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We introduce a new iterative scheme for finding a common element of infinitely nonexpansive
mappings, the set of solutions of a mixed equilibrium problems, and the set of solutions of the
variational inequality for an α-inverse-strongly monotone mapping in a Hilbert Space. Then, the
strong converge theorem is proved under some parameter controlling conditions. The results of
this paper extend and improve the results of Jing Zhao and Songnian He(2009) and many others.
Using this theorem, we obtain some interesting corollaries.

1. Introduction

LetH be a real Hilbert space with norm ‖ ·‖ and inner product 〈·, ·〉. And let C be a nonempty
closed convex subset of H. Let ϕ : C → R be a real-valued function and let Θ : C × C → R

be an equilibrium bifunction, that is, Θ(u, u) = 0 for each u ∈ C. Ceng and Yao [1] considered
the following mixed equilibrium problem.

Find x∗ ∈ C such that

Θ
(
x∗, y

)
+ ϕ

(
y
) − ϕ(x∗) ≥ 0, ∀y ∈ C. (1.1)

The set of solutions of (1.1) is denoted by MEP(Θ, ϕ). It is easy to see that x∗ is the solution
of problem (1.1) and x∗ ∈ domϕ = {x ∈ ϕ(x) < +∞}. In particular, if ϕ ≡ 0, the mixed
equilibrium problem (1.1) reduced to the equilibrium problem.

Find x∗ ∈ C such that

Θ
(
x∗, y

) ≥ 0, ∀y ∈ C. (1.2)



2 Fixed Point Theory and Applications

The set of solutions of (1.2) is denoted by EP(Θ). If ϕ ≡ 0 and Θ(x, y) = 〈Ax, y − x〉 for
all x, y ∈ C, where A is a mapping from C to H, then the mixed equilibrium problem (1.1)
becomes the following variational inequality.

Find x∗ ∈ C such that

〈
Ax∗, y − x∗〉, ∀y ∈ C. (1.3)

The set of solutions of (1.3) is denoted by VI(A,C).
The variational inequality and the mixed equilibrium problems which include

fixed point problems, optimization problems, variational inequality problems have been
extensively studied in literature. See, for example, [2–8].

In 1997, Combettes and Hirstoaga [9] introduced an iterative method for finding
the best approximation to the initial data and proved a strong convergence theorem.
Subsequently, Takahashi and Takahashi [7] introduced another iterative scheme for finding
a common element of EP(Θ) and the set of fixed points of nonexpansive mappings.
Furthermore,Yao et al. [8, 10] introduced an iterative scheme for finding a common element
of EP(Θ) and the set of fixed points of finitely (infinitely) nonexpansive mappings.

Very recently, Ceng and Yao [1] considered a new iterative scheme for finding
a common element of MEP(Θ, ϕ) and the set of common fixed points of finitely many
nonexpansive mappings in a Hilbert space and obtained a strong convergence theorem.

Now, we recall that a mapping A : C → H is said to be

(i) monotone if 〈Au −Av, u − v〉 ≥ 0, for all u, v ∈ C,

(ii) L-Lipschitz if there exists a constant L > 0 such that ‖Au − Av‖ ≤ L‖u −
v‖, for all u, v ∈ C,

(iii) α-inverse strongly monotone if there exists a positive real number α such that 〈Au−
Av, u − v〉 ≥ α‖Au −Av‖2, for all u, v ∈ C.

It is obvious that any α-inverse strongly monotone mapping A is monotone and Lipscitz. A
mapping S : C → C is called nonexpansive if ‖Su−Sv‖ ≤ ‖u−v‖, for all u, v ∈ C.We denote
by F(S) := {x ∈ C : Sx = x} the set of fixed point of S.

In 2006, Yao and Yao [11] introduced the following iterative scheme.
Let C be a closed convex subset of a real Hilbert space. Let A be an α-inverse strongly

monotone mapping of C into H and let S be a nonexpansive mapping of C into itself such
that F(S) ∩ VI(A,C)/= ∅. Suppose that x1 = u ∈ C and {xn} and {yn} are given by

yn = PC(xn − λnAxn),

xn+1 = αnu + βnxn + γnSPC

(
yn − λnAyn

)
,

(1.4)

where {αn}, {βn}, and {γn} are sequence in [0, 1] and {λn} is a sequence in [0,2λ]. They proved
that the sequence {xn} defined by (1.4) converges strongly to a common element of F(S) ∩
VI(A,C) under some parameter controlling conditions.

Moreover, Plubtieng and Punpaeng [12] introduced an iterative scheme (1.5) for
finding a common element of the set of fixed point of nonexpansive mappings, the set of
solutions of an equilibrium problems, and the set of solutions of the variational of inequality
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problem for an α-inverse strongly monotone mapping in a real Hilbert space. Suppose that
x1 = u ∈ C and {xn}, {yn}, and {un} are given by

Θ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

xn+1 = αnu + βnxn + γnSPC

(
yn − λnAyn

)
,

(1.5)

where {αn}, {βn}, and {γn} are sequence in [0, 1], {λn} is a sequence in [0,2λ], and {rn} ⊂
(0,∞). Under some parameter controlling conditions, they proved that the sequence {xn}
defined by (1.5) converges strongly to PF(S)∩VI(A,C)∩EP(Θ)u.

On the other hand, Yao et al. [8] introduced an iterative scheme (1.7) for finding a
common element of the set of solutions of an equilibrium problem and the set of common
fixed point of infinitely many nonexpansive mappings in H. Let {Tn}∞n=1 be a sequence of
nonexpansive mappings of C into itself and let {tn}∞n=1 be a sequence of real number in [0, 1].
For each n ≥ 1, define a mapping Wn of C into itself as follows:

Un,n+1 = I,

Un,n = tnTnUn,n+1 + (1 − tn)I,

Un,n−1 = tn−1Tn−1Un,n + (1 − tn−1)I,

...

Un,k = tkTkUn,k+1 + (1 − tk)I,

Un,k−1 = tk−1Tk−1Un,k + (1 − tk−1)I,

...

Un,2 = t2T2Un,3 + (1 − t2)I,

Wn = Un,1 = t1T1Un,2 + (1 − t1)I.

