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Hyperbolic toral automorphisms provide important examples of chaotic dynamical systems.
Generalizing automorphisms on tori, we study (infra-)nil endomorphisms defined on (infra-
)nilmanifolds. In particular, we show that every infra-nil endomorphism has dense eventually
periodic points.

1. Introduction

Let A be an n × n nonsingular integer matrix. Then A induces a map LA : Tn → Tn on the
n-torus Tn = Z

n \ R
n. If A is hyperbolic, we say that LA is a hyperbolic toral endomorphism.

If, in addition, det(A) = ±1, then A is called a hyperbolic toral automorphism.
A hyperbolic toral automorphism provides an important example of a chaotic

dynamical system. We review the most fundamental property about hyperbolic toral
automorphisms, together with some definitions which are necessary to describe this property.
See [1] for details.

A continuous surjection f : X → X of a topological space X is said to be topologically
transitive if, for any pair of nonempty open sets U and V in X, there exists k > 0 such that
fk(U) ∩ V /= ∅. Intuitively, a topologically transitive map has points which eventually move
under iteration from one arbitrary small neighborhood to any other. The continuous map
f : X → X of the metric space (X, d) is said to have sensitive dependence on initial conditions if
there exists δ > 0 such that, for any x ∈ X and any neighborhood N of x, there exist y ∈ N
and n ≥ 0 such that d(fn(x), fn(y)) > δ. Intuitively, a map possesses sensitive dependence
on initial conditions if there exist points arbitrarily close to x which eventually separate from
x by at least δ under iteration of f .
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The following proposition shows that a hyperbolic toral automorphism LA is
dynamically quite different from its linear counterpart.

Proposition 1.1 (see [1, Theorem II.4.8]). A hyperbolic toral automorphism LA is chaotic on Tn.
That is,

(1) the set of periodic points of LA is dense in Tn;

(2) LA is topologically transitive;

(3) LA has sensitive dependence on initial conditions.

Anosov diffeomorphisms play an important role in dynamics. In [2], Smale raised the
problem of classifying the closed manifolds (up to homeomorphism) which admit an Anosov
diffeomorphism. Franks [3] and Manning [4] proved that every Anosov diffeomorphism on
an infra-nilmanifold is topologically conjugate to a hyperbolic infra-nil automorphism. In [5],
Gromov proved that every expanding map on a closed manifold is topologically conjugated
to an expanding map on an infra-nilmanifold.

We will consider infra-nil endomorphisms in this paper. These include Anosov
diffeomorphisms and expanding maps on infra-nilmanifolds up to topological conjugacy.
The purpose of this paper is to show that the infra-nil endomorphisms have dense eventually
periodic points. In the case of infra-nil automorphisms, this is already known (cf. [4, Lemma
3]).

2. Toral Endomorphisms

Now we show that every toral endomorphism has dense periodic points. This generalizes [1,
Proposition II.4.2] in which it is shown that every toral automorphism has dense periodic
points.

Definition 2.1. For a self-map f : X → X, a point x of X is called an eventually periodic point
of f if fm+t(x) = ft(x) for some m > 0, t ≥ 0. If t = 0, then it becomes a periodic point of f
with period m.

Note that if {p1, . . . , pt} is a nonempty set of prime numbers, then the set S =
{pn1

1 · · · pnt

t | ni ∈ Z, ni ≥ 0, i = 1, . . . , t} is a multiplicative subset of Z. Let S−1
Z be the ring

of quotients of Z by S. We denote S−1
Z by Z(p1,...,pt). Clearly, Z(p) ⊂ Z(p,q) and Z(p) +Z(q) = Z(p,q).

Lemma 2.2. Let LA : Td → Td be a toral endomorphism of the torus Td induced by the
automorphism A : R

d → R
d and let {p1, . . . , pr} be a nonempty set of prime numbers. Then

every point with coordinates in R = Z(p1,...,pr) is an eventually periodic point of LA. Moreover, if
(pi, |det(A)|) = 1 for all i, then every point with coordinates in R is a periodic point of LA.

Proof. Let x be a point of Td = Z
d \R

d with coordinates in R. Finding a common denominator,
we may assume that x is of the form (n1/k, . . . , nd/k) ∈ R

d where ni and k are integers. Write
x = [n1/k, . . . , nd/k] ∈ Td. Then there are exactly kd points in Td of the form [n1/k, . . . , nd/k]
with 0 ≤ ni < k.

