
strongly to z € N, F(T;) N VI(A, C) N EP(©), where z = Pree F(T)nVI(A,C)nEP(©) U-

Motivated by the ongoing research in this field, in this paper we suggest and analyze
an iterative scheme for finding a common element of the set of fixed point of infinitely
nonexpansive mappings, the set of solutions of an equilibrium problem and the set of
solutions of the variational of inequality problem for an a-inverse strongly monotone
mapping in a real Hilbert space. Under some appropriate conditions imposed on the
parameters, we prove another strong convergence theorem and show that the approximate
solution converges to a unique solution of some variational inequality which is the optimality
condition for the minimization problem. The results of this paper extend and improve the
results of Zhao and He [14] and many others. For some related works, we refer the readers
to [15-22] and the references therein.

2. Preliminaries

Let H be a real Hilbert space and let C be a closed convex subset of H. Then, for any x € H,
there exists a unique nearest point in C, denoted by Pc(x) such that

lx = Pe() < llx-yl, YyeC (2.1)

Pc is called the metric projection of H onto C. It is well known that Pc is nonexpansive
mapping and satisfies

2
7

(x -y, Pcx - Pcy) > ||Pcx — Pcy Vx,y € H. (2.2)
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Moreover, Pc is characterized by the following properties: P.x € C and

<x_PCx/y_PCx> SOI
2.3)

llx=y||* > llx - Pex|* + ||y - Pex||?, ¥xeH, yeC.

Itis clear that u € VI(A,C) © u = Pc(u— AAu), L > 0.
A space X is said to satisfy Opials condition if for each sequence {x,} in X which
converges weakly to a point x € X, we have

lim inf||x, — x|| < lim inf||x, —y|, VYye X y#x. (2.4)

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 (see [23]). Let {x,} and {y,} be bounded sequences in a Banach space X and let {f,} be
a sequence in [0,1] with 0 < lim inf, , B, <lim sup,_, fB, < 1. Suppose that x,.1 = (1-fn)Yn+
Pnixn for all integer n > 1 and lim sup,, , _ ([[yne1=Ynll = l1Xne1=2nll) < 0. Then limy, —, oo[|yn—2n| =
0.

Lemma 2.2 (see [24]). Let H be a real Hilbert space, let C be a closed convex subset of H, and let
T : C — C be a nonexpansive mapping with F(T) # (. If {x,} is a sequence in C weakly converging
to x and if (I — T)x, converge strongly to y, then (I - T)x = y.

Lemma 2.3 (see [25]). Assume that {a,} is a sequence of nonnegative real numbers such that

ap+1 < (1 - an)an + 611/ n2 0/ (25)

where {a,} is a sequence in (0,1) and {6,} is a sequence in R such that

(1) limy, oty =0 and 3,771 a, = 0.

(2) im sup,, _,  (6n/ay) <0 0r 377 |6,] < c0.
Then lim,, _, xa,, = 0.

In this paper, for solving the mixed equilibrium problem, let us give the following
assumptions for a bifunction ©, ¢ and the set C:

(A1) ©(x,x) =0forall x € C;
(A2) © is monotone, that is, O(x,y) + O(y, x) <0 for any x,y € C;

(A3) © is upper-hemicontinuous, that is, for each x,y,z € C,

Jim sup©(tz + (1-£)x,y) <O(x,y); (2.6)

(A4) ©(x, ) is convex and lower semicontinuous for each x € C;
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(B1) for each x € H and r > 0, there exists a bounded subset D, ¢ C and y, € C such
that for any z € C \ Dy,

O(zy) +9(v) + - (=22 =) <9(2), @)

(B2) C is a bounded set.

By a similar argument as in the proof of Lemma 2.3 in [26], we have the following
result.

Lemma 2.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let © be a bifunction
from CxC — R that satisfies (A1)—(A4) and let ¢ : C — RU {oo} be a proper lower semicontinuous
and convex function. Assume that either (B1) or (B2) holds. For r > 0 and x € H, define a mapping
T, : H — C as follows:

T, (x) = {z €eC:0(z,y)+o(y) + %((y—z,z—x)} > ¢(z),Vy € C} (2.8)

forall x € H. Then, the following conditions hold:

(1) for each x € H,T,(x) #0;
(2) T, is single-valued;

(4) F(T;) = MEP(O, p);

)
)
(3) T, is firmly nonexpansive, that is, for any x,y € H, | T,x - T,y|* < (T,x - T,y,x - y);
)
(5) MEP(©, o) is closed and convex.