(1.6)

Such a mapping Wn is called the W-mapping generated by Tn, Tn−1, . . . , T1 and tn, tn−1, . . . , t1.
In [8], given x0 ∈ H arbitrarily, the sequences {xn} and {un} are generated by

Θ(un, x) +
1
rn
〈x − un, un − xn〉 ≥ 0, ∀x ∈ C,

xn+1 = αnf(xn) + βnxn + γnWnun.

(1.7)

They proved that under some parameter controlling conditions, {xn} generated by (1.7)
converges strongly to z ∈ ∩∞

n=1F(Tn) ∩ EP(Θ), where z = P∩∞
n=1F(Tn)∩EP(Θ)f(z).
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Subsequently, Ceng and Yao [13] introduced an iterative scheme by the viscosity
approximation method:

Θ(un, x) +
1
rn
〈x − un, un − xn〉 ≥ 0, ∀x ∈ C,

yn =
(
1 − γn

)
xn + γnWnun,

xn+1 =
(
1 − αn − βn

)
xn + αnf

(
yn

)
+ βnWnyn,

(1.8)

where {αn}, {βn} and {γn} are sequence in (0,1) such that αn + βn ≤ 1. Under some parameter
controlling conditions, they proved that the sequence {xn} defined by (1.8) converges
strongly to z ∈ ∩∞

n=1F(Tn) ∩ EP(Θ), where z = P∩∞
n=1F(Tn)∩EP(Θ)f(z).

Recently, Zhao and He [14] introduced the following iterative process.
Suppose that x1 = u ∈ C,

Θ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = snPC(un − λnAun) + (1 − sn)xn,

xn+1 = αnu + βnxn + γnWn

(
PC

(
yn − λnAyn

))
,

(1.9)

where {sn}, {αn}, {βn}, and {γn} ∈ [0, 1] such that αn + βn + γn = 1. Under some parameter
controlling conditions, they proved that the sequence {xn} defined by (1.9) converges
strongly to z ∈ ∩∞

i=1F(Ti) ∩ VI(A,C) ∩ EP(Θ), where z = P∩∞
i=1F(Ti)∩VI(A,C)∩EP(Θ)u.

Motivated by the ongoing research in this field, in this paper we suggest and analyze
an iterative scheme for finding a common element of the set of fixed point of infinitely
nonexpansive mappings, the set of solutions of an equilibrium problem and the set of
solutions of the variational of inequality problem for an α-inverse strongly monotone
mapping in a real Hilbert space. Under some appropriate conditions imposed on the
parameters, we prove another strong convergence theorem and show that the approximate
solution converges to a unique solution of some variational inequality which is the optimality
condition for the minimization problem. The results of this paper extend and improve the
results of Zhao and He [14] and many others. For some related works, we refer the readers
to [15–22] and the references therein.

2. Preliminaries

Let H be a real Hilbert space and let C be a closed convex subset of H. Then, for any x ∈ H,
there exists a unique nearest point in C, denoted by PC(x) such that

‖x − PC(x)‖ ≤ ‖x − y‖, ∀y ∈ C. (2.1)

PC is called the metric projection of H onto C. It is well known that PC is nonexpansive
mapping and satisfies

〈
x − y, PCx − PCy

〉 ≥ ∥∥PCx − PCy
∥∥2

, ∀x, y ∈ H. (2.2)
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Moreover, PC is characterized by the following properties: Pcx ∈ C and

〈x − PCx, y − PCx〉 ≤ 0,
∥
∥x − y

∥
∥2 ≥ ‖x − PCx‖2 +

∥
∥y − PCx

∥
∥2

, ∀x ∈ H, y ∈ C.
(2.3)

It is clear that u ∈ VI(A,C) ⇔ u = PC(u − λAu), λ > 0.
A space X is said to satisfy Opials condition if for each sequence {xn} in X which

converges weakly to a point x ∈ X, we have

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖, ∀y ∈ X, y /=x. (2.4)

The following lemmas will be useful for proving the convergence result of this paper.

Lemma 2.1 (see [23]). Let {xn} and {yn} be bounded sequences in a Banach spaceX and let {βn} be
a sequence in [0, 1] with 0 < lim infn→∞βn � lim supn→∞βn < 1. Suppose that xn+1 = (1−βn)yn+
βnxn for all integer n ≥ 1 and lim supn→∞(‖yn+1−yn‖−‖xn+1−xn‖) � 0. Then limn→∞‖yn−xn‖ =
0.

Lemma 2.2 (see [24]). Let H be a real Hilbert space, let C be a closed convex subset of H, and let
T : C → C be a nonexpansive mapping with F(T)/= ∅. If {xn} is a sequence in C weakly converging
to x and if (I − T)xn converge strongly to y, then (I − T)x = y.

Lemma 2.3 (see [25]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − αn)an + δn, n ≥ 0, (2.5)

where {αn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞.

(2) lim supn→∞(δn/αn) ≤ 0 or
∑∞

n=1 |δn| < ∞.

Then limn→∞an = 0.

In this paper, for solving the mixed equilibrium problem, let us give the following
assumptions for a bifunction Θ, ϕ and the set C:

(A1) Θ(x, x) = 0 for all x ∈ C;

(A2) Θ is monotone, that is, Θ(x, y) + Θ(y, x) ≤ 0 for any x, y ∈ C;

(A3) Θ is upper-hemicontinuous, that is, for each x, y, z ∈ C,

lim
t→ 0+

supΘ
(
tz + (1 − t)x, y

) ≤ Θ
(
x, y

)
; (2.6)

(A4) Θ(x, ·) is convex and lower semicontinuous for each x ∈ C;
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(B1) for each x ∈ H and r > 0, there exists a bounded subset Dx ⊂ C and yx ∈ C such
that for any z ∈ C \Dx,

Θ
(
z, y

)
+ ϕ

(
yx

)
+

1
rn

〈
yx − z, z − x

〉
< ϕ(z), (2.7)

(B2) C is a bounded set.

By a similar argument as in the proof of Lemma 2.3 in [26], we have the following
result.

