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Existence theorems of fixed points for multivalued increasing operators in partially ordered spaces
are presented. Here neither the continuity nor compactness is assumed for multivalued operators.
As an application, we lead to the existence principles for integral inclusions of Hammerstein type
multivalued maps.

1. Introduction

The influence of fixed point theorems for contractive and nonexpansive mappings (see [1, 2])
on fixed point theory is so huge that there are many results dealing with fixed points of
mappings satisfying various types of contractive and nonexpansive conditions. On the other
hand, it is also huge that well-known Brouwer’s and Schauder’s fixed point theorems for
set-contractive mappings exert an influence on this theory. However, if a mapping is not
completely continuous, in general, it is difficult to verify that the mapping satisfies the set-
contractive condition. In 1980, Mönch [3] has obtained the following important fixed point
theorem which avoids the above mentioned difficulty.

Theorem 1.1. Let E be a Banach space,K ⊂ E a closed convex subset. Suppose that (single) operator
F : K → K is continuous and satisfies that

(i) there exists x ∈ K such that if C ⊂ K ∩ co({x} ∪ F(C)) is countable, then C is relatively
compact,

then F has a fixed point in K.

It has been observed that continuity is an ideal and important property in the above
cited works, while in some applications the mapping under consideration may not be
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continuous, yet at the same time it may be “not very discontinuous”. this idea has motivated
many authors to study corresponding problems, for instance, the stability of Brouwer’s
fixed point theorem [4], similar result for nonexpansive mappings [5], and existence and
approximation of the synthetic approaches to fixed point theorems [6]. Recently, fixed point
theory for discontinuous multivalued mappings has attracted much attention and many
authors studied the existence of fixed points for such mappings. We refer to [7–11]. For
example, Hong [8] has extended Mönch [3] to discontinuous multivalued operators in
ordered Banach spaces by using a quite weak compactness condition; that is, assuming the
following condition is satisfied.

(H) If C = {xn} is a countable totally ordered set and C ⊂ wcl({x1} ∪ A(C)), then C is
weakly relatively compact. Here A is a multivalued operator and wcl(B) denotes
the weak closure of the set B.

The purpose of this paper is to present some results on fixed point theorems of
Mönch type of multivalued increasing operators for which neither the continuity nor the
compactness is assumed in ordered topological spaces. However, we will use the following
hypothesis.

(H1) If C = {xn} ⊂ K is a countable totally ordered set and C ⊂ cl({x1} ∪ A(C)), then C
has a supremum.

E is a topological vector space endowedwith partial ordering “≤”, cl(B) stands for the closure
of the set B, and K = {x ∈ E | x ≥ u0}with u0 ∈ E is a given ordered set of E.

This paper is organized as follows. In Section 2, we introduce some definitions and
preliminary facts from partially ordered theory and multivalued analysis which are used
later. In especial, we introduce a new partial ordering of sets which forms a basis to our main
results. In Section 3, we state and prove existence of fixed points, also, maximal and minimal
fixed point theorem is presented for discontinuous multivalued increasing operators which
are our main results. To illustrate the applicability of our theory, in Section 4, we discuss the
existence of solutions to the Hammerstein integral inclusions of the form

u(t) ∈
∫T

0
k(t, s)G(s, u(s))ds a.e. on [0, T]. (1.1)

2. Preliminaries

Let (E,≤) be a partially ordered topological vector space. By the notation “x < y” we always
mean that x ≤ y and x /=y. Let 2E stand for the collection of all nonempty subsets of E. Take
u0 ∈ E and let Ku0 = {x ∈ E | x ≥ u0} be a given ordered set of E. The ordered interval of E is
written as [u, v] = {x ∈ E : u ≤ x ≤ v}.

For two subsets P,Q of E, we write P ≤ Q (or Q ≥ P ) if

∀p ∈ P, ∃q ∈ Q such that p ≤ q. (2.1)

Given a nonempty subsets Ω of E we say that A : Ω � 2E is increasing upwards if
u, v ∈ Ω, u ≤ v, and x ∈ A(u) imply that there exists y ∈ A(v) such that x ≤ y.A is increasing
downwards if u, v ∈ Ω, u ≤ v, and y ∈ A(v) imply an existence of x ∈ A(u) such that x ≤ y.
If A is increasing upwards and downwards we say that A is increasing.
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Let Γ ⊂ E be nonempty. The element y ∈ E is called an upper (lower) bound of Γ if
x ≤ y (x ≥ y)whenever x ∈ Γ. Γ is called upper (lower) bounded with respect to the ordering
if its upper (lower) bounds exist. The element z ∈ E is called a supremum of Γ, written as
z = sup Γ, if z is an upper bound and z ≤ y as long as y is another upper bound of Γ. Similarly,
we can define the infimum inf Γ of Γ.

