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The purpose of this paper is to introduce and consider a general implicit iterative process which
includes Schu’s explicit iterative processes and Sun’s implicit iterative processes as special cases for
a finite family of generalized asymptotically quasi-nonexpansive mappings. Strong convergence of
the purposed iterative process is obtained in the framework of real Banach spaces.

1. Introduction and Preliminaries

Let E be a real Banach space andUE = {x ∈ E : ‖x‖ = 1}. E is said to be uniformly convex if for
any ε ∈ (0, 2] there exists δ > 0 such that for any x, y ∈ UE,

∥
∥x − y

∥
∥ ≥ ε implies

∥
∥
∥
∥

x + y

2

∥
∥
∥
∥
≤ 1 − δ. (1.1)

It is known that a uniformly convex Banach space is reflexive and strictly convex.
Let C be a nonempty closed and convex subset of a Banach space E. Let T : C → C be

a mapping. Denote by F(T) the fixed point set of T .
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Recall that T is said to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x, y ∈ C. (1.2)

T is said to be quasi-nonexpansive if F(T)/= ∅ and
∥
∥Tx − y

∥
∥ ≤ ∥

∥x − y
∥
∥, ∀x ∈ C, y ∈ F(T). (1.3)

A nonexpansive mapping with a nonempty fixed point set is quasi-nonexpansive; however,
the inverse may be not true. See the following example [1].

Example 1.1. Let E = R1 and define a mapping by T : E → E by

Tx =

⎧

⎨

⎩

x

2
sin

1
x

if x /= 0,

0 if x = 0.
(1.4)

Then T is quasi-nonexpansive but not nonexpansive.

T is said to be asymptotically nonexpansive if there exists a positive sequence {kn} ⊂
[1,∞) with kn → 1 as n → ∞ such that

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥, ∀x, y ∈ C, n ≥ 1. (1.5)

It is easy to see that every nonexpansive mapping is asymptotically nonexpansive with
the asymptotical sequence {1}. The class of asymptotically nonexpansive mappings was
introduced by Goebel and Kirk [2] in 1972. It is known that if C is a nonempty bounded
closed convex subset of a uniformly convex Banach space E, then every asymptotically
nonexpansive mapping on C has a fixed point. Further, the set F(T) of fixed points of T is
closed and convex. Since 1972, a host of authors have studied weak and strong convergence
problems of implicit iterative processes for such a class of mappings.

T is said to be asymptotically quasi-nonexpansive if F(T)/= ∅, and there exists a positive
sequence {kn} ⊂ [1,∞)with kn → 1 as n → ∞ such that

∥
∥Tnx − y

∥
∥ ≤ kn

∥
∥x − y

∥
∥, ∀x ∈ C, y ∈ F(T), n ≥ 1. (1.6)

T is said to be asymptotically nonexpansive in the intermediate sense if it is continuous and
the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(∥
∥Tnx − Tny

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0. (1.7)

Putting ξn = max{0, supx,y∈C(‖Tnx − Tny‖ − ‖x − y‖)}, we see that ξn → 0 as n → ∞. Then
(1.7) is reduced to the following:

∥
∥Tnx − Tny

∥
∥ ≤ ∥

∥x − y
∥
∥ + ξn, ∀x, y ∈ C, n ≥ 1. (1.8)
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The class of asymptotically nonexpansivemappings in the intermediate sensewas introduced
by Kirk [3] (see also Bruck et al. [4]) as a generalization of the class of asymptotically
nonexpansive mappings. It is known that if C is a nonempty closed convex and bounded
subset of a real Hilbert space, then every asymptotically nonexpansive self-mapping in the
intermediate sense has a fixed point; see [5]more details.

T is said to be asymptotically quasi-nonexpansive in the intermediate sense if it is
continuous, F(T)/= ∅, and the following inequality holds:

lim sup
n→∞

sup
x∈C,y∈F(T)

(∥
∥Tnx − y

∥
∥ − ∥

∥x − y
∥
∥
) ≤ 0. (1.9)

Putting ξn = max{0, supx∈C,y∈F(T)(‖Tnx − y‖ − ‖x − y‖)}, we see that ξn → 0 as n → ∞. Then
(1.9) is reduced to the following:

∥
∥Tnx − y

∥
∥ ≤ ∥

∥x − y
∥
∥ + ξn, ∀x ∈ C, y ∈ F(T), n ≥ 1. (1.10)

T is said to be generalized asymptotically nonexpansive if there exist two positive
sequences {kn} ⊂ [1,∞) with kn → 1 and {ξn} ⊂ [0,∞) with ξn → 0 as n → ∞ such
that

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥ + ξn, ∀x, y ∈ C, n ≥ 1. (1.11)

It is easy to see that the class of generalized asymptotically nonexpansive includes the class
of asymptotically nonexpansive as a special case.

T is said to be generalized asymptotically quasi-nonexpansive if F(T)/= ∅, and there exist
two positive sequences {kn} ⊂ [1,∞) with kn → 1 and {ξn} ⊂ [0,∞) with ξn → 0 as n → ∞
such that

∥
∥Tnx − y

∥
∥ ≤ kn

∥
∥x − y

∥
∥ + ξn, ∀x ∈ C, y ∈ F(T), n ≥ 1. (1.12)

The class of generalized asymptotically quasi-nonexpansive was considered by Shahzad and
Zegeye [6]; see [6, 7] for more details.

Recall that the modified Mann iteration which was introduced by Schu [8] generates
a sequence {xn} in the following manner:

x1 ∈ C, xn+1 = (1 − αn)xn + αnT
nxn, ∀n ≥ 1, (1.13)

where {αn} is a sequence in the interval (0, 1) and T :C → C is an asymptotically
nonexpansive mapping.

In 1991, Schu [8] obtained the following results.

Theorem Schu 1. Let E be a uniformly convex Banach space, ∅/=C ⊂ E closed bounded and
convex, and T : C → C asymptotically nonexpansive with sequence {kn} ⊂ [1,∞) for which
∑∞

n=1(kn − 1) < ∞ and {αn} ∈ [0, 1] is bounded away. Let {xn} be a sequence generated in (1.13).
Then limn→∞‖xn − Txn‖ = 0.
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Theorem Schu 2. Let E be a uniformly convex Banach space, ∅/=C ⊂ E closed bounded and convex,
and T : C → C asymptotically nonexpansive with sequence {kn} ⊂ [1,∞) for which

∑∞
n=1(kn − 1) <

∞ and {αn} ∈ [0, 1] is bounded away. Let {xn} be a sequence generated in (1.13). Suppose that Tm

is compact for some positive integer m ≥ 1. Then the sequence {xn} converges strongly to some fixed
point of T .