Lemma 2.4. LetC be a nonempty closed convex subset of a real Hilbert spaceH. LetΘ be a bifunction
from C×C → R that satisfies (A1)–(A4) and let ϕ : C → R∪{∞} be a proper lower semicontinuous
and convex function. Assume that either (B1) or (B2) holds. For r > 0 and x ∈ H, define a mapping
Tr : H → C as follows:

Tr(x) =
{
z ∈ C : Θ

(
z, y

)
+ ϕ

(
y
)
+
1
r

〈(
y − z, z − x

)〉 ≥ ϕ(z), ∀y ∈ C

}
(2.8)

for all x ∈ H. Then, the following conditions hold:

(1) for each x ∈ H,Tr(x)/= ∅;
(2) Tr is single-valued;

(3) Tr is firmly nonexpansive, that is, for any x, y ∈ H, ‖Trx − Try‖2 ≤ 〈Trx − Try, x − y〉;
(4) F(Tr) = MEP(Θ, ϕ);

(5) MEP(Θ, ϕ) is closed and convex.

Let {Tn}∞n=1 be a sequence of nonexpansive mappings of C into itself, where C is a
nonempty closed convex subset of a real Hilbert space H. Given a sequence {tn}∞n=1 in [0, 1],
we define a sequence {Wn}∞n=1 of self-mappings on C by (1.6). Then We have the following
result.

Lemma 2.5 (see [27]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Tn}∞n=1 be a sequence of nonexpansive self-mappings on C such that ∩∞

n=1F(Tn)/= ∅ and let {tn} be a
sequence in (0, b] for some b ∈ (0, 1). Then, for every x ∈ C and k ≥ 1, limn→∞Un,kx exists.

Remark 2.6 (see [8]). It can be shown from Lemma 2.5 that ifD is a nonempty bounded subset
of C, then for ε > 0, there exists n0 ≥ k such that for all n > n0, supx∈D‖Un,kx − Ukx‖ ≤ ε,
where Ukx = limn→∞Un,kx.

Remark 2.7 (see [8]). Using Lemma 2.5, we define a mapping W : C → C as follows: Wx =
limn→∞Wnx = limn→∞Un,1x, for all x ∈ C.W is called theW-mapping generated by T1, T2, . . .
and t1, t2, . . . .

Since Wn is nonexpansive, W : C → C is also nonexpansive.
Indeed, for all x, y ∈ C, ‖Wx −Wy‖ = limn→∞‖Wnx −Wny‖ ≤ ‖x − y‖.
If {xn} is a bounded sequence in C, then we put D = {xn : n ≥ 0}. Hence it is clear

from Remark 2.6 that for any arbitrary ε > 0, there exists n0 ≥ 1 such that for all n > n0,
‖Wnxn −Wxn‖ = ‖Un,1xn −U1xn‖ ≤ supx∈D‖Un,1x −U1x‖ < ε.
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This implies that limn→∞‖Wnxn −Wxn‖ = 0.

Lemma 2.8 (see [27]). Let C be a nonempty closed convex subset of a real Hilbert space H. Let
{Tn}∞n=1 be a sequence of nonexpansive self-mappings on C such that ∩∞

n=1F(Tn)/= ∅ and let {tn} be a
sequence in (0, b] for some b ∈ (0, 1). Then F(W) = ∩∞

n=1F(Tn).

3. Main Results

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ϕ : C →
R ∪ {+∞} be a lower semicontinuous and convex function. Let Θ be a bifunction from C × C → R

satisfying (A1)–(A4), let A be an α-inverse-strongly monotone mapping of C intoH, and let {Tn}∞n=1
be a sequence of nonexpansive self-mapping on C such that ∩∞

n=1F(Tn) ∩ VI(A,C) ∩MEP(Θ, ϕ)/= ∅.
Suppose that {sn}, {αn}, {βn}, and {γn} are sequences in [0, 1],{λn} is a sequence in [0, 2α] such that
λn ∈ [a, b] for some a, b with 0 < a < b < 2α, and {rn} ⊂ (0,∞) is a real sequence. Suppose that the
following conditions are satisfied:

(i) αn + βn + γn = 1,

(ii) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1,

(iv) 0 < lim infn→∞sn ≤ lim supn→∞sn < 1/2 and limn→∞|sn+1 − sn| = 0,

(v) limn→∞|λn+1 − λn| = 0,

(vi) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0.

Let f be a contraction of C into itself with coefficient β ∈ (0, 1). Assume that either (B1) or (B2) holds.
Let the sequences {xn}, {un}, and {yn} be generated by, x1 ∈ C and

Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = snPC(un − λnAun) + (1 − sn)xn,

xn+1 = αnf(xn) + βnxn + γnWn

(
PC

(
yn − λnAyn

))
,

(3.1)

for all n ∈ N, where Wn is defined by (1.6) and {tn} is a sequence in (0, b], for some b ∈ (0, 1). Then
the sequence {xn} converges strongly to a point x∗ ∈ ∩∞

n=1F(Tn) ∩ VI(A,C) ∩ MEP(Θ, ϕ), where
x∗ = P∩∞

n=1F(Tn)∩VI(A,C)∩MEP(Θ,ϕ)f(x∗).

Proof. For any x, y ∈ C and λn ∈ [a, b] ⊂ (0, 2α), we note that

∥∥(I − λnA)x − (I − λnA)y
∥∥2 =

∥∥x − y − λn
(
Ax −Ay

)∥∥2

=
∥∥x − y

∥∥2 − 2λn
〈
x − y,Ax −Ay

〉
+ λ2n

∥∥Ax −Ay
∥∥2

≤ ∥∥x − y
∥∥2 + λn(λn − 2α)

∥∥Ax −Ay
∥∥2

≤ ∥∥x − y
∥∥2

,

(3.2)

which implies that (I − λnA) is nonexpansive.
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Let {Trn} be a sequence of mappping defined as in Lemma 2.4 and let x∗ ∈ ∩∞
n=1F(Tn)∩

VI(A,C) ∩ MEP(Θ, ϕ). Then x∗ = Wnx
∗ and x∗ = PC(x∗ − λnAx∗) = Trnx

∗. Put vn = PC(yn −
λnAyn). From (3.2) we have

‖vn − x∗‖ = ‖PC

(
yn − λnAyn

) − PC(x∗ − λnAx∗)‖

≤ ‖(yn − λnAyn

) − (x∗ − λnAx∗)‖

≤ ‖yn − x∗‖

= ‖snPC(un − λnAun) + (1 − sn)xn − snPC(x∗ − λnAx∗) − (1 − sn)x∗‖

≤ sn‖PC(un − λnAun) − PC(x∗ − λnAx∗)‖ + (1 − sn)‖xn − x∗‖

≤ sn‖un − x∗‖ + (1 − sn)‖xn − x∗‖

= sn‖Trnxn − Trnx
∗‖ + (1 − sn)‖xn − x∗‖

≤ sn‖xn − x∗‖ + (1 − sn)‖xn − x∗‖

= ‖xn − x∗‖.