Let {T,},~; be a sequence of nonexpansive mappings of C into itself, where C is a
nonempty closed convex subset of a real Hilbert space H. Given a sequence {t,},.; in [0,1],
we define a sequence {W,},>; of self-mappings on C by (1.6). Then We have the following
result.

Lemma 2.5 (see [27]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{T )21 e a sequence of nonexpansive self-mappings on C such that N | F(T,) # @ and let {t,} be a
sequence in (0, b] for some b € (0,1). Then, for every x € C and k > 1, lim,, _, U, kX exists.

Remark 2.6 (see [8]). It can be shown from Lemma 2.5 that if D is a nonempty bounded subset
of C, then for e > 0, there exists ng > k such that for all n > ng, sup pl|Unkx — Urx| < e,
where Uix = limy,, .U, k X.

Remark 2.7 (see [8]). Using Lemma 2.5, we define a mapping W : C — C as follows: Wx =
limy, —, s Wyx = lim,, .U, 1x, for all x € C. W is called the W-mapping generated by Ty, T, . ...
and tl,tZ,... .

Since W,, is nonexpansive, W : C — C is also nonexpansive.

Indeed, forall x,y € C, [|[Wy = W, || = lim,, . o, [|Wy,x = Wyl < [lx =y

If {x,} is a bounded sequence in C, then we put D = {x, : n > 0}. Hence it is clear
from Remark 2.6 that for any arbitrary e > 0, there exists ng > 1 such that for all n > ny,
Waxn = Waxn| = [Unixn — Urxal| < SqueDHUn,lx -Uix| <e.
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This implies that lim,, _, o, [|Wyx,, — Wx,|| = 0.

Lemma 2.8 (see [27]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{T )21 e a sequence of nonexpansive self-mappings on C such that 0% | F(T,) # 0 and let {t,} be a
sequence in (0,b] for some b € (0,1). Then F(W) = 0% F(T,).

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¢ : C —
R U {+00} be a lower semicontinuous and convex function. Let © be a bifunction from C x C — R
satisfying (A1)—(A4), let A be an a-inverse-strongly monotone mapping of C into H, and let {T, },.,
be a sequence of nonexpanswe self- mappmg on C such that N F(T,) N VI(A,C) N MEP(©, ¢) #0.
Suppose that {sn}, ,APn}, and {y,} are sequences in [0, 1] { n} is a sequence in [0, 2a] such that
An € [a, b] for some a,b with0 < a <b < 2a, and {r,} C (0, 00) is a real sequence. Suppose that the
followmg conditions are satisfied:

@A an+Pfu+yn=1,
(i

i) imy,_, a, = 0and 377, ay, = 00,
(iii) 0 < lim inf, B, <lim sup, B, <1,

)
)
(iv) 0 < lim inf, _, s, < lim sup,,_, s, <1/2and lim,_, |sps1 — 50| = 0,
(v) imy, 5 [Ap1 = Au| = 0,

)

(vi) im inf,, _, 7, > 0 and lim,, _, oo |[ry41 — 72| = 0.

Let f be a contraction of C into itself with coefficient p € (0,1). Assume that either (B1) or (B2) holds.
Let the sequences {x,}, {u,}, and {y,} be generated by, x; € C and

1
O(un, y) +9(y) = p(un) + —(y =ttt =) 20, Yy €C,
n
Yn = SnPc(un — MnAuy) + (1 = 5,)%p, (3.1)
Xn+l = anf(xn) + ,ann + Yan(PC (yn - )LnAyn))r

forall n € N, where W, is defined by (1.6) and {t,} is a sequence in (0, b], for some b € (0,1). Then
the sequence {x,} converges strongly to a point x* € N, F(T,) N VI(A,C) N MEP(©, ¢), where
x* = Pz F(r,)nvi(A,C)nMEP©,9) f (X7).

Proof. For any x,y € C and A, € [a,b] C (0,2a), we note that
1= 320 = (= LAYy | = - y = 1 (Ax = Ay) |
= [lx - y|I* - 24n(x - y, Ax - Ay) + 12| Ax - Ay||?