The image of any such point under LA may also be written in this form, since
the entries of A are integers. Thus x is an eventually periodic point of LA. Moreover, if
(pi, |det(A)|) = 1 for all 1 ≤ i ≤ r, LA is injective on these points and hence LA is a permutation
of kd such points. In fact, if LA([n1/k, . . . , nd/k]) = LA([n′

1/k, . . . , n
′
d
/k]), then we see that
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A((n1/k, . . . , nd/k)) −A((n′
1/k, . . . , n

′
d/k)) ∈ Z

d, or ((n1 − n′
1)/k, . . . , (nd − n′

d)/k) ∈ A−1(Zd).
Since [A−1(Zd) : Z

d] = [Zd : A(Zd)] = |det(A)| and (k, |det(A)|) = 1, we must have

(
n1 − n′

1

k
, . . . ,

nd − n′
d

k

)
∈ Z

d. (2.1)

Hence [n1/k, . . . , nd/k] = [n′
1/k, . . . , n

′
d/k]. Therefore, x is a periodic point of LA.

Corollary 2.3. Every toral endomorphism LA : Td → Td of the torus Td has dense periodic points.

Proof. Let p be a prime number with (p, |det(A)|) = 1 and let R = Z(p). Then by Lemma 2.2,
the points with coordinates in R are periodic. Moreover, Z

d \ Rd, the set of points in Td with
coordinates in R, is a dense subset of the torus Td.

3. Nil Endomorphisms

In this section, we first recall from [6–10] some definitions about nilpotent Lie groups and
give some basic properties which are necessary for our discussion.

Let G be a connected, simply connected nilpotent Lie group. A discrete cocompact
subgroup Γ of G is said to be a lattice of G, and in this case, the quotient space Γ \G is said to
be a nilmanifold.

Let Γ be a lattice of G. Then Γ is a finitely generated torsion-free nilpotent group. Recall
that the lower central series of Γ is defined inductively by γ1(Γ) = Γ and γi+1(Γ) = [γi(Γ),Γ].
Suppose that Γ is c-step nilpotent, that is, γc(Γ)/= 1, but γc+1(Γ) = 1. The isolator of a subgroup
H of Γ, denoted by Γ

√
H, is the set

Γ
√
H =
{
x ∈ Γ | xk ∈ H for some integer k > 0

}
. (3.1)

It is well known ([6], [9, page 473] or [10]) that the sequence

Γ = Γ1 = Γ
√
γ1(Γ) ⊃ Γ2 = Γ

√
γ2(Γ) ⊃ · · · ⊃ Γc = Γ

√
γc(Γ) ⊃ Γc+1 = 1 (3.2)

forms a central series with Γi/Γi+1
∼= Z

ki . It follows that it is possible to choose a generating
set

a1, a2, . . . , ac (3.3)

of Γ in such a way that Γi is the group generated by ai = {ai1 , ai2 , . . . , ain} and Γi+1 for each
i = 1, 2, . . . , c. We refer to a = {a1, a2, . . . , ac} as a preferred basis of Γ.

We use G to indicate the Lie algebra of G. This Lie algebra G has the same dimension
and nilpotency class as G. Moreover, in the case of connected, simply connected nilpotent Lie
groups it is known that the exponential map exp : G → G is a diffeomorphism. We denote
its inverse by log. If G′ is another connected, simply connected nilpotent Lie group, with Lie
algebra G′, then we have the following properties.
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(i) For any homomorphism φ : G → G′ of Lie groups, there exists a unique
homomorphism dφ : G → G′ (differential of φ) of Lie algebras, making the
following diagram commuting:

G

log

φ
G′

log

G

exp

dφ
G′

exp (3.4)

(ii) Conversely, for any homomorphism dφ : G → G′ of Lie algebras, there exists a
unique homomorphism φ : G → G′ of Lie groups, making the above diagram
commuting.

If a is a preferred basis of Γ, then log a = {log a1, log a2, . . . , log ac} ⊂ G can be regarded
as a basis for the vector space G. We call the basis log a of G preferred. In particular, if Γ is
a lattice of R

d, then every preferred basis a of Γ becomes a preferred basis log a = a for the
vector space R

d.
We first generalize the concept of toral automorphisms to that of nil endomorphisms

and show that every nil endomorphism has eventually dense periodic points.
Let Γ \ G be a nilmanifold and let ϕ : G → G be an automorphism satisfying that

ϕ(Γ) ⊂ Γ. Then the automorphism ϕ induces a surjection ϕΓ on the nilmanifold Γ \ G and the
following diagram is commuting:

G
ϕ

G

Γ \G
ϕΓ

Γ \G

(3.5)

Lemma 3.1. Let ϕ : G → G be an automorphism satisfying that ϕ(Γ) ⊂ Γ. Then dϕ has a block
matrix, with respect to any preferred basis of G, of the form

dϕ =

⎡
⎢⎢⎢⎢⎢⎢⎣

N1 0 . . . 0

∗ N2 . . . 0

...
...

