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We investigate the convergence of Mann-type iterative scheme for a countable family of strict
pseudocontractions in a uniformly convex Banach space with the Fréchet differentiable norm.
Our results improve and extend the results obtained by Marino-Xu, Zhou, Osilike-Udomene,
Zhang-Guo and the corresponding results. We also point out that the condition given by Chidume-
Shahzad (2010) is not satisfied in a real Hilbert space. We show that their results still are true under
a new condition.

1. Introduction

Let E and E∗ be a real Banach space and the dual space of E, respectively. LetK be a nonempty
subset of E. Let J denote the normalized duality mapping from E into 2E

∗
given by J(x) =

{f ∈ E∗ : 〈x, f〉 = ‖x‖2 = ‖f‖2}, for all x ∈ E, where 〈·, ·〉 denotes the duality pairing between
E and E∗. If E is smooth or E∗ is strictly convex, then J is single-valued.

Throughout this paper, we denote the single valued duality mapping by j and denote
the set of fixed points of a nonlinear mapping T : K → E by

F(T) = {x ∈ K : Tx = x}. (1.1)

Definition 1.1. A mapping T with domain D(T) and range R(T) in E is called

(i) pseudocontractive [1] if, for all x, y ∈ D(T), there exists j(x − y) ∈ J(x − y) such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥x − y
∥∥2

, (1.2)
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(ii) λ-strictly pseudocontractive [2] if for all x, y ∈ D(T), there exist λ > 0 and j(x − y) ∈
J(x − y) such that

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥x − y
∥∥2 − λ

∥∥(I − T)x − (I − T)y
∥∥2

, (1.3)

or equivalently

〈
(I − T)x − (I − T)y, j

(
x − y

)〉 ≥ λ
∥
∥(I − T)x − (I − T)y

∥
∥2

, (1.4)

(iii) L-Lipschitzian if, for all x, y ∈ D(T), there exists a constant L > 0 such that

∥
∥Tx − Ty

∥
∥ ≤ L

∥
∥x − y

∥
∥. (1.5)

Remark 1.2. It is obvious by the definition that

(1) every strictly pseudocontractive mapping is pseudocontractive,

(2) every λ-strictly pseudocontractive mapping is ((1 + λ)/λ)-Lipschitzian; see [3].

Remark 1.3. Let K be a nonempty subset of a real Hilbert space and T : K → K a mapping.
Then T is said to be κ-strictly pseudocontractive [2] if, for all x, y ∈ D(T), there exists κ ∈
[0, 1) such that

∥∥Tx − Ty
∥∥2 ≤ ∥∥x − y

∥∥2 + κ
∥∥(I − T)x − (I − T)y

∥∥2
. (1.6)

It is well know that (1.6) is equivalent to the following:

〈Tx − Ty, x − y〉 ≤ ∥∥x − y
∥∥2 − 1 − κ

2
∥∥(I − T)x − (I − T)y

∥∥2
. (1.7)

It is worth mentioning that the class of strict pseudocontractions includes properly
the class of nonexpansive mappings. Moreover, we know from [4] that the class of
pseudocontractions also includes properly the class of strict pseudocontractions. A mapping
A : E → E is called accretive if, for all x, y ∈ E, there exists j(x − y) ∈ J(x − y) such that
〈Ax − Ay, j(x − y)〉 ≥ 0. It is also known that A is accretive if and only if T := I − A is
pseudocontractive. Hence, a solution of the equation Au = 0 is a solution of the fixed point
of T := I −A. Note that if T := I −A, then A is λ-strictly accretive if and only if T is λ-strictly
pseudocontractive.

In 1953, Mann [5] introduced the iteration as follows: a sequence {xn} defined by x0 ∈
K and

xn+1 = αnxn + (1 − αn)Txn, ∀n ≥ 0, (1.8)

where αn ∈ [0, 1]. If T is a nonexpansive mapping with a fixed point and the control sequence
{αn} is chosen so that

∑∞
n=0 αn(1−αn) = ∞, then the sequence {xn} defined by (1.8) converges
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weakly to a fixed point of T ( this is also valid in a uniformly convex Banach space with the
Fréchet differentiable norm [6] ). However, if T is a Lipschitzian pseudocontractive mapping,
then Mann iteration defined by (1.8) may fail to converge in a Hilbert space; see [4].