Throughout this paper, unless otherwise mentioned, the partial ordering of E always
introduced by a closed cone if E is a Banach space. The following lemmas will be used in after
sections.

Lemma 2.1 (see [12]). Let E be an ordered Banach space and B a totally ordered and weakly relatively
compact subset of E, then there exists x∗ ∈ wcl(B) such that x ≤ x∗ foe all x ∈ B.

An ordered topological vector space E is said to have the limit ordinal property if
xn, yn ∈ E with xn ≤ yn for n = 1, 2, . . ., and xn → x∗, yn → y∗ for n → ∞ imply x∗ ≤ y∗. By
an analogy of the proof of Lemma 1.1.2 in [12], we have the following.

Lemma 2.2. If E has the limit ordinal property and {xn} is a relatively compact monotone sequence of
E, then {xn} is convergent. Moreover, xn ≤ x∗ if {xn} is increasing and x∗ ≤ xn if {xn} is decreasing
for n = 1, 2, . . . . Here limn→∞xn = x∗.

Remark 2.3. Under the assumptions of Lemma 2.2, it is evident that x∗ is the supremum
(infimum) of increasing (decreasing) sequence {xn}.

Lemma 2.4. Let the increasing sequence {xn} have the supremum z. If {xni} is a infinity subsequence
of {xn}, then {xni} has the supremum z, too.

Proof. Evidently, z is an upper bound of {xni}. Let y be the other one, then xni ≤ y for i =
1, 2, . . . . For any given n, since {xni} is infinity, there exists i0 such that xn ≤ xni0

, which implies
that xn ≤ y for all n ≥ 1. From the definition of supremums it follows that z ≤ y, that is, z is
the supremum of {xni}.

Lemma 2.5. Suppose that every countable totally ordered subset of the partially ordered set Y has a
supremum in Y . Let the operator F : Y → Y satisfy F(x) ≥ x for all x ∈ Y , then there exists x0 ∈ Y
such that F(x0) = x0.

Proof. Take z0 ∈ Y any fixed and let zi+1 = F(zi) for i = 0, 1, . . ., then zi+1 ≥ zi that is, {zi} is
increasing. From our assumption it follows that {zi} has a supremum denoted by z10 = sup zi.
Let

Γ1 = {z0, z1, . . .} ∪
{
z10

}
. (2.2)

If z10 = F(z10), then the conclusion of the lemma is proved. Otherwise, take z1i = F(z1i−1) for
i = 1, 2, . . . .Again, the set {z10, z11, . . .} has the supremum z20 = sup z1i . Denote Γ2 = {z10, z11, . . .}∪
{z20}. If z20 = F(z20), then the conclusion of the lemma is proved. Otherwise, take z2i = F(z2i−1)
for i = 1, 2, . . ., and let Γ3 = {z20, z21, . . .} ∪ {z30} with z30 = sup z2i . In general, having defined
Γk = {zk−10 , zk−11 , . . .} ∪ {zk0} with zk−1i = F(zk−1i ) and zk0 = sup zk−1i , where z0i = zi and k, i =
1, 2, . . ., if zk0 = F(zk0), which completes the proof. Otherwise, repeating this process, either the
conclusion of the lemma is proved, or we can obtain a set sequence Γ1,Γ2, . . . satisfying
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(i) Γk = {zk−11 , zk−12 , . . .} ∪ {zk0} with zk0 = sup zk−1i and zki = F(zki−1), i, k = 1, 2, . . .;

(ii) zki−1 ≤ zki for i, k = 1, 2, . . .;

(iii) zk−1j ≤ zkt j, t = 0, 1, 2, . . ., and z0i = zi.

Let Γ =
⋃∞

k=1 Γk, then Γ is a countable subset and

z0 ≤ x ∀x ∈ Γ. (2.3)

We claim that

F(Γ) ⊂ Γ. (2.4)

In fact, for any y ∈ F(Γ), there exists x ∈ Γ such that y = F(x). There exists Γk such that
x ∈ Γk. If x = zk−1i for some nature number i, then y = F(x) = zk−1i+1 ∈ Γk which yields y ∈ Γ.
Otherwise, we have x = sup zk−1i = zk0 ∈ Γk+1. This implies that y = F(x) = F(k0) = zk1 ∈ Γk+1.
Consequently, y ∈ Γ. From the arbitrariness of y it follows that (2.4) is satisfied.