. . .
...

∗ ∗ . . . Nc

⎤
⎥⎥⎥⎥⎥⎥⎦
, (3.6)

where the diagonal blocks Ni’s are integral matrices, and |det(dϕ)| = [Γ : ϕ(Γ)]. In particular, the
automorphism ϕ on G restricts to an automorphism on a lattice of G if and only if its differential dϕ
has determinant ±1.

The proof of this lemma is rather straight forward and so we omit the proof. See, for
example, [11, Lemma 3.1] and [12, Proposition 3.1].
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Definition 3.2. Let Γ \ G be a nilmanifold and let ϕ : G → G be an automorphism with
ϕ(Γ) ⊂ Γ. Then ϕ induces a surjective map ϕΓ on the nilmanifold Γ \ G, which is one of the
following two types.

(I) dϕ has determinant of modulus 1. In this case ϕΓ is called a nil automorphism.

(II) dϕ has determinant of modulus greater than 1. In this case ϕΓ is called a nil
endomorphism.

If, in addition, ϕ is hyperbolic (i.e., dϕ has no eigenvalues of modulus 1), then we say that the
nil automorphism or endomorphism ϕΓ is hyperbolic.

Example 3.3. Let Nil be the 3-dimensional Heisenberg group with its Lie algebra nil. That is,

Nil =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

1 x z

0 1 y

0 0 1

⎤
⎥⎥⎦ | x, y, z ∈ R

⎫⎪⎪⎬
⎪⎪⎭, nil =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

0 a c

0 0 b

0 0 0

⎤
⎥⎥⎦ | a, b, c ∈ R

⎫⎪⎪⎬
⎪⎪⎭. (3.7)

It is easy to show (see [13, Proposition 2.2]) that

Aut(nil) ∼=

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣
α γ 0

β δ 0

η μ αδ − βγ

⎤
⎥⎥⎦ | αδ − βγ /= 0, η, μ ∈ R

⎫⎪⎪⎬
⎪⎪⎭. (3.8)

Thus we see that the differential of any automorphism ϕ on Nil has determinant det(dϕ) =

(αδ − βγ)2 and eigenvalues αδ − βγ and (1/2){(α + δ) ±
√
(α − δ)2 + 4βγ}. Thus if |det(dϕ)| =

1, then dϕ has an eigenvalue of modulus 1. Therefore, there are no hyperbolic nil
automorphisms on any nilmanifold Λ \ Nil. (There are examples of hyperbolic nil, nontoral,
automorphisms. In fact, we can find such examples from many literatures. For example, we
refer to [2, 14–18].)

Via the exponential map

exp :

⎡
⎢⎢⎣

0 a c

0 0 b

0 0 0

⎤
⎥⎥⎦ ∈ nil �−→

⎡
⎢⎢⎢⎣

1 a c +
ab

2
0 1 b

0 0 1

⎤
⎥⎥⎥⎦ ∈ Nil, (3.9)

we see that every automorphism ϕ on Nil is given as follows:

⎡
⎢⎢⎣

1 x z

0 1 y

0 0 1

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 αx + γy z′

0 1 βx + δy

0 0 1

⎤
⎥⎥⎦, (3.10)
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where z′ = (αδ − βγ)z + βγxy + (αβ/2)x2 + ηx + μy + (γδ/2)y2. Consider the subgroups Λk,
k ∈ Z, of Nil:

Λk =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

1 m
	

k
0 1 n

0 0 1

⎤
⎥⎥⎥⎦ | m,n, 	 ∈ Z

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
. (3.11)

These are lattices of Nil, and every lattice of Nil is isomorphic to some Λk. The following
matrices dϕ give simple examples which induce hyperbolic nil endomorphisms on the
nilmanifold Λ2k \ Nil:

⎡
⎢⎢⎣

2 1 0

1 3 0

n m 5

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

3 1 0

1 1 0

n m 2

⎤
⎥⎥⎦. (3.12)

Note that the first one has eigenvalues of modulus all greater than 1, and the second one has
determinant of modulus greater than 1, and there is at least one eigenvalue with modulus
less than 1.