Theorem Schu 3. Let E be a uniformly convex Banach space, ∅/=C ⊂ E closed bounded and convex,
and T : C → C asymptotically nonexpansive with sequence {kn} ⊂ [1,∞) for which

∑∞
n=1(kn − 1) <

∞ and {αn} ∈ [0, 1] is bounded away. Let {xn} be a sequence generated in (1.13). Suppose that there
exists a nonempty compact and convex subset K of E and λ ∈ (0, 1) such that

d(Tx,K) ≤ λd(x,K), ∀x ∈ C. (1.14)

Then the sequence {xn} converges strongly to some fixed point of T .

In 2007, Shahzad and Zegeye [6] considered the following implicit iterative process for
a finite family of generalized asymptotically quasi-nonexpansive mappings {T1, T2, . . . , TN}:

x1 = α1x0 + (1 − α1)T1x1,

x2 = α2x1 + (1 − α2)T2x2,

...

xN = αNxN−1 + (1 − αN)TNxN,

xN+1 = αN+1xN + (1 − αN+1)T2
1xN+1,

...

x2N = α2Nx2N−1 + (1 − α2N)T2
Nx2N,

x2N+1 = α2N+1x2N + (1 − α2N+1)T3
1x2N+1,

...,

(1.15)

where x0 is the initial value and {αn} is a sequence (0, 1). Since for each n ≥ 1, it can be
written as n = (h − 1)N + i, where i = i(n) ∈ {1, 2, . . . ,N}, h = h(n) ≥ 1 is a positive integer,
and h(n) → ∞ as n → ∞. Hence the above table can be rewritten in the following compact
form:

xn = αnxn−1 + αnT
h(n)
i(n) xn, ∀n ≥ 1. (1.16)

We remark that the implicit iterative process (1.16) was first considered by Sun [9]; see [9]
for more details.
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Shahzad and Zegeye [6] obtained the following results.

Theorem SZ 1. Let E be a real uniformly convex Banach space and C be a nonempty closed convex
subset of E. Let {Ti : i ∈ J}, where J = {1, 2, . . . ,N}, be N uniformly Lipschitz, generalized
asymptotically quasi-nonexpansive self-mappings of C with {kin} ⊂ [1,∞), {ξn} ⊂ [0,∞) such that
∑∞

n=1(kin−1) < ∞ and
∑∞

n=1 ξin < ∞ for all i ∈ J . Suppose that F = ∩N
i=1F(Ti)/= ∅ and there exists one

member T in {Ti : i ∈ J} which is either semicompact or satisfies condition (C). Let {αn} ⊂ [δ, 1 − δ]
for some δ ∈ (0, 1). From arbitrary x1 ∈ C, define the sequence {xn} by (1.16). Then {xn} converges
strongly to a common fixed point of the mappings {Ti : i ∈ J}.

Theorem SZ 2. Let E be a real uniformly convex Banach space and C a nonemptyclosed convex
subset of E. Let {Ti : i ∈ J}, where J = {1, 2, . . . ,N}, be N generalized asymptotically quasi-
nonexpansive self-mappings of C with {kin} ⊂ [1,∞), {ξin} ⊂ [0,∞) such that

∑∞
n=1(kin − 1) < ∞

and
∑∞

n=1 ξin < ∞ for all i ∈ J . Suppose that F = ∩N
i=1F(Ti)/= ∅ is closed. Let {αn} ⊂ [δ, 1 − δ] for

some δ ∈ (0, 1). From arbitrary x1 ∈ C, define the sequence {xn} by (1.16). Then {xn} converges
strongly to a common fixed point of the mappings {Ti : i ∈ J} if and only if lim infn→∞d(xn, F) = 0.

In this paper, motivated by the above results, we consider the following implicit
iterative process for two finite families of generalized asymptotically quasi-nonexpansive
mappings {S1, S2, . . . , SN} and {T1, T2, . . . , TN}:

x1 = α1x0 + β1S1x0 + γ1T1x1 + δ1u1,

x2 = α2x1 + β2S2x1 + γ2T2x2 + δ2u2,

...

xN = αNxN−1 + βNSNxN−1 + γNTNxN + δNuN,

xN+1 = αN+1xN + βN+1S
2
1xN + γN+1T

2
1xN+1 + δN+1uN+1,

...

x2N = α2Nx2N−1 + β2NS2
Nx2N−1 + γ2NT2

Nx2N + δ2Nu2N,

x2N+1 = α2N+1x2N + β2N+1S
3
1x2N + γ2N+1T

3
1x2N+1 + δ2N+1u2N+1,

...,

(1.17)

where x0 is the initial value, {un} is a bounded sequence in C, and {αn}, {βn}, {γn}, and {δn}
are sequences (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Since for each n ≥ 1, it can
be written as n = (h − 1)N + i, where i = i(n) ∈ {1, 2, . . . ,N}, h = h(n) ≥ 1 is a positive integer
and h(n) → ∞ as n → ∞. Hence the above table can be rewritten in the following compact
form:

xn = αnxn−1 + βnS
h(n)
i(n) xn−1 + γnT

h(n)
i(n) xn + δnun, ∀n ≥ 1. (1.18)
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We remark that our implicit iterative process (1.18)which includes the explicit iterative
process (1.13) and the implicit iterative process (1.16) as special cases is general.

If Si = I, where I denotes the identity mapping, for each i ∈ {1, 2, . . . ,N}, then the
implicit iterative process (1.18) is reduced to the following implicit iterative process:

xn =
(

αn + βn
)

xn−1 + γnT
h(n)
i(n) xn + δnun, ∀n ≥ 1. (1.19)

If Ti = I, where I denotes the identity mapping, for each i ∈ {1, 2, . . . ,N}, then the
implicit iterative process (1.18) is reduced to the following explicit iterative process:

xn =
αn

1 − γn
xn−1 +

βn
1 − γn

S
h(n)
i(n) xn−1 +

δn
1 − γn

un, ∀n ≥ 1. (1.20)

The purpose of this paper is to study the convergence of the implicit iteration process
(1.18) for two finite families of generalized asymptotically quasi-nonexpansive mappings.
Strong convergence theorems are obtained in the framework of real Banach spaces. The
results presented in this paper improve and extend the corresponding results in Shahzad
and Zegeye [6], Sun [9], Chang et al. [10], Chidume and Shahzad [11], Guo and Cho [12],
Kim et al. [13], Qin et al. [14], Thianwan and Suantai [15], Xu and Ori [16], and Zhou and
Chang [17].

In order to prove our main results, we also need the following lemmas.