< lx=ylI” + Ay — 200 Ax ~ Ay

which implies that (I — 1, A) is nonexpansive.
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Let {T;,} be a sequence of mappping defined as in Lemma 2.4 and let x* € N F(T,;) N
VI(A,C) N MEP(O, ). Then x* = W,x* and x* = Pc(x* - 1, Ax*) = T, x*. Put v,, = Pc(yn —
AnAyy). From (3.2) we have

s = "I = [|IPc (Yn = AnAyn) = Po(x" = L, Ax") ||
<1(¥n = AnAyn) = (x" = L Ax")]|
<y =27l
= |lspPc(uy — XyAuy) + (1 = 5) x5 — 5, P (x™ — L, AX™) — (1 = s5)x7||
< SullPe(un = AnAuy) = Pe(x* = Ly AX)|| + (1 = sp)[|o0n — x7| (3.3)
< Sullttn = x| + (1= sp) |00 — 7|
= Sull Ty, %n = Tr, X7[| + (1 = 50 [l200 — x|
< Snllon = x*[| + (1 = su) |2 — 7|

= [l2en = x|I.

Hence, we obtain that

llxp41 — x¥|| = ”“nf(xn) - ﬁnxn ~YuWnon - x|
< anllf (en) = x| + Bullacn = x| + Yul[Whow — X7
< anllf (xn) = fO) + anll f(x*) = x| + Bullxn — X" + yullon — x|

S anPllxn = x| + anll f(x7) = x| + Bullxn = x| + yullxn — X7

- (3.4)
- @-pa 2 - - paii, -1
e -
Smax{llxn—x ||/v}
Smax{uxo—x*n,W}.

Therefore {x,} is bounded. Consequently, {f(x,)}, {u.}, {va}, {00}, {(Whon}, {Au,}, and
{Ayn} are also bounded.
Next, we claim that lim,, , o||x,11 — x| = 0.
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Indeed, setting x,+1 = fnxn + (1 = Pn)zn, for all n > 1, it follows that

“n+1f(xn+1) + Yn+1Wn+lvn+1 anf(xn) + Yanvn

Zp+l — Zn 1= pn+1 1= ﬂn

“n+1f(xn+1) + Yn+1Wn+lvn+1 _ Yn+1Wn+lvn
1- pn+1 1- ﬂn+l

n Yn+an+1Un “nf(xn) + annvn

1_ﬂn+1 1_ﬁn

_ “n+1f(xn+1) _ “nf(xn) + Yn+1

44 -W, 3.5
1- ﬂn+1 1- ﬂn 1- ﬂn+1 (Whni10Uns1 1+10n) (3.5)

1_ﬂn+l_“n+1 1_ﬁn_an
—_— Wy, - ——

- ann
1- ﬂn+1 1- pn

_ an+1f(xn+1) B lxnf(.X'n) + Yn+1 (Wn+1'0n+1 _ Wn+1'0n)

1- ﬂn+1 1- ﬂn 1- ﬂn+1

Ay Aptl
W0, —

—W, .
1= ﬂn 1= ﬂn+l n+10n

+ (Wp410n — Wyvy) +

Now, we estimate |W,110,, — W, 0| and ||W410041 — W oa||-
From the definition of {W,}, (1.6), and since T;, U,,; are nonexpansive, we deduce that,
foreachn > 1,

IWi1vy = Wyoy|| = |1 T1U 11 00, — 1 T1U 00, ]|
< tlllun+1,27]n - un,ﬂ)n”
= ||t ToU 1,300 — b Tol 30|

< tito||Uns1,30n — U304 ||

(3.6)

n
< <Hti> ||un+1,n+lvn - un,n+1vn“
i=1

for some constant M > 0 such that sup{||{Up14410n — Uppaivnl,n > 1} < M. And
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we note that

W10t = Wis10a| < [[(0n = 0a) ||
= [|Pc (Yns1 = Ani1 AYns1) = Po(Yn — AnAyn) |l
<N (W1 = A1 AYnir) = (Yn = LnAyn) || (3.7)
<A = A1 A) Y1 = (I = L1 Ayl + (X = Lnaa || Ayl