Corollary 3.4. If ϕΓ is a nil automorphism, then the automorphism ϕ−1 : G → G induces a nil
automorphism which is ϕ−1

Γ . In particular, ϕΓ is a diffeomorphism of Γ \G.

By refining the central series of Γ explained in the paragraph above Lemma 3.1, we can
find a central series

Γ = Γ1 ⊃ Γ2 ⊃ Γ3 ⊃ · · · ⊃ Γd ⊃ Γd+1 = 1 (3.13)

with Γi/Γi+1
∼= Z, for each i = 1, 2, . . . , d. (We are assuming that G is d-dimensional, and using

the same symbol for terms of a refinement of the previous central series.) We can choose a
generating set

a = {a1, a2, a3, . . . , ad} (3.14)

of Γ in such a way that Γi is the group generated by ai and Γi+1. Then any element γ ∈ Γ is
uniquely expressible as a product:

γ = an1
1 an2

2 · · ·and

d , with −→n = (n1, n2, . . . , nd) ∈ Z
d, (3.15)

and we can regard G as the Mal’cev completion of Γ:

G =
{
ar1

1 a
r2
2 · · ·ard

d | −→r = (r1, r2, . . . , rd) ∈ R
d
}
. (3.16)
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We refer to this preferred basis a = {a1, a2, . . . , ad} as a canonical basis of Γ. Given −→n ∈ Z
d,

we use γ(−→n) to denote the element of Γ whose canonical coordinate is −→n . Thus, we have an
identification γ : Z

d → Γ sending −→n to γ(−→n).
Among interesting properties of this identification, we recall the following ([7,

Theorem 2.1.(3)]): for any homomorphism κ : Γ → Γ, there exists a polynomial function with
rational coefficients ψκ : Z

d → Z
d such that κ(γ(−→n)) = γ(ψκ(

−→n)) for all −→n ∈ Z
d. Moreover,

any homomorphism of Γ extends to a homomorphism of G by using the same polynomial.

Example 3.5. The map ψ : Nil → Nil given by

ψ
(
x, y, z

)
=
(

3x + y, x + y, 2z + xy +
3
2
x2 + nx +my +

1
2
y2
)

(3.17)

is a polynomial function with rational coefficients, which sends Λ2 into Λ2 itself. The
polynomial function ψ is associated to the homomorphism

⎡
⎢⎢⎣

3 1 0

1 1 0

n m 2

⎤
⎥⎥⎦ (3.18)

on Nil given in Example 3.3.

We recall the famous Campbell-Baker-Hausdorff formula:

log(a · b) = loga ∗ log b ∀a, b ∈ G, (3.19)

where

A ∗ B = A + B +
1
2
[A,B] +

∞∑
m=3

Cm(A,B). (3.20)

Here Cm(A,B) stands for a rational combination of m-fold Lie brackets in A and B. Since our
Lie algebra is nilpotent, the sum involved in A ∗B is always finite. Throughout this paper, we
shall use Q = Z(q1,...,qs) whenever {q1, . . . , qs} is the set of all prime factors of the denominators
of the reduced rational coefficients appearing in the Campbell-Baker-Hausdorff formula. For
example, if G is 3-step nilpotent, then

log(a · b) = loga + log b +
1
2
[
loga, log b

]

+
1

12
[[

loga, log b
]
, log b

]
− 1

12
[[

loga, log b
]
, loga

]
,

(3.21)

and hence Q = Z(2,3) = {k/2m3n | k ∈ Z, m, n ∈ Z
+}.

Lemma 3.6. For any homomorphism κ : Γ → Γ, the associated polynomial function ψκ has
coefficients in Q = Z(q1,...,qs).
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Proof. Suppose that G is a d-dimensional connected, simply connected nilpotent Lie group.
The first thing to notice is that for any X,Y in the Lie algebra G of G, we have that

exp(X + Y ) = exp(X) exp(Y ) exp

(∑
m=2

Dm(X,Y )

)
, (3.22)

where Dm denotes a linear combination of m-fold brackets in X and Y with coefficients in the
ring Q. To see this, let us make the following computation:

exp(X) exp(Y ) = exp(X ∗ Y )

= exp(X + Y ) exp(−X − Y ) exp(X ∗ Y )(
because exp(X + Y) exp(−X − Y) = 1

)
= exp(X + Y ) exp((−X − Y ) ∗ (X ∗ Y )).