In 1967, Browder-Petryshyn [2] introduced the class of strict pseudocontractions and
proved existence and weak convergence theorems in a real Hilbert setting by using Mann’s
iteration (1.8) with a constant sequence αn = α for all n. Respectively, Marino-Xu [7] and
Zhou [8] extended the results of Browder-Petryshyn [2] to Mann’s iteration process (1.8). To
be more precise, they proved the following theorem.

Theorem 1.4 (see [7]). Let K be a closed convex subset of a real Hilbert space H. Let T : K → K
be a κ-strict pseudocontraction for some 0 ≤ κ < 1, and assume that T admits a fixed point in K.
Let a sequence {xn}∞n=0 be the sequence generated by Mann’s algorithm (1.8). Assume that the control
sequence {αn}∞n=0 is chosen so that κ < αn < 1 for all n and

∑∞
n=0(αn − κ)(1 − αn) = ∞. Then {xn}

converges weakly to a fixed point of T .

Meanwhile, Marino, and Xu raised the open question: whether Theorem 1.4 can be
extended to Banach spaces which are uniformly convex and have a Fréchet differentiable
norm. Later, Zhou [9] and Zhang-Su [10], respectively, extended the result above to 2-
uniformly smooth and q-uniformly smooth Banach spaces which are uniformly convex or
satisfy Opial’s condition.

In 2001, Osilike-Udomene [11] proved the convergence theorems of the Mann [5] and
Ishikawa [12] iteration methods in the framework of q-uniformly smooth and uniformly
convex Banach spaces. They also obtained that a sequence {xn} defined by (1.8) converges
weakly to a fixed point of T under suitable control conditions. However, the sequence
{αn} ⊂ [0, 1] excluded the canonical choice αn = 1/n, n ≥ 1. This was a motivation for
Zhang-Guo [13] to improve the results in the same space. Observe that the results of Osilike-
Udomene [11] and Zhang-Guo [13] hold under the assumption that

Cq <
qλ

bq−1
, (1.9)

for some b ∈ (0, 1) and Cq is a constant depending on the geometry of the space.

Lemma 1.5 (see [14–16]). Let E be a uniformly smooth real Banach space. Then there exists a
nondecreasing continuous function β : [0,∞) → [0,∞) with limt→ 0+β(t) = 0 and β(ct) ≤ cβ(t) for
c ≥ 1 such that, for all x, y ∈ E, the following inequality holds:

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, j(x)

〉
+max{‖x‖, 1}∥∥y∥∥β(∥∥y∥∥). (1.10)

Recently, Chidume-Shahzad [17] extended the results of Osilike-Udomene [11] and
Zhang-Guo [13] by using Reich’s inequality (1.10) to the much more general real Banach
spaces which are uniformly smooth and uniformly convex. Under the assumption that

β(t) ≤ λt

max{2r, 1} , (1.11)

for some r > 0, they proved the following theorem.
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Theorem 1.6 (see [17]). Let E be a uniformly smooth real Banach space which is also uniformly
convex and K a nonempty closed convex subset of E. Let T : K → K be a λ-strict pseudocontraction
for some 0 ≤ λ < 1 with x∗ ∈ F(T) := {x ∈ K : Tx = x}/= ∅. For a fixed x0 ∈ K, define a sequence
{xn} by

xn+1 = (1 − αn)xn + αnTxn, n ≥ 1, (1.12)

where {αn} is a real sequence in [0, 1] satisfying the following conditions:

(i)
∑∞

n=0 αn = ∞;

(ii)
∑∞

n=0 α
2
n < ∞.

Then, {xn} converges weakly to a fixed point of T .

However, we would like to point out that the results of Chidume-Shahzad [17] do not
hold in real Hilbert spaces. Indeed, we know from Chidume [14] that

β(t) = sup

{∥∥x + ty
∥∥2 − ‖x‖2
t

− 2
〈
y, j(x)

〉
: ‖x‖ ≤ 1,

∥∥y
∥∥ ≤ 1

}

. (1.13)

If E is a real Hilbert space, then we have

β(t) = sup

{∥∥x + ty
∥∥2 − ‖x‖2
t

− 2
〈
y, x

〉
: ‖x‖ ≤ 1,

∥∥y
∥∥ ≤ 1

}

= sup

{
‖x‖2 + 2t

〈
x, y

〉
+ t2

∥∥y
∥∥2 − ‖x‖2

t
− 2

〈
y, x

〉
: ‖x‖ ≤ 1,

∥∥y
∥∥ ≤ 1

}

= sup
{
t
∥∥y

∥∥2 :
∥∥y

∥∥ ≤ 1
}
= t.