SYna = Yull + A = Xl Ayall,

1Yns1 = Yull = ISne1 Pe(tnir = Ans1 Atdgr) + (1 = Spa1) Xpaa
=$n P (un — AnAun) — (1 = 8p) x|
= |Isus1Pc(Uns1 — Aps1 Attns1) = Sus1 Pe(un — A Auy)
+ (Sn+1 — 8n) Po(tn — MnAuty) + (1 = Spa1) X1
—(1 = Su+1 + Sus1 — Su) Xul|
< Spll (U1 = A1 Attnan) = (Un — Ly Auy) ||
+1sna1 = Snlllun — AnAunll + (1 = spe1) | Xns1 = Xull + [Sns1 = snll|2xn]|
< Snrt {[(Uns1 = A1 Attpi1) = (Un — Ay Auy) ||
+HAn = ApsalllAun ||} + [Sn1 = Sul (1nll + Anl| Arn| + || 1])
+ (1= spa1) [l2xna1 — x|
< Surtlltner = Unll + Spa1ldn = At || Ana |

+ |5n+1 - Sn|Q + (1 - Sn+1)||xn+l - xn”/

(3.8)
where Q = sup{||un||, Al Aunll, |2l : 1 > 1}.
Combining (3.7) and (3.8), we obtain
||Un+1 - vn” < 5n+1||un+1 - un“ + 5n+1|)tn - /\n+l|||Aun|| + |Sn+1 - 5n|Q (3 9)
+ (L= spa1) Ixner = 2xnll + A = A ||| Aynl |-
On the other hand, from u, = T, x, and ;41 = T, X»+1, Wwe note that
1
O(un, y) +9(y) — @(un) + r—(y U, Up—Xy) 20, VyeC, (3.10)

1
O(uns1,y) + (1) — p(Uns1) + ﬁ<y = Ups1, Uni1 —Xn1) 20, Yy eC. (3.11)
n+
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Putting v = 1,41 in (3.10) and y = u,, in (3.11), we have

1
O(Up, Uns1) + Q(Uni1) — (1) + r—<un+1 — Uy, Uy — Xpn) 20,
! (3.12)

O(uns1, un) + @(Un) — @(Uns1) + (Un = Uns1, Uns1 = Xny1) 2 0.

Tn+1

So, from (A2) we get (Ups1 — Un, (Uy — X0 /Tn) = (Ups1 — Xns1) /Tna1) > 0.

Hence (uy11 — tn, Un — Uns1 + Uns1 — X = (Fu/Tns1) (Uns1 — Xna1)) > 0.

Without loss of generality, we may assume that there exists a real number ¢ such that
r, > ¢ >0, forall n > 1. Then we get

2 Tn
_ < —_ _ —_ —_
—_ 4
ltns1 — unl| <un+1 Un, Xns1 — Xpn + <1 )(un+1 xn+1)>
Tn+1

(3.13)
r
< Hupsr — un”{”xnﬂ — x| + |1 - - llttp1 = Xt |l 7,
Tn+l
and hence
”un+1 - un” < ”xn+1 - xn” + . |rn+1 - rn|||un+1 - xn+1”
" (3.14)
1
< ”xn+1 - xn” + zlrn+1 - TnlL,
where L = sup{||u, — x,|| : n > 1}. Hence from (3.9) and (3.14), we have
L
Ian+1Un+1 - Wn+1vn” < “xn+1 - xn” + Sn+l E|Tn+1 - rnl + Mn - -)‘n+1|||Aun” ( )
3.15

+[8n41 = 80]Q + [Ay = A ”Ayn”

Combining (3.5), (3.6), and (3.15), we get

(2o Xp
Izns1 = zall = e = Xull € =2 (I f Qo) | + [Winsrvall) + (ILf Cen) | + (W vnll)
1- ,Bn+1 1- ﬂn
Yn+1

L
{”xn+1 - xn” + Sn+1 <_|rn+1 - rn| + |)‘n - -)Ln+1|”Aun”>
1 _ﬂn+1 c

et = 521Q + [ = AmnnAynn}

n
+ MHti — %1 — x4l
i=1
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ay Ay
< 2 (f Gt |+ W2l + 22 (L Gen)l + (Wl
1_,6n+1 1_ﬁn

Yn+1 L B B

v (Gt =1l + e = Ll A

n
+8ns1 = 50]Q + [An = L1 || Ayl } +M] [t

i=1

(3.16)
It follows from (3.16) and conditions (i)—(vi) and 0 < t; < b < 1, for all i > 1 that
tim sup(izni1 = 2Znll = [lns1 = xall) < 0 (3.17)
By Lemma 2.1, we have lim,, _, »»||z, — x,|| = 0. Consequently,
i xer =l = i (1= ) 20 ] = 0 (318)
From conditions (iv)—(vi), (3.7), (3.8), (3.14), and (3.18), we also get
T ity = 4l =0, [yt~ yall =0, lim o1 =2l 0. (3.19)