Lemma 1.2 (see [18]). Let {rn}, {sn}, and {tn} be three nonnegative sequences satisfying the
following condition:

rn+1 ≤ (1 + sn)rn + tn, ∀n ≥ n0, (1.21)

where n0 is some positive integer. If
∑∞

n=1 sn < ∞ and
∑∞

n=1 tn < ∞, then limn→∞rn exists.

Lemma 1.3 (see [19]). Let E be a real uniformly convex Banach space, s > 0 a positive number,
and Bs(0) a closed ball of E. Then there exists a continuous, strictly increasing, and convex function
g : [0,∞) → [0,∞) with g(0) = 0 such that

∥
∥ax + by + cz + dw

∥
∥2 ≤ a‖x‖2 + b

∥
∥y

∥
∥2 + c‖z‖2 + d‖w‖2 − abg

(∥
∥x − y

∥
∥
)

(1.22)

for all x, y, z,w ∈ Bs(0) = {x ∈ E : ‖x‖ ≤ s} and a, b, c, d ∈ [0, 1] such that a + b + c + d = 1.

2. Main Results

Lemma 2.1. Let E be a real uniformly convex Banach space and C a nonempty closed convex subset
of E. Let Ti : C → C be a uniformly Lt,i-Lipschitz and generalized asymptotically quasi-nonexpansive
mapping with sequences {kn,t,i} ⊂ [1,∞) and {ξn,t,i} ⊂ [0,∞) such that

∑∞
n=1(kn,t,i − 1) < ∞ and

∑∞
n=1 ξn,t,i < ∞ for each 1 ≤ i ≤ N and Si : C → C a uniformly Ls,i-Lipschitz and generalized

asymptotically quasi-nonexpansive mapping with sequences {kn,s,i} ⊂ [1,∞) and {ξn,s,i} ⊂ [0,∞)
such that

∑∞
n=1(kn,s,i − 1) < ∞ and

∑∞
n=1 ξn,s,i < ∞ for each 1 ≤ i ≤ N. Assume that F =
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∩N
i=1F(Ti)

⋂∩N
i=1F(Si) is nonempty. Let {un} be a bounded sequence in C, kn = max{kn,t, kn,s},

where kn,t = max{kn,t,i : 1 ≤ i ≤ N} and kn,s = max{kn,s,i : 1 ≤ i ≤ N} and ξn = max{ξn,t, ξn,s},
where ξn,t = max{ξn,t,i : 1 ≤ i ≤ N} and ξn,s = max{ξn,s,i : 1 ≤ i ≤ N}. Let {αn}, {βn}, {γn}, and
{δn} be sequences in (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a sequence
generated in (1.18). Assume that the following restrictions are satisfied:

(a) there exist constants a, b, c, d ∈ (0, 1) such that a ≤ αn, b ≤ βn, and c ≤ γn ≤ d < 1/Lt,
where Lt = max{Lt,i : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

Then

lim
n→∞

‖xn − Trxn‖ = lim
n→∞

‖xn − Srxn‖ = 0, ∀r ∈ {1, 2, . . . ,N}. (2.1)

Proof . First, we show that the sequence {xn} generated in (1.18) is well defined. For each
n ≥ 1, define a mapping Cn : C → C as follows:

Cnx = αnxn−1 + βnS
h(n)
i(n) xn−1 + γnT

h(n)
i(n) x + δnun, ∀x ∈ C. (2.2)

Notice that

∥
∥Cnx − Cny

∥
∥ ≤ γn

∥
∥
∥T

h(n)
i(n) x − T

h(n)
i(n) y

∥
∥
∥

≤ dLt

∥
∥x − y

∥
∥, ∀x, y ∈ C.

(2.3)

From the restriction (a), we see that Cn is a contraction for each n ≥ 1. From Banach
contraction mapping principle, we can prove that the sequence {xn} generated in (1.18) is
well defined.

Fixing p ∈ F, we see that

∥
∥xn − p

∥
∥ ≤ αn

∥
∥xn−1 − p

∥
∥ + βn

∥
∥
∥S

h(n)
i(n) xn−1 − p

∥
∥
∥ + γn

∥
∥
∥T

h(n)
i(n) xn − p

∥
∥
∥ + δn

∥
∥un − p

∥
∥

≤ αn

∥
∥xn−1 − p

∥
∥ + βn

(

kh(n)
∥
∥xn−1 − p

∥
∥ + ξh(n)

)

+ γn
(

kh(n)
∥
∥xn − p

∥
∥ + ξh(n)

)

+ δn
∥
∥un − p

∥
∥

≤ (

αn + βnkh(n)
)∥
∥xn−1 − p

∥
∥ +

(

1 − αn − βn
)

kh(n)
∥
∥xn − p

∥
∥ + 2ξh(n)

+ δn
∥
∥un − p

∥
∥.

(2.4)

Notice that
∑∞

n=1(kn − 1) < ∞. We see from the restrictions (a) and (b) that there exists a
positive integer n0 such that

(

1 − αn − βn
)

kh(n) ≤ R < 1, ∀n ≥ n0, (2.5)
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where R = (1 − (a + b))(1 + (a + b)/(2 − 2(a + b))). It follows from (2.4) that

∥
∥xn − p

∥
∥ ≤ αn + βnkh(n)

1 − (

1 − αn − βn
)

kh(n)

∥
∥xn−1 − p

∥
∥ +

δn

1 − (

1 − αn − βn
)

kh(n)

∥
∥un − p

∥
∥

+
2ξh(n)

1 − (

1 − αn − βn
)

kh(n)

≤
(

1 +
kh(n) − 1
1 − R

)
∥
∥xn−1 − p

∥
∥ +

δn
1 − R

∥
∥un − p

∥
∥ +

2ξh(n)
1 − R

≤
(

1 +
kh(n) − 1
1 − R

)
∥
∥xn−1 − p

∥
∥ +M1

(

δn + ξh(n)
)

, ∀n ≥ n0,

(2.6)

whereM1 is an appropriate constant such thatM1 = max{supn≥1{‖un−p‖/(1−R)}, 2/(1−R)}.
In view of the restrictions (a) and (b), we obtain from Lemma 1.2 that limn→∞‖xn − p‖ exists.
It follows that the sequence {xn} is bounded. In view of Lemma 1.3, we see that

∥
∥xn − p

∥
∥
2 ≤ αn

∥
∥xn−1 − p

∥
∥
2 + βn

∥
∥
∥S

h(n)
i(n) xn−1 − p

∥
∥
∥

2
+ γn

∥
∥
∥T

h(n)
i(n) xn − p

∥
∥
∥

2

+ δn
∥
∥un − p

∥
∥
2 − αnβng

(∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥

)