(3.3)

Hence, we obtain that

‖xn+1 − x∗‖ = ‖αnf(xn) − βnxn − γnWnvn − x∗‖

≤ αn‖f(xn) − x∗‖ + βn‖xn − x∗‖ + γn‖Wnvn − x∗‖

≤ αn‖f(xn) − f(x∗)‖ + αn‖f(x∗) − x∗‖ + βn‖xn − x∗‖ + γn‖vn − x∗‖

≤ αnβ‖xn − x∗‖ + αn‖f(x∗) − x∗‖ + βn‖xn − x∗‖ + γn‖xn − x∗‖

=
(
1 − β

)
αn

‖f(x∗) − x∗‖
1 − β

+
[
1 − (

1 − β
)
αn

]‖xn − x∗‖

≤ max
{
‖xn − x∗‖, ‖f(x

∗) − x∗‖
1 − β

}

≤ max
{
‖x0 − x∗‖, ‖f(x

∗) − x∗‖
1 − β

}
.

(3.4)

Therefore {xn} is bounded. Consequently, {f(xn)}, {un}, {yn}, {vn}, {Wnvn}, {Aun}, and
{Ayn} are also bounded.

Next, we claim that limn→∞‖xn+1 − xn‖ = 0.
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Indeed, setting xn+1 = βnxn + (1 − βn)zn, for all n ≥ 1, it follows that

zn+1 − zn =
αn+1f(xn+1) + γn+1Wn+1vn+1

1 − βn+1
− αnf(xn) + γnWnvn

1 − βn

=
αn+1f(xn+1) + γn+1Wn+1vn+1

1 − βn+1
− γn+1Wn+1vn

1 − βn+1

+
γn+1Wn+1vn

1 − βn+1
− αnf(xn) + γnWnvn

1 − βn

=
αn+1f(xn+1)
1 − βn+1

− αnf(xn)
1 − βn

+
γn+1

1 − βn+1
(Wn+1vn+1 −Wn+1vn)

+
1 − βn+1 − αn+1

1 − βn+1
Wn+1vn −

1 − βn − αn

1 − βn
Wnvn

=
αn+1f(xn+1)
1 − βn+1

− αnf(xn)
1 − βn

+
γn+1

1 − βn+1
(Wn+1vn+1 −Wn+1vn)

+ (wn+1vn −wnvn) +
αn

1 − βn
Wnvn − αn+1

1 − βn+1
Wn+1vn.

(3.5)

Now, we estimate ‖Wn+1vn −Wnvn‖ and ‖Wn+1vn+1 −Wn+1vn‖.
From the definition of {Wn}, (1.6), and since Ti,Un,i are nonexpansive, we deduce that,

for each n ≥ 1,

‖Wn+1vn −Wnvn‖ = ‖t1T1Un+1,2vn − t1T1Un,2vn‖

≤ t1‖Un+1,2vn −Un,2vn‖

= t1‖t2T2Un+1,3vn − t2T2Un,3vn‖

≤ t1t2‖Un+1,3vn −Un,3vn‖

...

≤
(

n∏

i=1

ti

)

‖Un+1,n+1vn −Un,n+1vn‖

≤ M
n∏

i=1

ti,

(3.6)

for some constant M > 0 such that sup{‖Un+1,n+1vn − Un,n+1vn‖, n ≥ 1} ≤ M. And
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we note that

‖Wn+1vn+1 −Wn+1vn‖ ≤ ‖(vn+1 − vn)‖
= ‖PC

(
yn+1 − λn+1Ayn+1

) − PC

(
yn − λnAyn

)‖
≤ ‖(yn+1 − λn+1Ayn+1

) − (
yn − λnAyn

)‖
≤ ‖(I − λn+1A)yn+1 − (I − λn+1A)yn‖ + |λn − λn+1|‖Ayn‖
≤ ‖yn+1 − yn‖ + |λn − λn+1|‖Ayn‖,

(3.7)

‖yn+1 − yn‖ = ‖sn+1PC(un+1 − λn+1Aun+1) + (1 − sn+1)xn+1

−snPC(un − λnAun) − (1 − sn)xn‖
= ‖sn+1PC(un+1 − λn+1Aun+1) − sn+1PC(un − λnAun)

+ (sn+1 − sn)PC(un − λnAun) + (1 − sn+1)xn+1

−(1 − sn+1 + sn+1 − sn)xn‖
≤ sn+1‖(un+1 − λn+1Aun+1) − (un − λnAun)‖
+ |sn+1 − sn|‖un − λnAun‖ + (1 − sn+1)‖xn+1 − xn‖ + |sn+1 − sn|‖xn‖

≤ sn+1{‖(un+1 − λn+1Aun+1) − (un − λnAun)‖
+|λn − λn+1|‖Aun‖} + |sn+1 − sn|(‖un‖ + λn‖Aun‖ + ‖xn‖)
+ (1 − sn+1)‖xn+1 − xn‖

≤ sn+1‖un+1 − un‖ + sn+1|λn − λn+1|‖Aun‖
+ |sn+1 − sn|Q + (1 − sn+1)‖xn+1 − xn‖,

(3.8)

where Q = sup{‖un‖, λn‖Aun‖, ‖xn‖ : n ≥ 1}.
Combining (3.7) and (3.8), we obtain

‖vn+1 − vn‖ ≤ sn+1‖un+1 − un‖ + sn+1|λn − λn+1|‖Aun‖ + |sn+1 − sn|Q
+ (1 − sn+1)‖xn+1 − xn‖ + |λn − λn+1|‖Ayn‖.