Finally, combining (ii) and (iii) we see easily that Γ is totally ordered. Our hypothesis
guarantees that Γ has a supremum, written as x∗ = sup Γ. Note that (2.4) guarantees F(x∗) ∈
Γ, we have F(x∗) ≤ x∗. On the other hand, the definition of F ensures that F(x∗) ≥ x∗. Hence
F(x∗) = x∗. This proof is completed.

LetΩ be a nonempty subset ofKu0 . In this section we impose the following hypotheses
on the increasing upwards multivalued operator A : Ω � 2E. Set

R = {x ∈ Ω | there exists u ∈ Ax such that x ≤ u} (2.5)

and for any x ∈ R define that

C(x) = {x, u1, u2, . . . , un, . . .}, D(x) = C(x) ∪ {w(x)}, (2.6)

where, w(x) = supC(x) and ui (i = 1, 2, . . .) is given as follows: since x ∈ R, there exists
u1 ∈ Ax such that x ≤ u1. In virtue of the fact that A is increasing upwards, there exists
u2 ∈ Au1 such that u1 ≤ u2. On the analogy of this process, there exists un ∈ Aun−1 such
that un−1 ≤ un for n = 2, 3, . . . , Obviously, C(x) ⊂ cl({x} ∪ A(C)), thus, the condition (H1)
guarantees that the supremum w(t) of C(x) exists.

Remark 2.6. In general, the sequences of these kinds, {un}, may not be unique, that is, every
{un} corresponds to C(x), moreover, corresponds to D(x). For given x ∈ R, we denote with
C(x) and D(x) the families of C(x) and D(x) as above, respectively.

In addition, if E has the limit ordinal property, D(x) is a closed set for any x ∈ R. In
fact, let {uni} be any infinity subsequence of D for which

uni −→ x∗ for i −→ ∞. (2.7)

observing that {uni} is increasing, by Lemma 2.2 we get that x∗ is a supremum of {uni} and
by Lemma 2.4 we get w(x) = x∗.
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Definition 2.7. A set Γ is said to be sup-closed if the supremum of each countable subset of
Γ (provided that it exists) belongs to Γ. A multivalued operator A : Ω � 2E is said to have
sup-closed values if Ax is sup-closed for each x ∈ Ω.

Defining

X(x) = {u : there exists D(x) ∈ D(x) such that u ∈ D(x)}. (2.8)

Lemma 2.8. Let E be an ordered topological space, Ω a nonempty subset of Ku0 with u0 ∈ E; let
A : Ω � 2E have sup-closed values and satisfy hypothesis (H1). Moreover, assume that

(H2) A is increasing upwards and satisfies u0 ≤ Au0,

then for any C(x) ∈ C(x), C(x) has the supremum w(x) which belongs to R, that is,

w(x) ≤ x∗ for some x∗ ∈ A(w(x)). (2.9)

Proof. It is clear that C(x) has the supremum w(x) ∈ E. For any ui ∈ C(x)/{x}, from
ui ∈ A(ui−1) and ui−1 ≤ w(x) there exists xi ∈ A(w(x)) such that ui ≤ xi. We can assume
that the sequence {xi} is increasing. Indeed, if xi ≤ xi+1 for i = 1, 2, . . ., our purpose is
reached. Otherwise, there exists i0 such that xi0/≤xi0+1, then we take xi0+1 instead of xi0 . Let
M = {w(x), x1, x2, . . . , xn, . . .}, thenM ⊂ cl({w(x)} ∪A(M)). Condition (H1) guarantees that
M has a supremum x∗ = supM. Clearly,w(x) ≤ x∗. By virtue of the fact thatA has sup-closed
values, we have x∗ ∈ A(w(x)). This proof is complete.

For the sake of convenience, in this paper, byw(x)we always stand for the supremum
of C(x). For given x ∈ R, let W(x) be a set consisting of all w(x) given as in Lemma 2.8,
then W is an increasing map. Now for any un ∈ C(x) Lemma 2.4 shows D(un) ⊂ D(x), thus,
W(un) ⊂ W(x). Define

Z = {D(x) : x ∈ R}. (2.10)

It is obvious that D(u0) ∈ Z. Hence, Z is nonempty. A relation “≤′′
1 on Z is defined as follows

(it is easy to see that (Z,≤1) is a partially ordered set):

D(x) = D(y) ⇔ x = y, w(x) = w(y);

D(x)<1D(y) ⇔ x < y and w(x) ≤ w(y).

Remark 2.9. It is clear we may assume that, for any u ∈ D(x), there exists v ∈ D(y) such that
u ≤ v if D(x)<1D(y).

Let us assume that there exists some u0 ∈ R such that

(H3) W(u0) ⊂ cl(A(X(u0))).