(3.23)

From this it follows that

exp(X + Y ) = exp(X) exp(Y ) exp(−(−X − Y ) ∗ (X ∗ Y )), (3.24)

which is of the form (3.22) claimed above.
Now, let A1, A2, . . . , Ad be a canonical basis of G (We mean Ai = log(ai) where the ai

form a canonical basis of Γ). Since Dm(Y,X) = −Dm(X,Y ), we have from (3.22) that

exp(Y ) exp(X) = exp(X) exp(Y ) exp

(
2
∑
m=2

Dm(X,Y )

)
. (3.25)

By a repeated use of formulas (3.22) and (3.25) it is now easy to see that

exp(α1A1 + α2A2 + · · · + αdAd) = exp
(
p1(α1, . . . , αd)A1

)
· · · exp

(
pd(α1, . . . , αd)Ad

)
, (3.26)

where pi(α1, . . . , αd) is a polynomial with coefficients in Q. We will use this fact below.
Finally, let κ be the Lie group homomorphism of G which extends uniquely the given

κ : Γ → Γ. Let ai be a term of the canonical basis of Γ, then κ(ai) = a
β1

1 a
β2

2 · · ·aβd
d for some

βj = βj(ai) ∈ Z. Using the Campbell-Baker-Hausdorff formula, it is then easy to see (look also
at the computation below) that

dκ
(
log(ai)

)
= logκ(ai) =

d∑
j=1

γj log
(
aj

)
for some γj ∈ Q. (3.27)
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We now compute

κ
(
ax1

1 ax2
2 · · ·axd

d

)
= exp log

(
κ
(
ax1

1 ax2
2 · · ·axd

d

))
= expdκ

(
log
(
ax1

1 ax2
2 · · ·axn

n

))
= expdκ

(
x1 log(a1) ∗ log

(
ax2

2 · · ·axd

d

))
= expdκ

(
x1 log(a1) ∗

(
x2 log(a2) ∗ log

(
ax3

3 · · ·axd

d

)))

= expdκ

(
c∑

m=1

Em

(
log(a1), log(a2), . . . , log(ad)

))
.

(3.28)

Here Em stands for a term which is a linear combination of m-fold brackets of the log(ai) and
where the coefficients are polynomials in the variables xj over the ring Q. By continuing this
computation, we see that

κ
(
ax1

1 ax2
2 · · ·axd

d

)
= exp

(∑
m=1

Em

(
dκ
(
log(a1)

)
, dκ
(
log(a2)

)
, . . . , dκ

(
log(ad)

)))
. (3.29)

Now using (3.27) we derive that

κ
(
ax1

1 ax2
2 · · ·axd

d

)
= exp

(
q1(x1, x2, . . . , xd) log(a1) + · · · + qd(x1, x2, . . . , xd) log(ad)

)
, (3.30)

where the qi are polynomials with coefficients in Q. Therefore, using (3.26), this implies that
the polynomial ψκ is as required.

Remark 3.7. Our original proof was longer treating the case where G is a 2-step nilpotent Lie
group. This one was provided by one of the referees.

Now we fix a canonical basis {a1, . . . , ad} of Γ. A point Γx of the nilmanifold Γ \ G is
said to have rational coordinates or simply x has rational coordinates if x = γ(−→q ) = a

q1

1 a
q2

2 · · ·aqd
d

for some −→q ∈ Q
d. First we show that if Γx = Γy and x = γ(−→q ) with −→q ∈ Q

d, then y = γ(−→p )
for some −→p ∈ Q

d. We recall the following ([7, Theorem 2.1.(1)]): there exists a polynomial
function with rational coefficients μ : Z

d × Z
d → Z

d satisfying γ(−→m) · γ(−→n) = γ(μ(−→m,−→n)) for
all −→m,−→n ∈ Z

d. The group product on G is defined using this polynomial μ. Now, suppose that
Γx = Γy and x = γ(−→q ) with −→q ∈ Q

d. Then y = zx for some z ∈ Γ. Since z ∈ Γ, z = γ(−→n)
for some −→n ∈ Z

d. Hence we have y = zx = γ(−→n) · γ(−→q ) = γ(μ(−→n,−→q )). Since −→n ∈ Z
d,−→q ∈ Q

d,
and μ is a polynomial function with rational coordinates, we must have μ(−→n,−→q ) ∈ Q

d. This
proves our assertion. Therefore the points of Γ \G with rational coordinates are well defined.
Consequently for a subring R of Q with Z ⊂ R, the points of Γ \ G with coordinates in R are
well defined.