(3.9)

On the other hand, from un = Trnxn and un+1 = Trn+1xn+1, we note that

Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C, (3.10)

Θ
(
un+1, y

)
+ ϕ

(
y
) − ϕ(un+1) +

1
rn+1

〈
y − un+1, un+1 − xn+1

〉 ≥ 0, ∀y ∈ C. (3.11)
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Putting y = un+1 in (3.10) and y = un in (3.11), we have

Θ(un, un+1) + ϕ(un+1) − ϕ(un) +
1
rn
〈un+1 − un, un − xn〉 ≥ 0,

Θ(un+1, un) + ϕ(un) − ϕ(un+1) +
1

rn+1
〈un − un+1, un+1 − xn+1〉 ≥ 0.

(3.12)

So, from (A2) we get 〈un+1 − un, (un − xn/rn) − (un+1 − xn+1)/rn+1〉 ≥ 0.
Hence 〈un+1 − un, un − un+1 + un+1 − xn − (rn/rn+1)(un+1 − xn+1)〉 ≥ 0.
Without loss of generality, we may assume that there exists a real number c such that

rn > c > 0, for all n ≥ 1. Then we get

‖un+1 − un‖2 ≤
〈
un+1 − un, xn+1 − xn +

(
1 − rn

rn+1

)
(un+1 − xn+1)

〉

≤ ‖un+1 − un‖
{
‖xn+1 − xn‖ +

∣∣∣∣1 −
rn
rn+1

∣∣∣∣‖un+1 − xn+1‖
}
,

(3.13)

and hence

‖un+1 − un‖ ≤ ‖xn+1 − xn‖ + 1
rn+1

|rn+1 − rn|‖un+1 − xn+1‖

≤ ‖xn+1 − xn‖ + 1
c
|rn+1 − rn|L,

(3.14)

where L = sup{‖un − xn‖ : n ≥ 1}. Hence from (3.9) and (3.14), we have

‖Wn+1vn+1 −Wn+1vn‖ ≤ ‖xn+1 − xn‖ + sn+1

(
L

c
|rn+1 − rn| + |λn − λn+1|‖Aun‖

)

+ |sn+1 − sn|Q + |λn − λn+1|
∥∥Ayn

∥∥.

(3.15)

Combining (3.5), (3.6), and (3.15), we get

‖zn+1 − zn‖ − ‖xn+1 − xn‖ ≤ αn+1

1 − βn+1

(‖f(xn+1)‖ + ‖Wn+1vn‖
)
+

αn

1 − βn

(‖f(xn)‖ + ‖Wnvn‖
)

+
γn+1

1 − βn+1

{
‖xn+1 − xn‖ + sn+1

(
L

c
|rn+1 − rn| + |λn − λn+1|‖Aun‖

)

+|sn+1 − sn|Q + |λn − λn+1|‖Ayn‖
}

+M
n∏

i=1

ti − ‖xn+1 − xn‖
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≤ αn+1

1 − βn+1

(‖f(xn+1)‖ + ‖Wn+1vn‖
)
+

αn

1 − βn

(‖f(xn)‖ + ‖Wnvn‖
)

+
γn+1

1 − βn+1

{
sn+1

(
L

c
|rn+1 − rn| + |λn − λn+1|‖Aun‖

)

+|sn+1 − sn|Q + |λn − λn+1|‖Ayn‖
}
+M

n∏

i=1

ti.

(3.16)

It follows from (3.16) and conditions (i)–(vi) and 0 < ti ≤ b < 1, for all i ≥ 1 that

lim sup
n→∞

(‖zn+1 − zn‖ − ‖xn+1 − xn‖) ≤ 0. (3.17)

By Lemma 2.1, we have limn→∞‖zn − xn‖ = 0. Consequently,

lim
n→∞

‖xn+1 − xn‖ = lim
n→∞

(
1 − βn

)‖zn − xn‖ = 0. (3.18)

From conditions (iv)–(vi), (3.7), (3.8), (3.14), and (3.18), we also get

lim
n→∞

‖un+1 − un‖ = 0, lim
n→∞

‖yn+1 − yn‖ = 0, lim
n→∞

‖vn+1 − vn‖ = 0. (3.19)

Since αn + βn + γn = 1 and from the definition of {xn}, we have xn+1 − xn = αn(f(xn) −
xn) + γn(Wnvn − xn). Then we have

‖Wnvn − xn‖ ≤ 1
γn

{‖xn+1 − xn‖ + αn‖f(xn) − xn‖
} −→ 0, as n −→ ∞. (3.20)

For x∗ ∈ ∩∞
n=1F(Tn) ∩ VI(A,C) ∩MEP(Θ, ϕ), we have

‖un − x∗‖2 = ‖Trnxn − Trnx
∗‖2

≤ 〈Trnxn − Trnx
∗, xn − x∗〉

= 〈un − x∗, xn − x∗〉

=
1
2

(
‖un − x∗‖2 + ‖xn − x∗‖2 − ‖xn − un‖2

)
,

(3.21)

and hence ‖un − x∗‖2 ≤ ‖xn − x∗‖2 − ‖xn − un‖2.
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From (3.3), we have

‖xn+1 − x∗‖2 = ∥
∥αnf(xn) − βnxn − γnWnvn − x∗∥∥2

≤ αn

∥
∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖Wnvn − x∗‖2

≤ αn

∥
∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn

∥
∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2

+ γn
{
sn‖xn − x∗‖2 − sn‖xn − un‖2 + (1 − sn)‖xn − x∗‖2

}

≤ αn

∥
∥f(xn) − x∗∥∥2 +

(
βn + γn

)‖xn − x∗‖2 − γnsn‖xn − un‖2

≤ αn

∥
∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 − γnsn‖xn − un‖2.

(3.22)

That is,

‖xn − un‖2 ≤ 1
γnsn

{
αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2
}

≤ 1
γnsn

{
αn

∥∥f(xn) − x∗∥∥2 + ‖xn+1 − xn‖(‖xn − x∗‖ + ‖xn+1 − x∗‖)
}
.