Since ay, + B, + ¥» = 1 and from the definition of {x,}, we have x,.1 — x, = a,, (f(x,) —
Xn) + Yn(Wyv, — x3,). Then we have

1
(IWhvn — xa|l < _{||xn+1 = x|l + | f (xn) = xn”} — 0, asn-— oo. (3.20)
n

For x* € N F(T,) N VI(A,C) N MEP(©, ¢), we have

llun - x*llz = || Ty, xn — TrnX*llz

< ATy, xn — Tp, X", Xy — X*)

= (uy — x*, x, — X) (3:21)

1 2 2
= 5 (lhtn =21 + 1o = 21 = llen = ),

and hence ||u, — x*|* < ||x, — x*||? = [|lxn — un|)?.
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From (3.3), we have

[ESmE x*”Z = ”anf(xn) - ,ann - annvn - x*”2
%112 * (12 %112
SD‘"”f(x")_x ” +ﬂfl”xn_x ” +Yn“ann_x ”
< || £ Gen) = || + Ballx = %I + yallww — x|
2
< || f(xn) = 7|7+ Ballcn - %7 (3.22)
%112 2 %112
+Yn{5n“xn_x I1° = sullxn = unll” + (1 = su) [l — x7|| }
< a"”f(x") - 'x*”2 + (ﬁn + Y")”xn - x*”2 - YnSonn - un“2

2
< “n"f(xn) - x*” + |2, — x*”2 - YnSonn - un”Z'
That is,

1 2
%0 — ]| < — {anll £Gea) =17+l = 211 = 2w = x|}
nen

(3.23)
< L | f (en) = |17 + e = xall (o = 2 + e = 271 |-
YnSn
From (ii) and (3.18), we obtain
Xy = tnll — 0, asn— oo. (3.24)
From (3.2)-(3.3), we get
* * 2 * *
2ne1 = 2| < | f () = 27|17 + Bullzcn = X711 + Yul[Woww — 27|17
%12 * *
< || f (o) = x*||7 + Bullxn — x| + Yallon — X7
* 2 *
< || f(xn) = 7| + Bullocn — X717
+ Y| (Y = AnAyn) - (2 = LAY ||
* 2 *
< || f(xn) = x°||° + Bullocn — X" (3.25)

ey lyn = 2 I+ a4 - 20 Ay - A )

< || f(xn) = x|+ Ballxn — %7 + yallxn — x|

+ Yn)‘n()tn - 2“) ”Ayn - Ax* 2

< || f(n) = x|+ 120 = X + yua(b - 20) || Ay — Ax*||%.
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Then we get,

~Yua(b = 20) | Ay = Ax"||* < @l £ (o) = 7|7 + Il = 27| = [[2ns1 = x|

2
+ (llocn = x* [l + llxner = X[ Ul = X l)-

< ay||f () — x*

(3.26)
Since a;, — 0and ||x, — x,11|| — 0, we obtain
[Ayn — Ax*|| — 0, asn— co. (3.27)
We note that
00 = I = [|Pe(yn = 1nAya) = Pe(x” = AuAx") |
<((Yn = MnAyn) — (" = Ly AXY), v, — x¥)
1
= {11 = 20 A) - (" = LuAX) P+ 0 - x|
N = L AY) - (2" = 1, Ax) = (0, - x|} (3.28)
1 . . .
< 3 { =571 ow =1 = (v = 20) = Ay = 45|
1 . .
= > {lly =17+ o = %1 = [lya - 0l
20 (Yn — On, Ay — Ax*) — Ai”Ayn - Ax* ||2}
Then we derive
lon = %17 < |y = % [* = |y = 0al” + 200 (Y = 00, Ay = Ax") = 13| Ay — Ax”||? (3.29)
< e = x*|1* - lyn - vn”z + 20 (Yn — U, Ay — AX™).
Hence
%51 = X < | f () = |7+ Bullxn = x* 1 + YulWovn — x|
< || f () = %P + Bullxn = 212 + yullow - x*|?
< || f (ra) = x°|* + Bullzn - 7
(3.30)

+ Yn{ 1260 = 2|1 = ||y — vn”2 + 20 (Y — U, Ay — Ax*}}

S a"”f(x") - x*”2 + |20 — x*”Z - Yn”]/n - Un“z

+ 2Yndnllyn = vullll Ay — Ax7]],
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which imply that