≤ αn

∥
∥xn−1 − p

∥
∥
2 + βn

(

kh(n)
∥
∥xn−1 − p

∥
∥ + ξh(n)

)2 + γn
(

kh(n)
∥
∥xn − p

∥
∥ + ξh(n)

)2

+ δn
∥
∥un − p

∥
∥
2 − αnβng

(∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥

)

≤ αn

∥
∥xn−1 − p

∥
∥2 + βn

(

k2
h(n)

∥
∥xn−1 − p

∥
∥2 + ξ2h(n) + 2kh(n)ξh(n)

∥
∥xn−1 − p

∥
∥

)

+ γn
(

k2
h(n)

∥
∥xn − p

∥
∥
2 + ξ2h(n) + 2kh(n)ξh(n)

∥
∥xn − p

∥
∥

)

+ δn
∥
∥un − p

∥
∥
2 − αnβng

(∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥

)

≤
(

αn + βnk
2
h(n)

)∥
∥xn−1 − p

∥
∥
2 + γnk

2
h(n)

∥
∥xn − p

∥
∥
2 + 2ξ2h(n)

+ 2kh(n)ξh(n)M2 + δnM3 − αnβng
(∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥

)

,

(2.7)

where M2 and M3 are appropriate constants such that M2 = supn≥1{‖xn − p‖ + ‖xn−1 − p‖}
and M3 = supn≥1{‖un − p‖2}. This implies that

αnβng
(∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥

)

≤
(

αn + βnk
2
h(n)

)(∥
∥xn−1 − p

∥
∥
2 − ∥

∥xn − p
∥
∥
2
)

+
(

k2
h(n) − 1

)∥
∥xn − p

∥
∥
2

+ 2ξ2h(n) + 2kh(n)ξh(n)M2 + δnM3.

(2.8)
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In view of the restrictions (a) and (b), we obtain that

lim
n→∞

g
(∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥

)

= 0. (2.9)

Since g : [0,∞) → [0,∞) is a continuous, strictly increasing, and convex function with
g(0) = 0, we obtain that

lim
n→∞

∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥ = 0. (2.10)

Next, we show that

lim
n→∞

∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥ = 0. (2.11)

From Lemma 1.3, we also see that

∥
∥xn − p

∥
∥2 ≤ αn

∥
∥xn−1 − p

∥
∥2 + βn

∥
∥
∥S

h(n)
i(n) xn−1 − p

∥
∥
∥

2
+ γn

∥
∥
∥T

h(n)
i(n) xn − p

∥
∥
∥

2

+ δn
∥
∥un − p

∥
∥2 − αnγng

(∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

)

≤ αn

∥
∥xn−1 − p

∥
∥
2 + βn

(

kh(n)
∥
∥xn−1 − p

∥
∥ + ξh(n)

)2 + γn
(

kh(n)
∥
∥xn − p

∥
∥ + ξh(n)

)2

+ δn
∥
∥un − p

∥
∥
2 − αnγng

(∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

)

≤ αn

∥
∥xn−1 − p

∥
∥
2 + βn

(

k2
h(n)

∥
∥xn−1 − p

∥
∥
2 + ξ2h(n) + 2kh(n)ξh(n)

∥
∥xn−1 − p

∥
∥

)

+ γn
(

k2
h(n)

∥
∥xn − p

∥
∥
2 + ξ2h(n) + 2kh(n)ξh(n)

∥
∥xn − p

∥
∥

)

+ δn
∥
∥un − p

∥
∥
2 − αnγng

(∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

)

≤
(

αn + βnk
2
h(n)

)∥
∥xn−1 − p

∥
∥
2 + γnk

2
h(n)

∥
∥xn − p

∥
∥
2 + 2ξ2h(n)

+ 2kh(n)ξh(n)M2 + δnM3 − αnγng
(∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

)

.

(2.12)

This implies that

αnγng
(∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

)

≤
(

αn + βnk
2
h(n)

)(∥
∥xn−1 − p

∥
∥
2 − ∥

∥xn − p
∥
∥
2
)

+
(

k2
h(n) − 1

)∥
∥xn − p

∥
∥
2

+ 2ξ2h(n) + 2kh(n)ξh(n)M2 + δnM3.

(2.13)
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In view of the restrictions (a) and (b), we obtain that

lim
n→∞

g
(∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥

)

= 0. (2.14)

Since g : [0,∞) → [0,∞) is a continuous, strictly increasing, and convex function with
g(0) = 0, we obtain that (2.11) holds. Notice that

‖xn − xn−1‖ ≤
∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥ +

∥
∥
∥T

h(n)
i(n) xn − xn−1

∥
∥
∥ + δn‖un − xn−1‖. (2.15)

In view of (2.10) and (2.11), we see from the restriction (b) that

lim
n→∞ ‖xn − xn−1‖ = 0, (2.16)

which implies that

lim
n→∞

∥
∥xn − xn+j

∥
∥ = 0, ∀j ∈ {1, 2, . . . ,N}. (2.17)

Since for any positive integer n > N, it can be written as n = (h(n) − 1)N + i(n), where
i(n) ∈ {1, 2, . . . ,N}, observe that

‖xn−1 − Tnxn‖ ≤
∥
∥
∥xn−1 − T

h(n)
i(n) xn

∥
∥
∥ +

∥
∥
∥T

h(n)
i(n) xn − Tnxn

∥
∥
∥

≤
∥
∥
∥xn−1 − T

h(n)
i(n) xn

∥
∥
∥ + Lt

∥
∥
∥T

h(n)−1
i(n) xn − xn

∥
∥
∥

≤
∥
∥
∥xn−1 − T

h(n)
i(n) xn

∥
∥
∥

+ Lt

(∥
∥
∥T

h(n)−1
i(n) xn − T

h(n)−1
i(n−N)xn−N

∥
∥
∥ +

∥
∥
∥T

h(n)−1
i(n−N)xn−N − x(n−N)−1

∥
∥
∥

+
∥
∥x(n−N)−1 − xn

∥
∥
)

.

(2.18)

Since for each n > N, n = (n − N)(mod N), on the other hand, we obtain from n = (h(n) −
1)N + i(n) that n −N = ((h(n) − 1) − 1)N + i(n) = (h(n −N) − 1)N + i(n −N). That is,

h(n −N) = h(n) − 1, i(n −N) = i(n). (2.19)

Notice that

∥
∥
∥T

h(n)−1
i(n) xn − T

h(n)−1
i(n−N)xn−N

∥
∥
∥ =

∥
∥
∥T

h(n)−1
i(n) xn − T

h(n)−1
i(n) xn−N

∥
∥
∥

≤ Lt‖xn − xn−N‖,
∥
∥
∥T

h(n)−1
i(n−N)xn−N − x(n−N)−1

∥
∥
∥ =

∥
∥
∥T

h(n−N)
i(n−N) xn−N − x(n−N)−1

∥
∥
∥.