(3.23)

From (ii) and (3.18), we obtain

‖xn − un‖ −→ 0, as n −→ ∞. (3.24)

From (3.2)-(3.3), we get

‖xn+1 − x∗‖2 ≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖Wnvn − x∗‖2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2

+ γn
∥∥(yn − λnAyn) − (x∗ − λnAx∗)

∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2

+ γn
{∥∥yn − x∗∥∥2 + λn(λn − 2α)

∥∥Ayn −Ax∗∥∥2
}

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖xn − x∗‖2

+ γnλn(λn − 2α)
∥∥Ayn −Ax∗∥∥2

≤ αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 + γna(b − 2α)
∥∥Ayn −Ax∗∥∥2

.

(3.25)
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Then we get,

−γna(b − 2α)
∥∥Ayn −Ax∗∥∥2 ≤ αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

≤ αn

∥
∥f(xn) − x∗∥∥2 + (‖xn − x∗‖ + ‖xn+1 − x∗‖)(‖xn − xn+1‖).

(3.26)

Since αn → 0 and ‖xn − xn+1‖ → 0, we obtain

‖Ayn −Ax∗‖ −→ 0, as n −→ ∞. (3.27)

We note that

‖vn − x∗‖2 = ∥
∥PC(yn − λnAyn) − PC(x∗ − λnAx∗)

∥
∥2

≤ 〈(
yn − λnAyn

) − (x∗ − λnAx∗), vn − x∗〉

=
1
2

{∥∥(yn − λnAyn) − (x∗ − λnAx∗)
∥∥2 + ‖vn − x∗‖2

−∥∥(yn − λnAyn) − (x∗ − λnAx∗) − (vn − x∗)
∥∥2
}

≤ 1
2

{∥∥yn − x∗∥∥2 + ‖vn − x∗‖2 − ∥∥(yn − vn

) − λn
(
Ayn −Ax∗)∥∥2

}

=
1
2

{∥∥yn − x∗∥∥2 + ‖vn − x∗‖2 − ∥∥yn − vn

∥∥2

+2λn
〈
yn − vn,Ayn −Ax∗〉 − λ2n

∥∥Ayn −Ax∗∥∥2
}
.

(3.28)

Then we derive

‖vn − x∗‖2 ≤ ∥∥yn − x∗∥∥2 − ∥∥yn − vn

∥∥2 + 2λn
〈
yn − vn,Ayn −Ax∗〉 − λ2n

∥∥Ayn −Ax∗∥∥2

≤ ‖xn − x∗‖2 − ∥∥yn − vn

∥∥2 + 2λn
〈
yn − vn,Ayn −Ax∗〉.

(3.29)

Hence

‖xn+1 − x∗‖2 ≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖Wnvn − x∗‖2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2 + γn‖vn − x∗‖2

≤ αn

∥∥f(xn) − x∗∥∥2 + βn‖xn − x∗‖2

+ γn
{
‖xn − x∗‖2 − ∥∥yn − vn

∥∥2 + 2λn
〈
yn − vn,Ayn −Ax∗〉

}

≤ αn

∥∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 − γn
∥∥yn − vn

∥∥2

+ 2γnλn‖yn − vn‖‖Ayn −Ax∗‖,

(3.30)
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which imply that

γn‖yn − vn‖2 ≤ αn

∥
∥f(xn) − x∗∥∥2 + ‖xn − x∗‖2 − ‖xn+1 − x∗‖2

+ 2γnλn‖yn − vn‖‖Ayn −Ax∗‖

≤ αn

∥
∥f(xn) − x∗∥∥2 + 2γnλn‖yn − vn‖‖Ayn −Ax∗‖

+ (‖xn − x∗‖ + ‖xn+1 − x∗‖)‖xn − xn+1‖.

(3.31)

From condition (ii), (3.18), and (3.27), we get

lim
n→∞

‖yn − vn‖ = 0. (3.32)

Since

‖un − yn‖ ≤ ‖un − xn‖ + ‖xn − yn‖
= ‖un − xn‖ + ‖snPC(un − λnAun) − snxn‖
≤ ‖un − xn‖ + sn‖un − yn‖ + sn‖vn −Wnvn‖ + sn‖Wnvn − xn‖,

(3.33)

we have

‖un − yn‖ ≤ 1
1 − sn

‖un − xn‖ + sn
1 − sn

‖vn −Wnvn‖ + sn
1 − sn

‖Wnvn − xn‖, (3.34)

and then we obtain

‖Wnvn − vn‖ ≤ ‖Wnvn − xn‖ + ‖xn − un‖ + ‖un − yn‖ + ‖yn − vn‖

≤ ‖Wnvn − xn‖ + ‖xn − un‖ + 1
1 − sn

‖un − xn‖

+
1

1 − sn
‖vn −Wnvn‖ + sn

1 − sn
‖Wnvn − xn‖ + ‖yn − vn‖.

(3.35)

So we get

1 − 2sn
1 − sn

‖Wnvn − vn‖ ≤ 1
1 − sn

‖Wnvn − xn‖ + 2 − sn
1 − sn

‖un − xn‖ + ‖yn − vn‖. (3.36)

From condition (iv) and (3.20), (3.24), and (3.32), we have limn→∞‖Wnvn−vn‖ = 0.Moreover,
from Remark 2.7 we get limn→∞‖Wvn − vn‖ = 0.