2
Yl = all* < au|| £ ) = 7|7 + Nl = "> = [|26001 = x|

+ 2Yn)tn”yn - UnH”Ayn - Ax"|

s (3.31)
< anl| f(xn) = x*||” + 2y dullyn = Onllll Ayn — Ax"||
+ ([laen = ¥ + 21 = X[ lotn = X [|-
From condition (ii), (3.18), and (3.27), we get
im [|y, — v = 0. (3.32)
Since
ltn = yull < lltn = xull + 130 = yall
= [Jun — xull + |80 Pc(tn — MnAtty) = Sp24| (3.33)
<Mlun = Xull + snlltn = Yull + sullon = Wyvn|l + sul| Wyvn — xall,
we have
Sn Sn
llun = ynll < 1-s, llun — xull + E”vn - Wy, + E”ann = Xull, (3.34)
and then we obtain
(IWhvn = vall < [[Waoy = x| + |20 — tnll + [J1tn — ]/n” + ”yn ezl
1
< |Whwoy = xall + (|20 — un|| + 1-s, 247 = x5 || (3.35)
S
+ 1-s, [on = Wou|| + 1_—’1sn||wnvn = Xn| + [|yn = vnll-
So we get
1-2s 2-s
1_ Snn Wy, — 4] < 1-s, (W, — x| + 1_ S:: [ttn — x| + ”yn S ZiE (3.36)

From condition (iv) and (3.20), (3.24), and (3.32), we have lim,, ., .|| W, v, —v,|| = 0. Moreover,
from Remark 2.7 we get lim,, _, o, || Wv, — v,|| = 0.
Next, we show that

lim sup(f(x*) - x*,x, — x*) <0, (3.37)

n—oo
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where x* = Pre F(T,)AVI(A,C) \MEP(©,) f(x*). Indeed, we choose a subsequence {v,,} of {v,}
such that

lim sup(f(x*) - x*, Wo, — x*) = lim (f (x*) — x*, W, — x*). (3.38)

n— oo

Since {vy, } is bounded, there exists a subsequence {vmj } of {v,,} which converges weakly to
z. Without loss of generality, we can assume that v, — z.

From |[Wv,, — v,|| — 0, we obtain Wo,,, — z.

Next, we show that z € N2, F(T,,) N VI(A, C) "nMEP(©, ¢).

First, we show that z € MEP(O, ¢). In fact by u, = T;,,x, € dom ¢, we have

O(un,v) +9(y) — p(u) + %(y —Up, Uy —Xy) 20, VyeC. (3.39)
From (A2), we also have
1
9(y) = P(un) + —(y =t ttn = Xn) 2 O(y,un), Vy€C, (3.40)

and hence

Uy, — X,

¢(y) —p(un) + <y ~ Uy, > >0O(y,uy,), VyeC (3.41)

ni

From |lu, — x,|| — 0, ||x, — Wo,|| — 0and ||Wov, —v,|| — 0, we get u,, — z. It follows from
(A4) that (u,, — xy,) /1, — 0and from the lower semicontinuity of ¢ that

O(y,z) +(z) —p(y) <0, VYyeC. (3.42)

FortwithO<t<landy e C,lety; =ty +(1-t)z.Sincey € Cand z € C, we have y; € C
and hence O(yy, z) + ¢(z) — ¢(y¢) < 0. So, from (A1) and (A4), we have

0=0(ye, yi) + (i) — 9 (yr)
<tO(yny) + (1 -HO(yr, z) +tp(y) + (1 -1)p(z) — (Y1) (343)
<t[O(yy) +o(y) —o(w)]-

Dividing by t, we have

O(yuy) +o(y) —¢(y) 20, VyeC (3.44)
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Letting t — 0, it follows from the weakly semicontinuity of ¢ that
O(z,y) +9(y) —¢(2) 20, VyeC. (3.45)

Hence z € MEP(O, ¢).
Second, we show that z € F(W) = n%, F(T}). Assume z ¢ F(W). Since u,,, — z and
z# Wz, by Opial’s condition, we have

lim inf||u,, - z|| < lim inf||lu,, - Wz||
1— 00 1—00
< T inf (i, — Wt | + [ Wiy, ~ W) (3.46)
< lim infllu,, - 2|,
1— 00
which derives a contradiction. Thus we have z € F(T).
Finally, by the same argument in the proof of [28, Theorem 3.1], we can show that
z € VI(A, C).