It is known that every (infra-)nil automorphism has dense periodic points (see the
proof of [4, Lemma 3]). Now we will generalize this to the case of (infra-)nil endomorphisms.
The proof below is exactly the same as that of Lemma 2.2, except that the coefficients involved
are different and hence Lemma 3.6 is essential.
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Theorem 3.8. Let ϕΓ : Γ \ G → Γ \ G be a nil endomorphism of the nilmanifold Γ \ G. Let
R be a ring obtained from Q by adding finitely many primes pj , that is, R = Q + Z(p1,...,pr).
Then every point with coordinates in R is an eventually periodic point of ϕΓ . Moreover, if
(qi, |det(dϕ)|) = (pj , |det(dϕ)|) = 1 for all i, j, then every point with coordinates in R is a periodic
point of ϕΓ .

Proof. We will show this by induction on the nilpotency class c of G. If c = 1, then Γ \ G is a
torus and this case is proved in Lemma 2.2.

Now let c > 1 and assume that the assertion is true for any connected, simply
connected nilpotent Lie group G′ of nilpotency class ≤ c − 1 and for any ring obtained from
Q′ by adding finitely many primes.

Consider Ĝ = γc(G) and Γ̂ = Γ
√
γc(Γ), and the principal fiber bundle T → M → B

where M = Γ \ G, T = Γ̂ \ Ĝ is a torus and B = Γ \ G is a nilmanifold of dimension less
than that of M. Since the automorphism ϕ : G → G maps Γ into itself, its induced map ϕΓ is
fiber-preserving. That is, the following diagram is commuting:

T
ϕ̂

T

M
ϕΓ

M

B
ϕ̄

B

(3.31)

Now we note that Γ̂ = Γi for some Γi in the refined central series of Γ. Thus Γ̂ and Γ
have central series

Γ̂ = Γi ⊃ Γi+1 ⊃ · · · ⊃ Γd ⊃ Γd+1 = 1,

Γ = Γ/Γ̂i = Γ1/Γi ⊃ Γ2/Γi ⊃ · · · ⊃ Γi−1/Γi ⊃ Γi/Γi = 1.
(3.32)

The canonical basis a = {a1, a2, . . . , ad} of Γ induces the canonical bases â = {ai, ai+1, . . . , ad}
and a = {a1, a2, . . . , ai−1} of Γ̂ and Γ, respectively, where a stands for the image of a ∈ Γ in Γ
under the natural surjection Γ → Γ. Hence the points in T = Γ̂ \ Ĝ with rational coordinates
are well defined. Furthermore the points in B = Γ \G with rational coordinates are also well-
defined.

For −→q = (q1, q2, . . . , qd) ∈ Rd, write

x = a
q1

1 a
q2

2 · · ·aqd
d
, y = a

q1

1 a
q2

2 · · ·aqi−1

i−1 , z = a
qi
i a

qi+1
i+1 · · ·aqd

d
. (3.33)

Then x = yz and z ∈ Ĝ. Since x = y ∈ G, x = y = Γy is a point of Γ \ G with coordinates in
R. (Note that the ring Q when working over the group G is a subring of Q and so Q ⊂ R.)
By induction hypothesis ϕt+k(y) = ϕt(y) for some k ≥ 1 and t ≥ 0. On the other hand, since
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ẑ = Γ̂z is a point of the torus Γ̂ \ Ĝ with coordinates in R, by Lemma 2.2, ϕ̂τ+	(ẑ) = ϕ̂τ(ẑ) for
some 	 ≥ 1 and τ ≥ 0. We may assume that t = τ and k = 	 so that

ϕt+k(y) = ϕt(y),

ϕ̂t+k(ẑ) = ϕ̂t(ẑ).
(3.34)

Then ϕt+k(y) = ξϕt(y) in G for some ξ ∈ Γ; ϕt+k(y) = ξϕt(y)ŵ for some ŵ ∈ Ĝ. By Lemma 3.6,
ŵ ∈ Ĝ has coordinates in R. Furthermore, ϕt+k(z) = γϕt(z) = ϕt(z)γ for some γ ∈ Γ̂. Let
x1 = ϕt(x). Then

ϕk(x1) = ϕk+t(x) = ϕk+t(y)ϕk+t(z)

=
(
ξϕt(y)ŵ)(γϕt(z)

)
= ξw′ϕt(x) = ξw′x1

for some w′ ∈ Ĝ.