(2.20)
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Substituting (2.20) into (2.18), we arrive at

‖xn−1 − Tnxn‖ ≤
∥
∥
∥xn−1 − T

h(n)
i(n) xn

∥
∥
∥

+ Lt

(

Lt‖xn − xn−N‖ +
∥
∥
∥T

h(n−N)
i(n−N) xn−N − x(n−N)−1

∥
∥
∥ +

∥
∥x(n−N)−1 − xn

∥
∥

)

.

(2.21)

In view of (2.11) and (2.17), we obtain that

lim
n→∞

‖xn−1 − Tnxn‖ = 0. (2.22)

Notice that

‖xn − Tnxn‖ ≤ ‖xn − xn−1‖ + ‖xn−1 − Tnxn‖. (2.23)

It follows from (2.16) and (2.22) that

lim
n→∞

‖xn − Tnxn‖ = 0. (2.24)

Notice that

∥
∥xn − Tn+jxn

∥
∥ ≤ ∥

∥xn − xn+j
∥
∥ +

∥
∥xn+j − Tn+jxn+j

∥
∥ +

∥
∥Tn+jxn+j − Tn+jxn

∥
∥

≤ (1 + Lt)
∥
∥xn − xn+j

∥
∥ +

∥
∥xn+j − Tn+jxn+j

∥
∥, ∀j ∈ {1, 2, . . . ,N}.

(2.25)

From (2.17) and (2.24), we arrive at

lim
n→∞

∥
∥xn − Tn+jxn

∥
∥ = 0, ∀j ∈ {1, 2, . . . ,N}. (2.26)

Note that any subsequence of a convergent number sequence converges to the same limit.
It follows that

lim
n→∞

‖xn − Trxn‖ = 0, ∀r ∈ {1, 2, . . . ,N}. (2.27)

Letting Ls = max{Ls,i : 1 ≤ i ≤ N}, we have

∥
∥
∥S

h(n)
i(n) xn − xn−1

∥
∥
∥ ≤

∥
∥
∥S

h(n)
i(n) xn − S

h(n)
i(n) xn−1

∥
∥
∥ +

∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥

≤ Ls‖xn − xn−1‖ +
∥
∥
∥S

h(n)
i(n) xn−1 − xn−1

∥
∥
∥.

(2.28)

In view of (2.10) and (2.16), we see that

lim
n→∞

∥
∥
∥S

h(n)
i(n) xn − xn−1

∥
∥
∥ = 0. (2.29)
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Observe that

‖xn−1 − Snxn−1‖ ≤
∥
∥
∥xn−1 − S

h(n)
i(n) xn−1

∥
∥
∥ +

∥
∥
∥S

h(n)
i(n) xn−1 − Snxn−1

∥
∥
∥

≤
∥
∥
∥xn−1 − S

h(n)
i(n) xn−1

∥
∥
∥ + Ls

∥
∥
∥S

h(n)−1
i(n) xn−1 − xn−1

∥
∥
∥

≤
∥
∥
∥xn−1 − S

h(n)
i(n) xn−1

∥
∥
∥

+ Ls

(∥
∥
∥S

h(n)−1
i(n) xn−1 −Sh(n)−1

i(n−N)xn−N
∥
∥
∥+

∥
∥
∥S

h(n)−1
i(n−N)xn−N−x(n−N)−1

∥
∥
∥

+
∥
∥x(n−N)−1−xn−1

∥
∥
)

.

(2.30)

In view of
∥
∥
∥S

h(n)−1
i(n) xn−1 − S

h(n)−1
i(n−N)xn−N

∥
∥
∥ =

∥
∥
∥S

h(n)−1
i(n) xn−1 − S

h(n)−1
i(n) xn−N

∥
∥
∥

≤ Ls‖xn−1 − xn−N‖,
∥
∥
∥S

h(n)−1
i(n−N)xn−N − x(n−N)−1

∥
∥
∥ =

∥
∥
∥S

h(n−N)
i(n−N) xn−N − x(n−N)−1

∥
∥
∥,

(2.31)

we arrive at

‖xn−1 − Snxn−1‖ ≤
∥
∥
∥xn−1 − S

h(n)
i(n) xn−1

∥
∥
∥

+ Ls

(

Ls‖xn−1 − xn−N‖ +
∥
∥
∥S

h(n−N)
i(n−N) xn−N − x(n−N)−1

∥
∥
∥ +

∥
∥x(n−N)−1 − xn−1

∥
∥

)

.

(2.32)

In view of (2.10), (2.17), and (2.29), we obtain that

lim
n→∞

‖xn−1 − Snxn−1‖ = 0. (2.33)

Notice that

‖xn − Snxn‖ ≤ ‖xn − xn−1‖ + ‖xn−1 − Snxn−1‖ + ‖Snxn−1 − Snxn‖
≤ (1 + Ls)‖xn − xn−1‖ + ‖xn−1 − Snxn−1‖.

(2.34)

From (2.16) and (2.33), we see that

lim
n→∞

‖xn − Snxn‖ = 0. (2.35)

On the other hand, we have

∥
∥xn − Sn+jxn

∥
∥ ≤ ∥

∥xn − xn+j
∥
∥ +

∥
∥xn+j − Sn+jxn+j

∥
∥ +

∥
∥Sn+jxn+j − Sn+jxn

∥
∥

≤ (1 + Ls)
∥
∥xn − xn+j

∥
∥ +

∥
∥xn+j − Sn+jxn+j

∥
∥, ∀j ∈ {1, 2, . . . ,N}.

(2.36)
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It follows from (2.17) and (2.35) that

lim
n→∞

∥
∥xn − Sn+jxn

∥
∥ = 0, ∀j ∈ {1, 2, . . . ,N}. (2.37)

Note that any subsequence of a convergent number sequence converges to the same limit. It
follows that

lim
n→∞

‖xn − Srxn‖ = 0, ∀r ∈ {1, 2, . . . ,N}. (2.38)

This completes the proof.

Recall that amapping T : C → C is said to be semicompact if for any bounded sequence
{xn} in C such that ‖xn − Txn‖ → 0 as n → ∞, then there exists a subsequence {xni} ⊂ {xn}
such that xni → x ∈ C.

Next, we give strong convergence theorems with the help of the semicompactness.