Hence z € N3, F(T,,) N VI(A,C) nMEP(O, ¢).
Since x* = Pre F(1,)nvi(a,c)nMEP©,9) f (X*) and [[x, — Wo,|| — 0, we have

lim sup(f(x*) = x*, x, — x*) = lim sup(f(x*) - x*, Wo, — x*)
n— oo n— oo

= lim (f(x*) —x*, Wo,, - x¥) (3.47)

=(f(x*)—x",z-x") <0.

Therefore, (3.37) holds.
Finally, we show that x,, — x*. From definition of {x,}, we get

2
”xn+1 - x*||2 = ”anf(xn) + ,ann + Yanvn - x*”
= <anf(xn) + ﬁnxn + Yanvn —X*, Xpy1 — x*>
= an<f(x‘rl) - x*rxn+l - x*> +ﬂn<xn - X*/ Xp+1 — x*>

+Yn<WnUn_x*/xn+l _-x*>
* * 1 %112 %112
< an(f (xn) = X", Xp1 — x7) + 5Pl = X717 + oty — 7
1 %112 %112
5 Yn([[on = X7+ [1X001 — 7|
* * 1 * 2 * 2
< an<f(xn) —X ,Xps1 — X > + Eﬁﬂ ot — 2|17 + [[acne1 — x|

1
+ 3l =21 + = x|
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* * 1 * *
= () =" 01 = x) + 5 (1= @) (Jlea = %I + leain = x°IF)

* * 1 * ]' *
< an(f () = X", g1 = x") + 5 (1= ) [0 = | + 5l = 7%,

(3.48)
which implies that
1 = X*|* < (1 = an)|20n — 2% + 20 f () = X", Xps1 — x*). (3.49)
By (3.47) and Lemma 2.3, we get that {x,} converges strongly to x*.
This completes the proof. O

Setting f(x,) = u and ¢ = 0 in Theorem 3.1., we have the following result.

Corollary 3.2 (see [14, Theorem 2.1]). Let C be a nonempty closed convex subset of a real Hilbert
space H. Let © be a bifunction from C x C — R satisfying (A1)—(A4), let A be an a-inverse-strongly
monotone mapping of C into H, and let {T,},_, be a sequence of nonexpansive self-mapping on C
such that N5, F(T,) N VI(A,C) N EP(©) #0. Suppose that x; = u € C, {s,}, {an}, {Pu}, and
{yx} are sequences in [0,1],{A,} is a sequence in [0,2a] such that A, € [a,b] for some a,b with
0 <a<b<2aand {r,} C (0,00) is a real sequence. Suppose that the following conditions are
satisfied:
(1 lxn"‘ﬂn"‘Yn :1/

(if) limy o0, = 0 and 3774 a = 00,

)
)
(iii) 0 < lim inf, _, B, <lim sup, ,_p, <1,
(iv) 0 < lim inf, s, <lim sup, s, <1/2and lim, o |Sy+1 = 5n| =0,
(V) limy s oo A1 = An| = 0,

)

(vi) im inf,, _, 7, > 0 and lim,, _, oo |41 — 74| = 0.

Let the sequence {x,} be generated by,

O(un, y) + %(y— U, U —Xn) >0, VyeC,

Yn = SuPc(uy — My Auy) + (1 = sp)xp, (3.50)

Xn1 = AU + ﬁnxn + Yan (PC (yn - -)LnA]/n))/
for all n € N, where Wy, is defined by (1.6) and {t,} is a sequence in (0,b], for some b € (0,1).

Then the sequence {x,} converges strongly to a point x* € N2, F(T,) N VI(A,C) N EP(O), where
x* = P | P(T,)nVI(A,C)NEP(©) U-

Setting ¢ = 0 in Theorem 3.1, we have the following result.
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Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let © be a
bifunction from C x C — R satisfying (A1)—-(A4), let A be an a-inverse-strongly monotone mapping
of C into H, and let {T, ), be a sequence of nonexpansive self-mapping on C such that 02> F(T,) N
VI(A,C) N EP(O©) #0. Suppose that {s,}, {an}, {Pn}, and {y,} are sequences in [0,1],{A,} is a
sequence in [0,2a] such that A, € [a,b] for some a,b with 0 < a < b < 2a, and {r,} C (0,00) isa
real sequence. Suppose that the following conditions are satisfied:

A an+Pfu+yn=1
(ii) limy, oy, = 0and X770, ay = oo,
(iii) 0 < lim inf, B, <lim sup, B, <1,

)
)
)
(iv) 0 <lim inf, s, <lim sup, _, s, <1/2and lim, _, |spi1 — su| =0,
(v) limy oo A1 = An| = 0,

)

(vi) lim inf,, _, o7, > 0 and lim,, _, o |7ps1 — 1| = 0.