Define

S = {D(x) : x ∈ R, W(x) ⊂ cl(A(X(x)))}. (2.11)
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Obviously, D(u0) ∈ S, that is, S is nonempty if A is increasing upwards. Now we denote ≤2

as a relation on S defined by, for any D(x),D(y) ∈ S,

(I) D(x) = D(y) ⇔ x = y;

(II) D(x)<2D(y) ⇔ (a) for all D(x) ∈ D(x), there exists D(y) ∈ D(y) such that
D(x)<1D(y) and

(b) there exists a countable at most and totally ordered subset Q ⊂ R such that

(b1) x < q < y for any q ∈ Q.
(b2) There exists D(x) ∈ D(x) such that

y ∈ cl

⎛
⎝{w(x)} ∪

⋃
q∈Q

W(
q
)
⎞
⎠,

{
y
} ≥ W(

q
)
, w(x) ≤ q

(∀q ∈ Q
)
; (2.12)

(b3)
⋃

q∈Q X(q) is a totally ordered set and satisfies
⋃

q∈Q X(q) ⊂ cl(W(x) ∪
A(

⋃
q∈Q X(q))). Q is called a link of linking D(x)with D(y).

Remark 2.10. (b2) may be satisfied. In fact, we can take empty set as a link of linking D(x)
andD(y). Thus,D(x)<2D(y) implies that for anyD(x) ∈ D(x)we can findD(y) ∈ D(y) such
that D(x)<1D(y). In this case, we take w(x) = y. Besides, Q can be a finite set, for example,
Q = {q1, q2, . . . , qm} with q1 < q2 < · · · < qm, then q1 = infW(x), y = supW(qm). (b3) and the
condition (H1) ensure

⋃
q∈Q X(q) to exist the supremum, so, from Lemma 2.2 the element y

satisfying (b2) exists.

Lemma 2.11. The relation “≤2” satisfies that

(i) D(x)≤2D(x);

(ii) D(x)≤2D(y) and D(y)≤2D(x) implies D(x) = D(y);

(iii) D(x)≤2D(y), D(y)≤2D(z) implies D(x)≤2D(z).

Therefore, (S, ≤2) is a partially ordered set.

Proof. (i) and (ii) are satisfied. Trivial by (I) and (II)(a). To prove (iii), for any given D(x) ∈
D(x) we take D(y) ∈ D(y) such that D(x)≤1D(y) and we can find D(z) ∈ D(z) such that
D(y)≤1D(z). It is sufficient to assume that at least one of the above equalities does not hold.
The definition of <1 guarantees that

x ≤ y ≤ z, (2.13)

w(x) ≤ w
(
y
) ≤ w(z), (2.14)

and at least one strictly inequality in (2.13) holds. The links linking D(x) with D(y) and
linking D(y)with D(z) are written, respectively, as Q′ and Q′′. Let Q = Q′ ∪Q′′ ∪ {y}, for any
q′ ∈ Q′, q′′ ∈ Q′′, if none of equalities in (2.13) holds, then by (b1)we have

x < q′ < y, y < q′′ < z. (2.15)
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If at least one equality in (2.13) holds, for instance, x = y, then (b1) and (b2) show that

w(x) ≤ q′ ≤ w
(
y
)
, w

(
y
) ≤ q′′ < z. (2.16)

Hence, Q ⊂ R is a countable totally ordered subset and satisfies (b1).
Next we will prove that Q satisfies (b2). It is clear that the following consequences are

true, that is, z ≥ w(y) ≥ w(x) and z ∈ cl({w(y)} ∪⋃
q′′∈Q′′ W(q′′)) ⊂ cl({w(x)} ∪⋃

q∈Q W(q)). It
is easy to see that {z} ≥ W(q) for all q ∈ Q by {z} ≥ W(q′′) and W(q′′) ≥ W(q′) for all q′ ∈ Q′.
Also, w(x) ≤ q for all q ∈ Q.

Finally, we prove that Q satisfies (b3). For all x1, x2 ∈
⋃

q∈Q X(q), there exist q′, q′′ ∈ Q
with q′ ≤ q′′ (because Q is totally ordered) and D(q′) ∈ D(q′), D(q′′) ∈ D(q′′) such that
x1 ∈ D(q′), x2 ∈ D(q′′). If q′, q′′ ∈ Q′ (or q′, q′′ ∈ Q′′), then x1 and x2 are ordered by (b3).
If q′ ∈ Q′, q′′ ∈ Q′′, from (b1) and (b2) it follows that D(q′)<1D(q′′), which shows that x1 ≤
w(q′) ≤ q′′ ≤ x2. To conclude,