(1.14)

On the other hand, by assumption (1.11), we see that

β(t) ≤ λt

max{2r, 1} < t, (1.15)

which is a contradiction.
It is known that one can extend his result from a single strict pseudocontraction to

a finite family of strict pseudocontractions by replacing the convex combination of these
mappings in the iteration under suitable conditions. The construction of fixed points for
pseudocontractions via the iterative process has been extensively investigated by many
authors; see also [18–22] and the references therein.

Our motivation in this paper is the following:

(1) to modify the normal Mann iteration process for finding common fixed points of an
infinitely countable family of strict pseudocontractions,
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(2) to improve and extend the results of Chidume-Shahzad [17] from a real uniformly
smooth and uniformly convex Banach space to a real uniformly convex Banach
space which has the Fréchet differentiable norm.

Motivated and inspired by Marino-Xu [7], Osilike-Udomene [11], Zhou [8], Zhang-
Guo [13], and Chidume-Shahzad [17], we consider the followingMann-type iteration: x1 ∈ K
and

xn+1 = (1 − αn)xn + αnTnxn, n ≥ 1, (1.16)

where αn is a real sequence in [0, 1] and {Tn}∞n=1 is a countable family of strict
pseudocontractions on a closed and convex subset K of a real Banach space E.

In this paper, we prove the weak convergence of a Mann-type iteration process (1.16)
in a uniformly convex Banach space which has the Fréchet differentiable norm for a countable
family of strict pseudocontractions under some appropriate conditions. The results obtained
in this paper improve and extend the results of Chidume-Shahzad [17], Marino-Xu [7],
Osilike-Udomene [11], Zhou [8], and Zhang-Guo [13] in some aspects.

We will use the following notation:

(i) ⇀ for weak convergence and → for strong convergence.

(ii) ωω(xn) = {x : xni ⇀ x} denotes the weak ω-limit set of {xn}.

2. Preliminaries

A Banach space E is said to be strictly convex if ‖x+y‖/2 < 1 for all x, y ∈ Ewith ‖x‖ = ‖y‖ = 1
and x /=y. A Banach space E is called uniformly convex if for each ε > 0 there is a δ > 0 such
that, for x, y ∈ E with ‖x‖, ‖y‖ ≤ 1, and ‖x − y‖ ≥ ε, ‖x + y‖ ≤ 2(1 − δ) holds. The modulus of
convexity of E is defined by

δE(ε) = inf
{
1 −

∥∥∥∥
1
2
(
x + y

)
∥∥∥∥ : ‖x‖,∥∥y∥∥ ≤ 1,

∥∥x − y
∥∥ ≥ ε

}
, (2.1)

for all ε ∈ [0, 2]. E is uniformly convex if δE(0) = 0, and δE(ε) > 0 for all 0 < ε ≤ 2. It is known
that every uniformly convex Banach space is strictly convex and reflexive. Let S(E) = {x ∈
E : ‖x‖ = 1}. Then the norm of E is said to be Gâteaux differentiable if

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for each x, y ∈ S(E). In this case E is called smooth. The norm of E is said to be Fréchet
differentiable or E is Fréchet smooth if, for each x ∈ S(E), the limit is attained uniformly for
y ∈ S(E). In other words, there exists a function εx(s)with εx(s) → 0 as s → 0 such that

∣∣∥∥x + ty
∥∥ − ‖x‖ + t

〈
y, j(x)

〉∣∣ ≤ |t|εx(|t|) (2.3)
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for all y ∈ S(E). In this case the norm is Gâteaux differentiable and

lim
t→ 0

sup
y∈S(E)

∣
∣
∣
∣
∣
1/2

∥
∥x + ty

∥
∥2 − 1/2‖x‖2
t

− 〈
y, j(x)

〉
∣
∣
∣
∣
∣
= 0 (2.4)

for all x ∈ E. On the other hand,

1
2
‖x‖2 + 〈

h, j(x)
〉 ≤ 1

2
‖x + h‖2 ≤ 1

2
‖x‖2 + 〈h, j(x)〉 + b(‖h‖) (2.5)

for all x, h ∈ E, where b is a function defined on R
+ such that limt→ 0+(b(t)/t) = 0. The norm

of E is called uniformly Fréchet differentiable if the limit is attained uniformly for x, y ∈ S(E).
Let ρE : [0,∞) → [0,∞) be the modulus of smoothness of E defined by