Let f be a contraction of C into itself with coefficient § € (0,1) and let the sequence {x,} be generated
by x1 € C and

O(un, y) + %(y— U, U —Xn) 20, VyeC,

Yn = SuPc(uy — MpAuy) + (1= 5,)xy, (3.51)

Xn+l = anf(xn) + ﬁnxn + Yan(PC (yn - )‘nA]/n)>/

forall n € N, where W, is defined by (1.6) and {t,} is a sequence in (0,b], for some b € (0,1).
Then the sequence {x,} converges strongly to a point x* € N2, F(T,) N VI(A,C) N EP(O), where
x* = Pre p(x,)nvi(A,c)nep@©) f (X7).

By Theorem 3.1, we obtain some interesting strong convergence theorems.
Setting T,x = x then we have W,x = x in Theorem 3.1, and we have the following
result.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ¢ : C —
R U {+oo} be a lower semicontinuous and convex function. Let © be a bifunction from C x C — R
satisfying (A1)—(A4), and let A be an a-inverse-strongly monotone mapping of C into H such that
VI(A,C) N MEP(O, @) # 0. Suppose that {s,}, {a,}, {Pn}, and {y,} are sequences in [0,1],{A,} is
a sequence in [0,2a] such that \,, € [a, b] for some a,b with0 < a < b < 2aand {r,} C (0,00) isa
real sequence. Suppose that the following conditions are satisfied:

@D an+Pfu+yn=1
(ii) imy, o, = 0and 377, ay = 00,
(iii) 0 < lim inf, B, <lim sup, B, <1,
(iv) 0 <lim inf, s, <lim sup, _, s, <1/2and lim, _ |Syi1 — su| =0,
(V) limy, o[ Apsr = An| = 0,
(vi) im inf,, _, 7, > 0 and lim,, _, o |7ps1 — 10| = 0.
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Let f be a contraction of C into itself with coefficient p € (0,1). Assume that either (B1) or (B2) holds.
Then the sequences {x,}, {un}, and {y,} generated by, x; € C and

1
@(umy)+‘P(y)_‘P(un)+r—<y—un,un—xn>20, Vyecl
Yn = suPc(uy — MyAuy) + (1 = 5,) Xy, (3.52)

Xn+l1 = anf(xn) + ﬂnxn + Y (Pc(y" - /\"Ay”)>

converge strongly to a point x* € VI(A, C) " MEP(O, @), where x* = Pyia,c)nmer©,) f (X).

Setting © = 0,¢ = 0 and r, = 1 then we have u,, = Pcx, = x, in Theorem 3.1, and we
have the following result.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be an
a-inverse-strongly monotone mapping of C into H and let {T,};—; be a sequence of nonexpansive
self-mapping on C such that N F(T,) N VI(A, C) #0. Suppose that {s,}, {an}, {Pu}, and {y.} are
sequences in [0,1],{\,} is a sequence in [0, 2a] such that A, € [a,b] for some a,b with0 < a <b <
2a. Suppose that the following conditions are satisfied:

(i) an+Putyn=1
(if) lim, o, = 0and 377, ay = 00,
(iii) 0 < lim inf, B, <lim sup, B, <1,
(iv) 0 <lim inf, 5, <lim sup, s, <1/2and lim, ., o|Sy1 — sn| = 0,

(v) limy o[ A1 = A = 0.

Let f be a contraction of C into itself with coefficient p € (0,1). Let the sequences {x,} and {y,} be
generated by x1 € C and

Yn = SnPC(xn - )‘nAxn) + (1 - Sn)xn/

(3.53)
Xn+l = anf(xn) + ,ann + Yan(PC (]/n - -)LnAyn))/

for all n € N, where W, defined by (1.6) and {t,} is a sequence in (0,b], for some b € (0,1).
Then the sequences {x,} and {y,} converge strongly to a point x* € N2, F(T,) N VI(A,C), where

x* = Poz Fr)nviao) f (X7).
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