Next, we show that

lim sup
n→∞

〈f(x∗) − x∗, xn − x∗〉 ≤ 0, (3.37)
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where x∗ = P∩∞
n=1F(Tn)∩VI(A,C)∩MEP(Θ,ϕ)f(x∗). Indeed, we choose a subsequence {vni} of {vn}

such that

lim sup
n→∞

〈
f(x∗) − x∗,Wvn − x∗〉 = lim

i→∞
〈
f(x∗) − x∗,Wvni − x∗〉. (3.38)

Since {vni} is bounded, there exists a subsequence {vnij
} of {vni} which converges weakly to

z. Without loss of generality, we can assume that vni ⇀ z.
From ‖Wvn − vn‖ → 0, we obtain Wvni ⇀ z.
Next, we show that z ∈ ∩∞

n=1F(Tn) ∩ VI(A,C) ∩MEP(Θ, ϕ).
First, we show that z ∈ MEP(Θ, ϕ). In fact by un = Trnxn ∈ domϕ, we have

Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C. (3.39)

From (A2), we also have

ϕ
(
y
) − ϕ(un) +

1
rn
〈y − un, un − xn〉 ≥ Θ

(
y, un

)
, ∀y ∈ C, (3.40)

and hence

ϕ
(
y
) − ϕ(un) +

〈
y − uni ,

uni − xni

rni

〉
≥ Θ

(
y, uni

)
, ∀y ∈ C. (3.41)

From ‖un − xn‖ → 0, ‖xn −Wvn‖ → 0 and ‖Wvn − vn‖ → 0, we get uni → z. It follows from
(A4) that (uni − xni)/rni → 0 and from the lower semicontinuity of ϕ that

Θ
(
y, z

)
+ ϕ(z) − ϕ

(
y
) ≤ 0, ∀y ∈ C. (3.42)

For t with 0 < t ≤ 1 and y ∈ C, let yt = ty + (1 − t)z. Since y ∈ C and z ∈ C, we have yt ∈ C
and hence Θ(yt, z) + ϕ(z) − ϕ(yt) ≤ 0. So, from (A1) and (A4), we have

0 = Θ
(
yt, yt

)
+ ϕ

(
yt

) − ϕ
(
yt

)

≤ tΘ
(
yt, y

)
+ (1 − t)Θ

(
yt, z

)
+ tϕ

(
y
)
+ (1 − t)ϕ(z) − ϕ

(
yt

)

≤ t
[
Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

)]
.

(3.43)

Dividing by t, we have

Θ
(
yt, y

)
+ ϕ

(
y
) − ϕ

(
yt

) ≥ 0, ∀y ∈ C. (3.44)
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Letting t → 0, it follows from the weakly semicontinuity of ϕ that

Θ
(
z, y

)
+ ϕ

(
y
) − ϕ(z) ≥ 0, ∀y ∈ C. (3.45)

Hence z ∈ MEP(Θ, ϕ).
Second, we show that z ∈ F(W) = ∩∞

n=1F(Tn). Assume z/∈F(W). Since uni ⇀ z and
z/=Wz, by Opial’s condition, we have

lim inf
i→∞

‖uni − z‖ < lim inf
i→∞

‖uni −Wz‖

≤ lim inf
i→∞

(‖uni −Wuni‖ + ‖Wuni −Wz‖)

≤ lim inf
i→∞

‖uni − z‖,

(3.46)

which derives a contradiction. Thus we have z ∈ F(T).
Finally, by the same argument in the proof of [28, Theorem 3.1], we can show that

z ∈ VI(A,C).
Hence z ∈ ∩∞

n=1F(Tn) ∩ VI(A,C) ∩MEP(Θ, ϕ).
Since x∗ = P∩∞

n=1F(Tn)∩VI(A,C)∩MEP(Θ,ϕ)f(x∗) and ‖xn −Wvn‖ → 0, we have

lim sup
n→∞

〈
f(x∗) − x∗, xn − x∗〉 = lim sup

n→∞
〈f(x∗) − x∗,Wvn − x∗〉

= lim
i→∞

〈f(x∗) − x∗,Wvni − x∗〉

= 〈f(x∗) − x∗, z − x∗〉 ≤ 0.

(3.47)

Therefore, (3.37) holds.
Finally, we show that xn → x∗. From definition of {xn}, we get

‖xn+1 − x∗‖2 = ∥
∥αnf(xn) + βnxn + γnWnvn − x∗∥∥2

=
〈
αnf(xn) + βnxn + γnWnvn − x∗, xn+1 − x∗〉

= αn〈f(xn) − x∗, xn+1 − x∗〉 + βn〈xn − x∗, xn+1 − x∗〉
+ γn〈Wnvn − x∗, xn+1 − x∗〉

≤ αn

〈
f(xn) − x∗, xn+1 − x∗〉 +

1
2
βn
(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)

+
1
2
γn
(
‖vn − x∗‖2 + ‖xn+1 − x∗‖2

)

≤ αn

〈
f(xn) − x∗, xn+1 − x∗〉 +

1
2
βn
(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)

+
1
2
γn
(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)



18 Fixed Point Theory and Applications

= αn〈f(xn) − x∗, xn+1 − x∗〉 + 1
2
(1 − αn)

(
‖xn − x∗‖2 + ‖xn+1 − x∗‖2

)

≤ αn

〈
f(xn) − x∗, xn+1 − x∗〉 +

1
2
(1 − αn)‖xn − x∗‖2 + 1

2
‖xn+1 − x∗‖2,

(3.48)

which implies that

‖xn+1 − x∗‖2 ≤ (1 − αn)‖xn − x∗‖2 + 2αn

〈
f(xn) − x∗, xn+1 − x∗〉. (3.49)

By (3.47) and Lemma 2.3, we get that {xn} converges strongly to x∗.
This completes the proof.

Setting f(xn) ≡ u and ϕ = 0 in Theorem 3.1., we have the following result.

Corollary 3.2 (see [14, Theorem 2.1]). Let C be a nonempty closed convex subset of a real Hilbert
spaceH. LetΘ be a bifunction from C×C → R satisfying (A1)–(A4), letA be an α-inverse-strongly
monotone mapping of C into H, and let {Tn}∞n=1 be a sequence of nonexpansive self-mapping on C
such that ∩∞

n=1F(Tn) ∩ VI(A,C) ∩ EP(Θ)/= ∅. Suppose that x1 = u ∈ C, {sn}, {αn}, {βn}, and
{γn} are sequences in [0, 1],{λn} is a sequence in [0, 2α] such that λn ∈ [a, b] for some a, b with
0 < a < b < 2α and {rn} ⊂ (0,∞) is a real sequence. Suppose that the following conditions are
satisfied:

(i) αn + βn + γn = 1,

(ii) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1,

(iv) 0 < lim infn→∞sn ≤ lim supn→∞sn < 1/2 and limn→∞|sn+1 − sn| = 0,

(v) limn→∞|λn+1 − λn| = 0,

(vi) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0.