⋃
q∈Q X(q) is totally ordered. Noting that both Q′ and Q′′ have

supremums, by the definition of S, we have

W(
y
) ⊂ cl

(
A
(
X
(
y
)))

. (2.17)

Therefore,

⋃
q∈Q

X
(
q
)
=

⎛
⎝⋃

q∈Q′
X
(
q
)
⎞
⎠⋃⎛

⎝ ⋃
q∈Q′′

X
(
q
)
⎞
⎠⋃

X
(
y
)

⊂ cl

⎛
⎝W(x) ∪A

⎛
⎝⋃

q∈Q′
X
(
q
)
⎞
⎠

⎞
⎠⋃

cl

⎛
⎝w

(
y
) ∪A

⎛
⎝ ⋃

q∈Q′′
X
(
q
)
⎞
⎠

⎞
⎠⋃

X
(
y
)

⊂ cl

⎛
⎝W(x) ∪A

⎛
⎝⋃

q∈Q′
X
(
q
)
⎞
⎠

⎞
⎠⋃⎛

⎝W(
y
) ∪A

⎛
⎝ ⋃

q∈Q′′
X
(
q
)
⎞
⎠

⎞
⎠⋃

cl
(
A
(
X
(
y
)))

⊂
⎛
⎝W(x) ∪A

⎛
⎝⋃

q∈Q
X
(
q
)
⎞
⎠

⎞
⎠.

(2.18)

This shows that Q satisfies (b3). Consequently, D(x)<2D(z),which completes this proof.

3. Main Results

Now we can state and prove our main results.

Definition 3.1. u ∈ E is said to be a fixed point of the multivalued operator A if u ∈ A(u). The
fixed point x∗ of A is said to be a maximal fixed point of A if u = x∗ whenever u ∈ A(u) and
x∗ ≤ u. If x∗ is a fixed point and if x∗ = u whenever u ∈ A(u) and u ≤ x∗, we say that x∗ is a
minimal fixed point of A.
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Theorem 3.2. Assume that E is an ordered topological space. Let u0 ∈ E, Ω ⊂ Ku0 be nonempty and
the multivalued operator A : Ω � 2E have sup-closed values such that hypotheses (H1)–(H3) hold.
Then A admits at least one fixed point in Ku0 .

Proof. If S has a maximal element D(x∗), then x∗ is a fixed point of A. In fact, since x∗ ∈ R,
we can find u ∈ A(x∗) such that x∗ ≤ u. From the definition of C(x∗) we can let u ∈ D(x∗) ∈
D(x∗). This implies u ≤ w(x∗). We claim that x∗ = u. Suppose that x∗ < u, then x∗ < w(x∗)
and D(x∗)<1D(w(x∗)). Take empty set as a link of linking D(x∗) with D(w(x∗)), we have
D(x∗)<2D(w(x∗)), which contradicts the definition of maximal element.

To prove the existence of maximal element of S, by Zorn’s lemma, is thus sufficient
to show that every totally ordered subset of S has an upper bound. Let M be any such a
subset of S. To this purpose, we consider the set N =

⋃
D(x)∈M X(x). Obviously, N ⊂ Ku0 . We

claim that N is totally ordered. Indeed, for any y1, y2 ∈ N, there exist D(x1),D(x2) ∈ M and
D(x1) ∈ D(x1), D(x2) ∈ D(x2) such that y1 ∈ D(x1), y2 ∈ D(x2). If D(x1) = D(x2), then
y1, y2 is ordered. Otherwise, we can assume that D(x1)<1D(x2), thus, from Lemma 2.8 and
(b2) it follows that y1 ≤ w(x1) ≤ x2 ≤ y2. Conclusively, N is a totally ordered subset.

We will prove that any countable totally ordered subset of N has a supremum. It is
enough to prove that any given strictly monotone sequence {yn} of N there is a supremum.
From the definition of N, there exist D(xn) ∈ M and D(xn) ∈ D(xn) such that yn ∈ D(xn) for
n = 1, 2, . . . . For any x ∈ R, from the definition of D(x), it follows D(x) has a supremum.
Moreover, Lemma 2.4 guarantees that {yn} has a supremum if yn ∈ D(xm) with n ≥ m
for some given m. It is suffices to consider the fact that there exists a subsequence of {yn}
(without loss of generality, we may assume that it is {yn} itself) such that yn /∈D(xm) (n/=m).

Case 1. If {yn} is strictly increasing, then yi < yi+1 (i = 1, 2, . . .). We claim that

D(x1)<2D(x2)<2 · · ·<2D(xn)<2 · · · . (3.1)

If it is contrary, there exists some i such that D(xi+1)≤2D(xi). It is easy to know that
D(xi+1)/=D(xi). (b2) implies that w(xi+1) ≤ xi, therefore, yi+1 ≤ w(xi+1) ≤ xi ≤ yi. This
contradicts {yn} increasing. The claim follows.