Theorem 2.2. Let E be a real uniformly convex Banach space and C a nonempty closed convex subset
of E. Let Ti : C → C be a uniformly Lt,i-Lipschitz and generalized asymptotically quasi-nonexpansive
mapping with sequences {kn,t,i} ⊂ [1,∞) and {ξn,t,i} ⊂ [0,∞) such that

∑∞
n=1(kn,t,i − 1) < ∞

and
∑∞

n=1 ξn,t,i < ∞ for each 1 ≤ i ≤ N, and let Si : C → C be a uniformly Ls,i-Lipschitz
and generalized asymptotically quasi-nonexpansive mapping with sequences {kn,s,i} ⊂ [1,∞) and
{ξn,s,i} ⊂ [0,∞) such that

∑∞
n=1(kn,s,i − 1) < ∞ and

∑∞
n=1 ξn,s,i < ∞ for each 1 ≤ i ≤ N. Assume that

F = ∩N
i=1F(Ti)

⋂∩N
i=1F(Si) is nonempty. Let {un} be a bounded sequence in C, kn = max{kn,t, kn,s},

where kn,t = max{kn,t,i : 1 ≤ i ≤ N} and kn,s = max{kn,s,i : 1 ≤ i ≤ N} and ξn = max{ξn,t, ξn,s},
where ξn,t = max{ξn,t,i : 1 ≤ i ≤ N} and ξn,s = max{ξn,s,i : 1 ≤ i ≤ N}. Let {αn}, {βn}, {γn}, and
{δn} be sequences in (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a sequence
generated in (1.18). Assume that the following restrictions are satisfied:

(a) there exist constants a, b, c, d ∈ (0, 1) such that a ≤ αn, b ≤ βn, and c ≤ γn ≤ d < 1/Lt,
where Lt = max{Lt,i : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

If one of {S1, S2, . . . , SN} or one of {T1, T2, . . . , TN} is semicompact, then the sequence {xn} converges
strongly to some point in F.

Proof. Without loss of generality, we may assume that S1 is semicompact. From (2.38), we
see that there exits a subsequence {xni} of {xn} converging strongly to x ∈ C. For each r ∈
{1, 2, . . . ,N}, we get that

‖x − Srx‖ ≤ ‖x − xni‖ + ‖xni − Srxni‖ + ‖Srxni − Srx‖. (2.39)

Since Sr is Lipshcitz continuous, we obtain from (2.38) that x ∈ ∩N
r=1F(Sr). Notice that

‖x − Trx‖ ≤ ‖x − xni‖ + ‖xni − Trxni‖ + ‖Trxni − Trx‖. (2.40)

Since Tr is Lipshcitz continuous, we obtain from (2.27) that x ∈ ∩N
r=1F(Tr). This means that

x ∈ F. In view of Lemma 2.1, we obtain that limn→∞‖xn − x‖ exists. Therefore, we can obtain
the desired conclusion immediately.
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If Si = I, where I denotes the identity mapping, for each i ∈ {1, 2, . . . ,N}, then
Theorem 2.2 is reduced to the following.

Corollary 2.3. Let E be a real uniformly convex Banach space andC a nonempty closed convex subset
of E. Let Ti : C → C be a uniformly Lt,i-Lipschitz and generalized asymptotically quasi-nonexpansive
mapping with sequences {kn,t,i} ⊂ [1,∞) and {ξn,t,i} ⊂ [0,∞) such that

∑∞
n=1(kn,t,i − 1) < ∞ and

∑∞
n=1 ξn,t,i < ∞ for each 1 ≤ i ≤ N. Assume that F = ∩N

i=1F(Ti) is nonempty. Let {un} be a bounded
sequence in C, kn,t = max{kn,t,i : 1 ≤ i ≤ N}, and ξn,t = max{ξn,t,i : 1 ≤ i ≤ N}. Let {αn}, {βn},
{γn}, and {δn} be sequences in (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a
sequence generated in (1.19). Assume that the following restrictions are satisfied:

(a) there exist constants a, b, c ∈ (0, 1) such that a ≤ αn + βn and b ≤ γn ≤ c < 1/Lt, where
Lt = max{Lt,i : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

If one of {T1, T2, . . . , TN} is semicompact, then the sequence converges {xn} strongly to some point in
F.

If Ti = I, where I denotes the identity mapping, for each i ∈ {1, 2, . . . ,N}, then
Theorem 2.2 is reduced to the following.

Corollary 2.4. Let E be a real uniformly convex Banach space andC a nonempty closed convex subset
of E. Let Si : C → C be a uniformly Ls,i-Lipschitz and generalized asymptotically quasi-nonexpansive
mapping with sequences {kn,s,i} ⊂ [1,∞) and {ξn,s,i} ⊂ [0,∞) such that

∑∞
n=1(kn,s,i − 1) < ∞ and

∑∞
n=1 ξn,s,i < ∞ for each 1 ≤ i ≤ N. Assume that F = ∩N

i=1F(Si) is nonempty. Let {un} be a bounded
sequence in C, kn,s = max{kn,s,i : 1 ≤ i ≤ N} and ξn,s = max{ξn,s,i : 1 ≤ i ≤ N}. Let {αn}, {βn},
{γn}, and {δn} be sequences in (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a
sequence generated in (1.20). Assume that the following restrictions are satisfied:

(a) there exist constants a, b, c, d ∈ (0, 1) such that a ≤ αn, b ≤ βn, and c ≤ γn, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

If one of {S1, S2, . . . , SN} is semicompact, then the sequence {xn} converges strongly to some point in
F.

In 2005, Chidume and Shahzad [11] introduced the following conception. Recall that
a family {Ti}Ni=1 : C → C with F = ∩N

i=1F(Ti)/= ∅ is said to satisfy Condition (B) on C if there is
a nondecreasing function f : [0,∞) → [0,∞) with f(0) = 0 and f(m) > 0 for all m ∈ (0,∞)
such that for all x ∈ C

max
1≤i≤N

{‖x − Tix‖} ≥ f(d(x, F)). (2.41)

Based on Condition (B), we introduced the following conception for two finite families
of mappings. Recall that two families {Si}Ni=1 : C → C and {Ti}Ni=1 : C → C with
F = ∩N

i=1F(Si)
⋂∩N

i=1F(Ti)/= ∅ are said to satisfy Condition (B′) on C if there is a nondecreasing
function f : [0,∞) → [0,∞) with f(0) = 0 and f(m) > 0 for all m ∈ (0,∞) such that for all
x ∈ C

max
1≤i≤N

{‖x − Six‖} + max
1≤i≤N

{‖x − Tix‖} ≥ f(d(x, F)). (2.42)
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Next, we give strong convergence theorems with the help of Condition (B′).