ρE(t) = sup
{
1
2
(∥∥x + y

∥∥ +
∥∥x − y

∥∥) − 1 : x ∈ S(E),
∥∥y

∥∥ ≤ t

}
. (2.6)

A Banach space E is said to be uniformly smooth if ρE(t)/t → 0 as t → 0. Let q > 1, then E
is said to be q-uniformly smooth if there exists c > 0 such that ρE(t) ≤ ctq. It is easy to see that
if E is q-uniformly smooth, then E is uniformly smooth. It is well known that E is uniformly
smooth if and only if the norm of E is uniformly Fréchet differentiable, and hence the norm of
E is Fréchet differentiable, and it is also known that if E is Fréchet smooth, then E is smooth.
Moreover, every uniformly smooth Banach space is reflexive. For more details, we refer the
reader to [14, 23]. A Banach space E is said to satisfyOpial’s condition [24] if x ∈ E and xn ⇀ x;
then

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

∥∥xn − y
∥∥, ∀y ∈ E, x /=y. (2.7)

In the sequel, we will need the following lemmas.

Lemma 2.1 (see [23]). Let E be a Banach space and J : E → 2E
∗
the duality mapping. Then one has

the following:

(i) ‖x + y‖2 ≥ ‖x‖2 + 2〈y, j(x)〉 for all x, y ∈ E, where j(x) ∈ J(x);

(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉 for all x, y ∈ E, where j(x + y) ∈ J(x + y).

Lemma 2.2 (see [25]). Let E be a real uniformly convex Banach space, K a nonempty, closed, and
convex subset of E, and T : K → K a continuous pseudocontractive mapping. Then, I − T is
demiclosed at zero, that is, for all sequence {xn} ⊂ K with xn ⇀ p and ‖xn − Txn‖ → 0 it follows
that p = Tp.

Lemma 2.3 (see [25]). Let E be a real reflexive Banach space which satisfies Opial’s condition, K a
nonempty, closed and convex subset of E and T : K → K a continuous pseudocontractive mapping.
Then, I − T is demiclosed at zero.

Lemma 2.4 (see [26]). Let E be a real uniformly convex Banach space with a Fréchet differentiable
norm. LetK be a closed and convex subset of E and {Sn}∞n=1 a family of Ln-Lipschitzian self-mappings
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onK such that
∑∞

n=1(Ln−1) < ∞ and F =
⋂∞

n=1 F(Sn)/= ∅. For arbitrary x1 ∈ K, define xn+1 = Snxn

for all n ≥ 1. Then for every p, q ∈ F, limn→∞〈xn, j(p−q)〉 exists, in particular, for all u, v ∈ ωω(xn)
and p, q ∈ F, 〈u − v, j(p − q)〉 = 0.

Lemma 2.5 (see [17, 27]). Let {an}, {bn} and {δn}, be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 0. (2.8)

If
∑∞

n=0 δn < ∞ and
∑∞

n=0 bn < ∞, then limn→∞an exists. If, in addition, {an} has a subsequence
converging to 0, then limn→∞an = 0.

To deal with a family of mappings, the following conditions are introduced. Let K
be a subset of a real Banach space E, and let {Tn} be a family of mappings of K such that⋂∞

n=1 F(Tn)/= ∅. Then {Tn} is said to satisfy the AKTT-condition [28] if for each bounded subset
B of K,

∞∑

n=1

sup{‖Tn+1z − Tnz‖ : z ∈ B} < ∞. (2.9)

Lemma 2.6 (see [28]). LetK be a nonempty and closed subset of a Banach space E, and let {Tn} be a
family of mappings ofK into itself which satisfies the AKTT-condition, then the mapping T : K → K
defined by

Tx = lim
n→∞

Tnx, ∀x ∈ K (2.10)

satisfies

lim sup
n→∞

{‖Tz − Tnz‖ : z ∈ B} = 0 (2.11)

for each bounded subset B of K.

So we have the following results proved by Boonchari-Saejung [29, 30].

Lemma 2.7 (see [29, 30]). LetK be a closed and convex subset of a smooth Banach space E. Suppose
that {Tn}∞n=1 is a family of λ-strictly pseudocontractive mappings from K into E with

⋂∞
n=1 F(Tn)/= ∅

and {βn}∞n=1 is a real sequence in (0, 1) such that
∑∞

n=1 βn = 1. Then the following conclusions hold:

(1) G :=
∑∞

n=1 βnTn : K → E is a λ-strictly pseudocontractive mapping;

(2) F(G) =
⋂∞

n=1 F(Tn).