Taking Qi as the link of linking D(xi+1)with D(xi) for i = 1, 2, . . . . Let

C =
∞⋃
i=1

⎛
⎝X(xi) ∪

⎛
⎝⋃

q∈Qi

X
(
q
)
⎞
⎠

⎞
⎠, (3.2)

(b3) shows that C is countable totally ordered. For any z ∈ C \ {x1}, there exists j such that
z ∈ X(xj) ∪ (

⋃
q∈Qj

X(q)). If z = xj , by means of (b2) and

W(
xj−1

) ∈ cl
(
A
(
X
(
xj−1

)))
, (3.3)
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we have

z ∈ cl

⎛
⎝W(

xj−1
) ∪A

⎛
⎝ ⋃

q∈Qj−1

X
(
q
)
⎞
⎠

⎞
⎠ ⊂ cl

⎛
⎝A

(
X
(
xj−1

)) ∪A

⎛
⎝ ⋃

q∈Qj−1

X
(
q
)
⎞
⎠

⎞
⎠

= cl

⎛
⎝A

⎛
⎝X

(
xj−1

) ∪
⎛
⎝ ⋃

q∈Qj−1

X
(
q
)
⎞
⎠

⎞
⎠

⎞
⎠ ⊂ cl(A(C)).

(3.4)

If z ∈ Xj with z/=xj , then, by (3.3), z ∈ cl(A(X(xj))) ⊂ cl(A(C)). If z ∈ ⋃
q∈Qj

X(q) with
z/∈X(xj), then from condition (b3) it follows that z ∈ cl(A(

⋃
q∈Qj

X(q))) ⊂ cl(A(C)). To sum
up, C ⊂ {x1} ∪ cl(A(C)) ⊂ cl({x1} ∪A(C)), which, combining the condition (H1), yields that
C has a supremum. Hence, by Lemma 2.4, {yn} has a supremum.

Case 2. It is clear that {yn} has a supremum when {yn} is decreasing.
Now, we prove that N has a maximal element. Suppose, on the contrary, for any

y ∈ N, that there exists y1 ∈ N such that y ≤ y1 and y1 /=y. Let F(y) = y1, then F is an
operator mappingN intoN and satisfies F(y) ≥ y and F(y)/=y for every y ∈ N. In virtue of
Lemma 2.5, there exists y∗ ∈ N such that F(y∗) = y∗. On the other hand, by the definition of
F, we have F(y∗) ≥ y∗ and F(y∗)/=y∗, a contradiction. Therefore, N has a maximal element,
that is, there exists x∗ ∈ N such that x ≤ x∗ for all x ∈ N.

Finally, we shall prove that D(x∗) is an upper bound of M. Since x∗ ∈ N, there exists
D(x) ∈ M and D(x) ∈ D(x) such that x∗ ∈ D(x), which implies that x∗ ≤ w(x). On the
other hand, since w(x) ∈ N, we have w(x) ≤ x∗. This compels x∗ = w(x). Taking empty
set as a link of linking D(x) with D(w(x)), we have that D(x)≤2D(w(x)) = D(x∗). Given
D(u) ∈ M, in virtue of M being totally ordered, or D(u)≤2D(x) which implies D(u)≤2D(x∗);
or D(x)<2D(u), which, applying (b2), yields w(x) ≤ u. Therefore, x∗ = w(x) ≤ u. Noting that
u ∈ N, we have that u ≤ x∗. Conclusively, u = x∗, so, by (a) we have D(x∗) = D(u). This
shows that D(x∗) is an upper bound ofM. This proof is completed.

Remark 3.3. We observe that the result of Theorem 3.2 is true under assumptions of
Theorem 3.2 if all “ cl′′ are written as “wcl.′′ The following corollary shows that Theorem 3.2
extends and improves the results of [8].

Corollary 3.4. Let E be an ordered Banach space,A : Ω ⊂ E → 2E be a multivalued operator having
nonempty and weakly closed values. Assume that there exists u0 ∈ E such that conditions (H2), (H3)
and (H) hold, then A has at least a fixed point.

Proof. Lemma 2.1 shows that there exists x∗ ∈ wcl(C) such that x ≤ x∗ for all x ∈ C. By means
of Eberlein’s theorem and Lemma 2.2 we have that x∗ is the supremum of C, that is, (H1) is
satisfied. Moreover, this implies thatw(x) ∈ wcl(A(D)), that is,A is upper sequentially order
closed in the sense of “weak.” Since A has weakly closed values, A has sup-closed values.
From Remark 3.3 A has a fixed point.