Theorem 2.5. Let E be a real uniformly convex Banach space and C a nonempty closed convex subset
of E. Let Ti : C → C be a uniformly Lt,i-Lipschitz and generalized asymptotically quasi-nonexpansive
mapping with sequences {kn,t,i} ⊂ [1,∞) and {ξn,t,i} ⊂ [0,∞) such that

∑∞
n=1(kn,t,i − 1) < ∞

and
∑∞

n=1 ξn,t,i < ∞ for each 1 ≤ i ≤ N, and let Si : C → C be a uniformly Ls,i-Lipschitz
and generalized asymptotically quasi-nonexpansive mapping with sequences {kn,s,i} ⊂ [1,∞) and
{ξn,s,i} ⊂ [0,∞) such that

∑∞
n=1(kn,s,i − 1) < ∞ and

∑∞
n=1 ξn,s,i < ∞ for each 1 ≤ i ≤ N. Assume that

F = ∩N
i=1F(Ti)

⋂∩N
i=1F(Si) is nonempty. Let {un} be a bounded sequence in C, kn = max{kn,t, kn,s},

where kn,t = max{kn,t,i : 1 ≤ i ≤ N} and kn,s = max{kn,s,i : 1 ≤ i ≤ N} and ξn = max{ξn,t, ξn,s},
where ξn,t = max{ξn,t,i : 1 ≤ i ≤ N} and ξn,s = max{ξn,s,i : 1 ≤ i ≤ N}. Let {αn}, {βn}, {γn}, and
{δn} be sequences in (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a sequence
generated in (1.18). Assume that the following restrictions are satisfied:

(a) there exist constants a, b, c, d ∈ (0, 1) such that a ≤ αn, b ≤ βn, and c ≤ γn ≤ d < 1/Lt,
where Lt = max{Lt,i : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

If {S1, S2, . . . , SN} and {T1, T2, . . . , TN} satisfy Condition (B′), then the sequence converges strongly
to some point in F.

Proof. In view of Condition (B′), we obtain from (2.27) and (2.38) that f(d(xn, F)) → 0, which
implies d(xn, F) → 0. Next, we show that the sequence {xn} is Cauchy. In view of (2.6), for
any positive integers m,n, wherem > n > n0, we see that

∥
∥xm − p

∥
∥ ≤ B

∥
∥xn − p

∥
∥ + B

∞∑

i=n+1

M1
(

δi + ξh(i)
)

+M1
(

δm + ξh(m)
)

, (2.43)

where B = exp{∑∞
n=1(kh(n) − 1)/(1 − R)}. It follows that

‖xn − xm‖ ≤ ∥
∥xn − p

∥
∥ +

∥
∥xm − p

∥
∥

≤ (1 + B)
∥
∥xn − p

∥
∥ + B

∞∑

i=n+1

M1
(

δi + ξh(i)
)

+M1
(

δm + ξh(m)
)

.
(2.44)

It follows that {xn} is a Cauchy sequence in C and so {xn} converges strongly to some q ∈ C.
Since Tr and Sr are Lipschitz for each r ∈ {1, 2, . . . ,N}, we see that F is closed. This in turn
implies that q ∈ F. This completes the proof.

If Si = I, where I denotes the identity mapping, for each i ∈ {1, 2, . . . ,N}, then
Theorem 2.2 is reduced to the following.

Corollary 2.6. Let E be a real uniformly convex uniformly convex Banach space and C a nonempty
closed convex subset ofE. Let Ti : C → C be a uniformly Lt,i-Lipschitz and generalized asymptotically
quasi-nonexpansive mapping with sequences {kn,t,i} ⊂ [1,∞) and {ξn,t,i} ⊂ [0,∞) such that
∑∞

n=1(kn,t,i − 1) < ∞ and
∑∞

n=1 ξn,t,i < ∞ for each 1 ≤ i ≤ N. Assume that F = ∩N
i=1F(Ti) is

nonempty. Let {un} be a bounded sequence in C, kn,t = max{kn,t,i : 1 ≤ i ≤ N} and where
ξn,t = max{ξn,t,i : 1 ≤ i ≤ N}. Let {αn}, {βn}, {γn}, and {δn} be sequences in (0, 1) such that
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αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a sequence generated in (1.19). Assume that the
following restrictions are satisfied:

(a) there exist constants a, b, c ∈ (0, 1) such that a ≤ αn + βn and b ≤ γn ≤ c < 1/Lt, where
Lt = max{Lt,i : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

If {T1, T2, . . . , TN} satisfies Condition (B), then the sequence {xn} converges strongly to some point
in F.

If Ti = I, where I denotes the identity mapping, for each i ∈ {1, 2, . . . ,N}, then
Theorem 2.2 is reduced to the following.

Corollary 2.7. Let E be a real uniformly convex Banach space andC a nonempty closed convex subset
of E. Let Si : C → C be a uniformly Ls,i-Lipschitz and generalized asymptotically quasi-nonexpansive
mapping with sequences {kn,s,i} ⊂ [1,∞) and {ξn,s,i} ⊂ [0,∞) such that

∑∞
n=1(kn,s,i − 1) < ∞ and

∑∞
n=1 ξn,s,i < ∞ for each 1 ≤ i ≤ N. Assume that F = ∩N

i=1F(Si) is nonempty. Let {un} be a bounded
sequence in C, kn,s = max{kn,s,i : 1 ≤ i ≤ N}, and ξn,s = max{ξn,s,i : 1 ≤ i ≤ N}. Let {αn}, {βn},
{γn}, and {δn} be sequences in (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a
sequence generated in (1.20). Assume that the following restrictions are satisfied:

(a) there exist constants a, b, c, d ∈ (0, 1) such that a ≤ αn, b ≤ βn and c ≤ γn, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

If {S1, S2, . . . , SN} satisfies Condition (B), then the sequence {xn} converges strongly to some point
in F.

Finally, we give a strong convergence theorem criterion.