(3.35)

Simply taking ψ = ϕk, we may assume that ψ(x1) = ξwx1 where ξ ∈ Γ and w ∈ Ĝ with
coordinates in R. Hence Lemma 2.2 can be used to conclude that ψm+u(w) = γψu(w) for some
m ≥ 1, u ≥ 0, and γ ∈ Γ̂. Thus ψim+u(w) = γiψ

u(w) for some γi ∈ Γ̂. We note further that for
any n > 0,

ψnm(x1) = ν′ψnm−1(w)ψnm−2(w) · · ·ψ2(w)ψ(w)wx1

= ν′

⎧⎨
⎩

m−1∏
j=0

ψj
(
ψ(n−1)m(w) · · ·ψm(w)w

)⎫⎬
⎭x1,

ψnm+u(x1) = ψu(ν′)
⎧⎨
⎩

m−1∏
j=0

ψj
(
ψ(n−1)m+u(w) · · ·ψm+u(w)ψu(w)

)⎫⎬
⎭ψu(x1)

= ν

⎧⎨
⎩

m−1∏
j=0

ψj(ψu(w)n
)⎫⎬⎭ψu(x1) = ν

⎧⎨
⎩

m−1∏
j=0

ψj(ψu(wn)
)⎫⎬⎭ψu(x1)

(3.36)

for some ν′, ν ∈ Γ. Since w ∈ Ĝ = R
k with coordinates in R, there is n > 0 such that wn ∈ Γ̂ =

Z
k. Since ψ(Γ̂) ⊂ Γ̂, ψj(ψu(w)n) ∈ Γ̂ for all j = 0, 1, . . . , m − 1. Hence ψnm+u(x1) = νψu(x1), or

ϕknm+ku+t(x) = νϕku+t(x) for some ν ∈ Γ. Therefore

ϕknm+ku+t
Γ

(x) = ϕku+t
Γ

(x), (3.37)

which implies that x is an eventually periodic point of ϕΓ .
Moreover, if (qi, |det(dϕ)|) = (pj , |det(dϕ)|) = 1 for all i, j, then by Lemma 2.2 and

induction hypothesis, we can choose t = u = 0 and so ϕknm
Γ

(x) = x. Thus x is a periodic point
of ϕΓ .
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Corollary 3.9. Every nil endomorphism ϕΓ : Γ \ G → Γ \ G of the nilmanifold Γ \ G has dense
eventually periodic points.

Proof. Using the fact that the points of Γ\G with coordinates in R are dense in Γ\G, we obtain
the result.

Example 3.10. Let ϕΛ2
be the (hyperbolic) nil endomorphism on the nilmanifold Λ2 \ Nil

induced by the automorphism on Nil:

ϕ =

⎡
⎢⎢⎣

3 1 0

1 1 0

0 0 2

⎤
⎥⎥⎦ :

⎡
⎢⎢⎣

1 x z

0 1 y

0 0 1

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎢⎣

1 3x + y 2z +
3
2
x2 + xy +

1
2
y2

0 1 x + y

0 0 1

⎤
⎥⎥⎥⎦. (3.38)

Then

ϕ

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

1
1
2

3
8

0 1
1
2

0 0 1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ =

⎡
⎢⎢⎢⎣

1 2
3
2

0 1 1

0 0 1

⎤
⎥⎥⎥⎦ ≡

⎡
⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤
⎥⎥⎦ (modΛ2). (3.39)

Thus the point

⎡
⎢⎢⎢⎢⎣

1
1
2

3
8

0 1
1
2

0 0 1

⎤
⎥⎥⎥⎥⎦ ∈ Λ2 \ Nil (3.40)

is not a periodic point, but an eventually periodic point of ϕΛ2
with least period 1 (i.e., an

eventually fixed point). Note here that det(dϕ) = 22 and 1/2 is the coefficient coming from
the nilpotent Lie group Nil.

At this moment, we donot know whether Corollary 3.9 is true for periodic points in
the general case, that is, the case where (qi,det(dϕ))/= 1 for some i. We now propose naturally
the following problem.

Question 1. Every nil endomorphism has dense periodic points.

Corollary 3.11. Every nil automorphism ϕΓ : Γ \ G → Γ \ G of the nilmanifold Γ \ G has dense
periodic points.

Proof. The proof follows from that |det(dϕ)| = 1.
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4. Infra-Nil Endomorphisms

Let G be a connected, simply connected nilpotent Lie group and let C be a maximal compact
subgroup of Aut(G). A discrete and cocompact subgroup Π of G�C ⊂ Aff(G) = G�Aut(G) is
called an almost crystallographic group. Moreover, if Π is torsion-free, then Π is called an almost
Bieberbach group and the quotient space Π\G an infra-nilmanifold. In particular, if Π ⊂ G, then
Π \ G is a nilmanifold. Recall from [19] that Γ = Π ∩ G is the maximal normal nilpotent
subgroup of Π with finite quotient group Ψ = Π/Γ, called the holonomy group of Π \G.