Corollary 3.5. Let E be a weakly sequently completed ordered Banach space, P a normal cone. If the
operator A is bounded and satisfies conditions (H2) and (H3), then A has at least one fixed point in
Ku0 .
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Proof. It is suffice to prove that condition (H1) holds. Under these hypotheses, every
bounded subset is weakly relatively compact (see [4]), which implies that (H1) is true.

In what follows, we shall consider the existence of maximal and minimal fixed points.

Theorem 3.6. Under assumptions of Theorem 3.2, A has a minimal fixed point in Ku0 .

Proof. Let Fix(A) denote the set consisting of fixed points of A. From Theorem 3.2 it follows
that Fix(A) is nonempty. Set S1 = {D(x) : x ∈ R, x ≤ y for y ∈ Fix(A)}. Clearly, S1 ⊂ S and
(S1,≤2) is a partially ordered set. By the samemethods as to prove Theorem 3.2, we can prove
that S1 has a maximal element D(x∗) and x∗ is a fixed point ofA in S1. It is easy to see that x∗

is minimal fixed point of A. This completes the proof of Theorem 3.6.

The next result is dual to that of Theorem 3.6.

Theorem 3.7. Assume that E is an ordered topological space. Let v0 ∈ E, Ω ⊂ Kv0 =: {x ∈ E :
x ≤ v0} be nonempty and the multivalued operator A : Ω � 2E have inf-closed values such that the
following hypotheses are satisfied.

(h1) If C = {xn} ⊂ Kv0 is a countable totally ordered set and C ⊂ cl({x1} ∪A(C)), then C has
a infimum.

(h2) A is increasing downwards and Av0 ≤ v0.

(h3) W(v0) ⊂ cl(A(X(v0))), where W(x) stands for a set which consists of all infimums of
C(x) (its definition is similar toW(x)).

Then A admits at least one fixed point in Kv0 .

Theorem 3.8. Assume that the operatorA is increasing and satisfies conditions (H1)–(H3) and (h1)–
(h3), then A has maximal and minimal fixed points on [u0, v0].

Remark 3.9. If E has the limit ordinal property, A is increasing and has nonempty closed
values. Assume that A([u0, v0]) is relatively sequentially compact and conditions (H3) and
(h3) hold, thenA has sup-closed and inf-closed values and satisfies conditions (H1) and (h1)
on [u0, v0]. Thereby, A has maximal and minimal fixed points on [u0, v0]. In this sense, we
extend and improve the corresponding results of Theorem 2.1 in [10].

Corollary 3.10. Let E be a partially ordered Banach space. If there exist u0, v0 ∈ E with u0 ≤ v0 such
that u0 ≤ Au0, Av0 ≤ v0. Assume that A is increasing, has nonempty closed values, and satisfies one
of the following hypotheses, then A has maximal and minimal fixed points on [u0, v0].

(s1) P is a regular cone.

(s2) If C = {xn} ⊂ [u0, v0] is countable totally ordered subset and C ⊂ cl({x1} ∪A(C)), then
C is relatively compact subset.

(s3) A([u0, v0]) is a weakly relatively compact set.

(s4) [u0, v0] is a bounded ordered interval, and for any countable noncompact subset C ⊂
[u0, v0] with α(C)/= 0, one has α(A(C)) < α(C), where α(·) denotes Kuratowskii’s
noncompactness measure.

Proof. (s2) implies (H1) and (h1) holds. The rest is clear.
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Remark 3.11. (s2) is main condition of [12] for single-valued operators, (s4) is main condition
of [13]. Hence the results presented here extend and improve the corresponding results of the
above mentioned papers.

4. Application

In this section we assume that (E, ‖ · ‖) is a Banach space with partial ordering derived by the
continuous bounded function ϕ : E → R as follows (see [14]):

x ≤ y iff
∥∥x − y

∥∥ ≤ ϕ(x) − ϕ
(
y
)
. (4.1)

To illustrate the ideas involved in Theorem 3.8 we discuss the Hammerstein integral
inclusions of the form

u(t) ∈
∫T

0
k(t, s)G(s, u(s))ds on [0, T]. (4.2)

Here k is a real single-valued function, while G : [0, T] × E → 2E is a multivalued map with
nonempty closed values.

Let 0 < T < ∞, I = [0, T], p ∈ [1,∞], q ∈ [0,∞] and r ∈ [1,∞] be the conjugate

exponent of q, that is, 1/q+1/r = 1. Let ‖u‖p = (
∫T
0 ‖u(s)‖pds)

1/p
denote the norm of the space

Lp(I, E). For u, v ∈ Lp(I, E) stipulate that u ≤ v if and only if u(t) ≤ v(t)with all t ∈ I.
In order to prove the existence of solutions to (4.2) in Lp(I, E) we assume the

following.