Theorem 2.8. Let E be a real Banach space and C a nonempty closed convex subset of E. Let
Ti : C → C be a uniformly Lt,i-Lipschitz and generalized asymptotically quasi-nonexpansive
mapping with sequences {kn,t,i} ⊂ [1,∞) and {ξn,t,i} ⊂ [0,∞) such that

∑∞
n=1(kn,t,i − 1) < ∞

and
∑∞

n=1 ξn,t,i < ∞ for each 1 ≤ i ≤ N, and let Si : C → C be a uniformly Ls,i-Lipschitz
and generalized asymptotically quasi-nonexpansive mapping with sequences {kn,s,i} ⊂ [1,∞) and
{ξn,s,i} ⊂ [0,∞) such that

∑∞
n=1(kn,s,i − 1) < ∞ and

∑∞
n=1 ξn,s,i < ∞ for each 1 ≤ i ≤ N. Assume that

F = ∩N
i=1F(Ti)

⋂∩N
i=1F(Si) is nonempty. Let {un} be a bounded sequence in C, kn = max{kn,t, kn,s},

where kn,t = max{kn,t,i : 1 ≤ i ≤ N} and kn,s = max{kn,s,i : 1 ≤ i ≤ N} and ξn = max{ξn,t, ξn,s},
where ξn,t = max{ξn,t,i : 1 ≤ i ≤ N} and ξn,s = max{ξn,s,i : 1 ≤ i ≤ N}. Let {αn}, {βn}, {γn}, and
{δn} be sequences in (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a sequence
generated in (1.18). Assume that the following restrictions are satisfied:

(a) there exist constants a, b, c, d ∈ (0, 1) such that a ≤ αn, b ≤ βn, and c ≤ γn ≤ d < 1/Lt,
where Lt = max{Lt,i : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

Then {xn} converges strongly to some point in F if and only if lim infn→∞ d(xn, F) = 0.

Proof. The necessity is obvious. We only show the sufficiency. Assume that

lim inf
n→∞

d(xn,F) = 0. (2.45)
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For each p ∈ F, we see that

∥
∥xn − p

∥
∥ ≤ αn

∥
∥xn−1 − p

∥
∥ + βn

∥
∥
∥S

h(n)
i(n) xn−1 − p

∥
∥
∥ + γn

∥
∥
∥T

h(n)
i(n) xn − p

∥
∥
∥ + δn

∥
∥un − p

∥
∥

≤ αn

∥
∥xn−1 − p

∥
∥ + βn

(

kh(n)
∥
∥xn−1 − p

∥
∥ + ξh(n)

)

+ γn
(

kh(n)
∥
∥xn − p

∥
∥ + ξh(n)

)

+ δn
∥
∥un − p

∥
∥

≤ (

αn + βnkh(n)
)∥
∥xn−1 − p

∥
∥ +

(

1 − αn − βn
)

kh(n)
∥
∥xn − p

∥
∥ + 2ξh(n)

+ δn‖un − xn‖.

(2.46)

Notice that
∑∞

n=1(kn − 1) < ∞. We see from the restrictions (a) and (b) that there exists a
positive integer n0 such that

(

1 − αn − βn
)

kh(n) ≤ R < 1, ∀n ≥ n0, (2.47)

where R = (1 − (a + b))(1 + (a + b)/(2 − 2(a + b))). Notice that the sequence {xn} is bounded.
It follows from (2.46) that

∥
∥xn − p

∥
∥ ≤ αn + βnkh(n)

1 − (

1 − αn − βn
)

kh(n)

∥
∥xn−1 − p

∥
∥ +

δn

1 − (

1 − αn − βn
)

kh(n)
‖un − xn‖

+
2ξh(n)

1 − (

1 − αn − βn
)

kh(n)

≤
(

1 +
kh(n) − 1
1 − R

)
∥
∥xn−1 − p

∥
∥ +

δn
1 − R

‖un − xn‖ +
2ξh(n)
1 − R

≤
(

1 +
kh(n) − 1
1 − R

)
∥
∥xn−1 − p

∥
∥ +M4

(

δn + ξh(n)
)

, ∀n ≥ n0,

(2.48)

where M4 is an appropriate constant such that M4 = max{supn≥1{‖un − xn‖/(1 − R)}, 2/(1 −
R)}. In view of the restrictions (a) and (b), we obtain from Lemma 1.2 that limn→∞ d(xn,F)
exists. This implies that

lim
n→∞

d(xn,F) = 0. (2.49)

In view of Theorem 2.5, we can conclude the desired conclusion easily.

If Si = I, where I denotes the identity mapping, for each i ∈ {1, 2, . . . ,N}, then
Theorem 2.2 is reduced to the following.

Corollary 2.9. Let E be a real Banach space and C a nonempty closed convex subset of E. Let Ti :
C → C be a uniformly Lt,i-Lipschitz and generalized asymptotically quasi-nonexpansive mapping
with sequences {kn,t,i} ⊂ [1,∞) and {ξn,t,i} ⊂ [0,∞) such that

∑∞
n=1(kn,t,i − 1) < ∞ and

∑∞
n=1 ξn,t,i <

∞ for each 1 ≤ i ≤ N. Assume that F = ∩N
i=1F(Ti) is nonempty. Let {un} be a bounded sequence in

C, kn,t = max{kn,t,i : 1 ≤ i ≤ N} and where ξn,t = max{ξn,t,i : 1 ≤ i ≤ N}. Let {αn}, {βn}, {γn}
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and {δn} be sequences in (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a sequence
generated in (1.19). Assume that the following restrictions are satisfied:

(a) there exist constants a, b, c ∈ (0, 1) such that a ≤ αn + βn and b ≤ γn ≤ c < 1/Lt, where
Lt = max{Lt,i : 1 ≤ i ≤ N}, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

Then {xn} converges strongly to some point in F if and only if lim infn→∞ d(xn, F) = 0.

If Ti = I, where I denotes the identity mapping, for each i ∈ {1, 2, . . . ,N}, then
Theorem 2.2 is reduced to the following.

Corollary 2.10. Let E be a real Banach space and C a nonempty closed convex subset of E. Let Si :
C → C be a uniformly Ls,i-Lipschitz and generalized asymptotically quasi-nonexpansive mapping
with sequences {kn,s,i} ⊂ [1,∞) and {ξn,s,i} ⊂ [0,∞) such that

∑∞
n=1(kn,s,i−1) < ∞ and

∑∞
n=1 ξn,s,i <

∞ for each 1 ≤ i ≤ N. Assume that F = ∩N
i=1F(Si) is nonempty. Let {un} be a bounded sequence in C,

kn,s = max{kn,s,i : 1 ≤ i ≤ N}, and ξn,s = max{ξn,s,i : 1 ≤ i ≤ N}. Let {αn}, {βn}, {γn}, and {δn} be
sequences in (0, 1) such that αn + βn + γn + δn = 1 for each n ≥ 1. Let {xn} be a sequence generated in
(1.20). Assume that the following restrictions are satisfied:

(a) there exist constants a, b, c, d ∈ (0, 1) such that a ≤ αn, b ≤ βn, and c ≤ γn, for all n ≥ 1;

(b)
∑∞

n=1 δn < ∞.

Then {xn} converges strongly to some point in F if and only if lim infn→∞ d(xn, F) = 0.
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