Definition 4.1. Let Π \ G be an infra-nilmanifold and let ϕ : G → G be an automorphism
which is weakly Π-equivariant; that is, there is a homomorphism θ = θϕ of Π such that

ϕ(αx) = θ(α)ϕ(x), α ∈ Π, x ∈ G. (4.1)

Then ϕ induces a surjection ϕΠ : Π \G → Π \G, which is one of the following types.

(I) dϕ has determinant of modulus 1. In this case ϕΠ is called an infra-nil automorphism.

(II) dϕ has determinant of modulus greater than 1. In this case ϕΠ is called an infra-nil
endomorphism.

If, in addition, ϕ is hyperbolic, then we say that the infra-nil automorphism or endomorphism
ϕΠ is hyperbolic.

Let Π \ G be an infra-nilmanifold with surjection ϕΠ : Π \ G → Π \ G. Let Γ = Π ∩ G
be the pure translations of Π. Then it is not difficult to see that there exists a fully invariant
subgroup Λ ⊂ Γ of Π with finite index. For example, one can take Π[Π:Γ] (see also [20, Lemma
3.1]). Thus Λ \ G is a nilmanifold which is a finite regular covering of Π \ G and has Π/Λ
as the group of covering transformations. The homomorphism θ : Π → Π associated with
ϕΠ induces a homomorphism θ̂ : Λ → Λ and in turn induces a homomorphism θ : Π/Λ →
Π/Λ so that the following diagram is commuting:

1 Λ

θ̂

Π

θ

Π/Λ

θ̄

1

1 Λ Π Π/Λ 1

(4.2)

Moreover, the automorphism ϕ on G induces a surjection ϕΛ : Λ \ G → Λ \ G so that the
following diagram is commuting:

Λ \G
ϕΛ

Λ \G

Π \G
ϕΠ

Π \G

(4.3)

Since ϕ(λx) = θ̂(λ)ϕ(x) for all λ ∈ Λ, x ∈ G, we have ϕ(λ) = θ̂(λ) for all λ ∈ Λ. Hence
ϕ : G → G is the unique extension of the homomorphism θ̂ : Λ → Λ of the lattice Λ
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of G. If θ is an isomorphism, then θ̂ is also an isomorphism. Conversely, assume that θ̂ is an
isomorphism. Using the fact that Π is torsion-free, we can show that θ is injective. This fact
implies that θ is also injective on the finite group Π/Λ and hence θ must be an isomorphism.
Therefore, θ is an isomorphism. (The converse was suggested by a referee.) If ϕΠ is an infra-nil
automorphism, then being |det(dϕ)| = 1 implies by Lemma 3.1 that θ̂ is an isomorphism and
thus ϕΛ is a nil automorphism, and vice versa. Note also that ϕΠ is an infra-nil endomorphism
if and only if ϕΛ is a nil endomorphism.

Let ePer(f) denote the set of eventually periodic points of a self-map f : X → X.

Theorem 4.2. Every infra-nil endomorphism ϕΠ : Π \ G → Π \ G has dense eventually periodic
points.

Proof. Consider the following commuting diagram:

Λ \G

p

ϕΛ
Λ \G

p

Π \G
ϕΠ

Π \G

(4.4)

where ϕΠ is an infra-nil endomorphism, and hence ϕΛ is a nil endomorphism. First we
observe that ePer(ϕΛ) = p−1(ePer(ϕΠ)). The inclusion ⊆ is obvious. For the converse, let
x̂ ∈ p−1(ePer(ϕΠ)) and p(x̂) = x ∈ ePer(ϕΠ). Then ϕm+t

Π
(x) = ϕt

Π
(x) for some m > 0 and t ≥ 0.

Clearly p(ϕt
Λ
(x̂)) = ϕt

Π
(x) and ϕm

Λ
: p−1(ϕt

Π
(x)) → p−1(ϕt

Π
(x)) is a permutation on the finite set

p−1(ϕt
Π
(x)). Hence (ϕm

Λ
)	(ϕt

Λ
(x̂)) = ϕt

Λ
(x̂) for some 	. The reverse inclusion ⊇ is proved. Now

by the continuity of p and by Corollary 3.9, we have

Π \G = p(Λ \G) = p
(

ePer(ϕΛ)
)
⊂ p(ePer(ϕΛ)) = pp−1(ePer(ϕΠ)) = ePer(ϕΠ). (4.5)

This proves that ePer(ϕΠ) is dense in Π \G.
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