Let the sequence {xn} be generated by,

Θ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = snPC(un − λnAun) + (1 − sn)xn,

xn+1 = αnu + βnxn + γnWn

(
PC

(
yn − λnAyn

))
,

(3.50)

for all n ∈ N, where Wn is defined by (1.6) and {tn} is a sequence in (0, b], for some b ∈ (0, 1).
Then the sequence {xn} converges strongly to a point x∗ ∈ ∩∞

n=1F(Tn) ∩ VI(A,C) ∩ EP(Θ), where
x∗ = P∩∞

n=1F(Tn)∩VI(A,C)∩EP(Θ)u.

Setting ϕ = 0 in Theorem 3.1, we have the following result.
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Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let Θ be a
bifunction from C ×C → R satisfying (A1)–(A4), let A be an α-inverse-strongly monotone mapping
of C intoH, and let {Tn}∞n=1 be a sequence of nonexpansive self-mapping on C such that ∩∞

n=1F(Tn) ∩
VI(A,C) ∩ EP(Θ)/= ∅. Suppose that {sn}, {αn}, {βn}, and {γn} are sequences in [0, 1],{λn} is a
sequence in [0, 2α] such that λn ∈ [a, b] for some a, b with 0 < a < b < 2α, and {rn} ⊂ (0,∞) is a
real sequence. Suppose that the following conditions are satisfied:

(i) αn + βn + γn = 1,

(ii) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1,

(iv) 0 < lim infn→∞sn ≤ lim supn→∞sn < 1/2 and limn→∞|sn+1 − sn| = 0,

(v) limn→∞|λn+1 − λn| = 0,

(vi) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0.

Let f be a contraction of C into itself with coefficient β ∈ (0, 1) and let the sequence {xn} be generated
by x1 ∈ C and

Θ
(
un, y

)
+

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = snPC(un − λnAun) + (1 − sn)xn,

xn+1 = αnf(xn) + βnxn + γnWn

(
PC

(
yn − λnAyn

))
,

(3.51)

for all n ∈ N, where Wn is defined by (1.6) and {tn} is a sequence in (0, b], for some b ∈ (0, 1).
Then the sequence {xn} converges strongly to a point x∗ ∈ ∩∞

n=1F(Tn) ∩ VI(A,C) ∩ EP(Θ), where
x∗ = P∩∞

n=1F(Tn)∩VI(A,C)∩EP(Θ)f(x∗).

By Theorem 3.1, we obtain some interesting strong convergence theorems.
Setting Tnx = x then we have Wnx = x in Theorem 3.1, and we have the following

result.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let ϕ : C →
R ∪ {+∞} be a lower semicontinuous and convex function. Let Θ be a bifunction from C × C → R

satisfying (A1)–(A4), and let A be an α-inverse-strongly monotone mapping of C into H such that
VI(A,C) ∩MEP(Θ, ϕ)/= ∅. Suppose that {sn}, {αn}, {βn}, and {γn} are sequences in [0, 1],{λn} is
a sequence in [0, 2α] such that λn ∈ [a, b] for some a, b with 0 < a < b < 2α and {rn} ⊂ (0,∞) is a
real sequence. Suppose that the following conditions are satisfied:

(i) αn + βn + γn = 1,

(ii) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1,

(iv) 0 < lim infn→∞sn ≤ lim supn→∞sn < 1/2 and limn→∞|sn+1 − sn| = 0,

(v) limn→∞|λn+1 − λn| = 0,

(vi) lim infn→∞rn > 0 and limn→∞|rn+1 − rn| = 0.
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Let f be a contraction of C into itself with coefficient β ∈ (0, 1). Assume that either (B1) or (B2) holds.
Then the sequences {xn}, {un}, and {yn} generated by, x1 ∈ C and

Θ
(
un, y

)
+ ϕ

(
y
) − ϕ(un) +

1
rn

〈
y − un, un − xn

〉 ≥ 0, ∀y ∈ C,

yn = snPC(un − λnAun) + (1 − sn)xn,

xn+1 = αnf(xn) + βnxn + γn
(
PC

(
yn − λnAyn

))

(3.52)

converge strongly to a point x∗ ∈ VI(A,C) ∩MEP(Θ, ϕ), where x∗ = PVI(A,C)∩MEP(Θ,ϕ)f(x∗).

Setting Θ = 0, ϕ = 0 and rn = 1 then we have un = PCxn = xn in Theorem 3.1, and we
have the following result.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be an
α-inverse-strongly monotone mapping of C into H and let {Tn}∞n=1 be a sequence of nonexpansive
self-mapping on C such that ∩∞

n=1F(Tn) ∩ VI(A,C)/= ∅. Suppose that {sn}, {αn}, {βn}, and {γn} are
sequences in [0, 1],{λn} is a sequence in [0, 2α] such that λn ∈ [a, b] for some a, b with 0 < a < b <
2α. Suppose that the following conditions are satisfied:

(i) αn + βn + γn = 1,

(ii) limn→∞αn = 0 and
∑∞

n=1 αn = ∞,

(iii) 0 < lim infn→∞βn ≤ lim supn→∞βn < 1,

(iv) 0 < lim infn→∞sn ≤ lim supn→∞sn < 1/2 and limn→∞|sn+1 − sn| = 0,

(v) limn→∞|λn+1 − λn| = 0.

Let f be a contraction of C into itself with coefficient β ∈ (0, 1). Let the sequences {xn} and {yn} be
generated by x1 ∈ C and

yn = snPC(xn − λnAxn) + (1 − sn)xn,

xn+1 = αnf(xn) + βnxn + γnWn

(
PC

(
yn − λnAyn

))
,

(3.53)

for all n ∈ N, where Wn defined by (1.6) and {tn} is a sequence in (0, b], for some b ∈ (0, 1).
Then the sequences {xn} and {yn} converge strongly to a point x∗ ∈ ∩∞

n=1F(Tn) ∩ VI(A,C), where
x∗ = P∩∞

n=1F(Tn)∩VI(A,C)f(x∗).
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