(S1) The function k : I2 → R+ satisfies that k(t, ·) ∈ Lr(I) and t → ‖k(t, ·)‖r belongs to
Lp(I).

(S2) G(t, u) is increasing with regard to u for fixed t ∈ [0, T].

(S3) There exist u0, v0 ∈ C(I, E) with u0 ≤ v0 such that u0(t) ≤ G(t, u0(t)) and
G(t, v0(t)) ≤ v0(t) for every t ∈ I.

(S4) G(·, x) has a strongly measurable selection on I for each x ∈ E.

(S5) sup{‖u(t)‖ : u(t) ∈ G(t, x)} ≤ h(t) a.e. on I for all x ∈ E. Here h ∈ Lq(I,R+).

Theorem 4.1. Assume that conditions (S1)–(S5) hold, then (4.2) has maximal and minimal solutions
in [u0, v0].

Proof. Define a multivalued operator A as follows:

(Ax)(t) =
∫T

0
k(t, s)G(s, x(s))ds. (4.3)

(S4) guarantees thatAmakes sense. For any v ∈ Axwith x ∈ Lp(I, E), there exists u ∈ G(·, x)
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such that v(t) =
∫T
0k(t, s)u(s)ds. From (S5) and Hölder inequality, it follows that

‖v(t)‖ ≤
∫T

0
k(t, s)‖u(s)‖ds ≤

∫T

0
h(s)k(t, s)ds ≤ ‖h‖q‖k(t, ·)‖r =: a(t). (4.4)

This implies that v ∈ Lp(I, E), that is, A maps Lp(I, E) into itself. We seek to apply
Theorem 3.8. Note that (S1) and (S3) guarantee that u0 ≤ A(u0), A(v0) ≤ v0. For every given
t ∈ I and any C(u0) ∈ C(u0), set C(u0)(t) = {xn(t)} with xn(t) ≤ xn+1(t) for n = 1, 2, . . . .
Thus, {ϕ(xn(t))} is a decreasing sequence. Note that ϕ is a bounded function, we obtain that
the sequence {ϕ(xn(t))} is convergent. Hence, for any ε > 0, there exists a natural number n0

such that

‖xm(t) − xn(t)‖ ≤ ϕ(xn(t)) − ϕ(xm(t)) < ε, (4.5)

whenever m > n ≥ n0. This shows that {xn(t)} is a Cauchy sequence, thereby {xn(t)} is
convergent. Lemma 2.2 guarantees sup(C(u0)(t)) = w(u0)(t) = limn→∞xn(t), which yields
w(u0)(t) ∈ cl(A(C(u0))(t)) ⊂ cl(A(X(u0))(t)). From the arbitrariness of t it follows that
w(u0) is supremum of C(u0). From (4.4) and the dominated convergence theorem, it follows
that w(u0) ∈ Lp(I, E). Moreover, ‖xn −w(u0)‖p → 0 for n → ∞. Consequently, W(u0) ⊂
cl(A(X(u0))). Similarly, we have W(v0) ⊂ cl(A(X(v0))). This shows that (H3) and (h3) are
satisfied for t ∈ I. (S2) guarantees that A is increasing. It is easy to see that A has closed
values. This yields that A has sup-closed and inf-closed values.

Finally, we check conditions (H1) and (h1). Suppose that the set C = {xn} ⊂ Ku0 is
countable, totally ordered, and satisfies C(t) ⊂ cl({x1(t)} ∪ (AC)(t)) for all t ∈ I. We have
to prove that the set C(t) has a supremum. Since C(t) is countable totally ordered, we can
assume C(t) = {xn(t) : n ≥ 1} with xn(t) ≤ xn+1(t) for n = 1, 2, . . . . This implies that the
sequence {ϕ(xn(t))} is decreasing. In the same way, we can prove that the sequence {xn(t)}
is convergent. Again, Lemma 2.2 guarantees that C(t) has a supremum, which implies that
condition (H1) is satisfied. Similarly, we can prove that condition (h1) holds. All conditions
of Theorem 3.8 are satisfied, consequently, the operatorA has minimum and maximum fixed
points in [u0, v0] and this proof is completed.

Remark 4.2. By comparing the results of Theorem 4.2 in [15] in which Couchouron and
Precup have proved that (4.2) has at least one solution, we omit the conditions that G(t, x) is
continuous and has compact values in Theorem 4.1.
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