Lemma 2.8 (see [30]). Let K be a closed and convex subset of a smooth Banach space E. Suppose
that {Sk}∞k=1 is a countable family of λ-strictly pseudocontractive mappings of K into itself with⋂∞

k=1 F(Sk)/= ∅. For each n ∈ N, define Tn : K → K by

Tnx =
n∑

k=1

βknSkx, x ∈ K, (2.12)



8 Fixed Point Theory and Applications

where {βkn} is a family of nonnegative numbers satisfying

(i)
∑n

k=1 β
k
n = 1 for all n ∈ N;

(ii) βk := limn→∞ βkn > 0 for all k ∈ N;

(iii)
∑∞

n=1
∑n

k=1 |βkn+1 − βkn| < ∞.

Then

(1) each Tn is a λ-strictly pseudocontractive mapping;

(2) {Tn} satisfies AKTT-condition;

(3) If T : K → K is defined by

Tx =
∞∑

k=1

βkSkx, x ∈ K, (2.13)

then Tx = limn→∞ Tnx and F(T) =
⋂∞

n=1 F(Tn) =
⋂∞

k=1 F(Sk).

For convenience, we will write that ({Tn}, T) satisfies the AKTT-condition if {Tn}
satisfies the AKTT-condition and T is defined by Lemma 2.6 with F(T) =

⋂∞
n=1 F(Tn).

3. Main Results

Lemma 3.1. Let E be a real Banach space, and let K be a nonempty, closed, and convex subset of
E. Let {Tn}∞n=1 : K → K be a family of λ-strict pseudocontractions for some 0 < λ < 1 such that
F :=

⋂∞
n=1 F(Tn)/= ∅. Define a sequence {xn} by x1 ∈ K,

xn+1 = (1 − αn)xn + αnTnxn, n ≥ 1, (3.1)

where {αn} ⊂ [0, 1] satisfying
∑∞

n=1 αn = ∞ and
∑∞

n=1 α
2
n < ∞. If {Tn} satisfies the AKTT-condition,

then

(i) limn→∞‖xn − p‖ exists for all p ∈ F;

(ii) lim infn→∞‖xn − Tnxn‖ = 0.

Proof. Let p ∈ F, and put L = (λ + 1)/λ. First, we observe that

∥∥xn+1 − p
∥∥ ≤ (1 − αn)

∥∥xn − p
∥∥ + αn

∥∥Tnxn − p
∥∥ ≤ (1 + L)

∥∥xn − p
∥∥,

‖xn+1 − xn‖ = αn‖Tnxn − xn‖ ≤ αn(1 + L)
∥∥xn − p

∥∥.
(3.2)
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Since Tn is a λ-strict pseudocontraction, there exists j(xn+1 − p) ∈ J(xn+1 − p). By Lemma 2.1
we have

∥
∥xn+1 − p

∥
∥2 =

∥
∥(xn − p) + αn(Tnxn − xn)

∥
∥2

≤ ∥
∥xn − p

∥
∥2 + 2αn〈Tnxn − xn, j

(
xn+1 − p

)〉

=
∥
∥xn − p

∥
∥2 + 2αn〈Tnxn − Tnxn+1, j

(
xn+1 − p

)〉
+ 2αn〈Tnxn+1 − xn+1, j

(
xn+1 − p

)〉 + 2αn〈xn+1 − xn, j
(
xn+1 − p

)〉

≤ ∥
∥xn − p

∥
∥2 + 2αnL‖xn − xn+1‖

∥
∥xn+1 − p

∥
∥

− 2αnλ‖Tnxn+1 − xn+1‖2 + 2αn‖xn − xn+1‖
∥
∥xn+1 − p

∥
∥

≤ ∥
∥xn − p

∥
∥2 + 2α2

nL(1 + L)2
∥
∥xn − p

∥
∥2

− 2αnλ‖Tnxn+1 − xn+1‖2 + 2α2
n(1 + L)2

∥∥xn − p
∥∥2

=
∥∥xn − p

∥∥2 + 2α2
n(1 + L)3

∥∥xn − p
∥∥2 − 2αnλ‖Tnxn+1 − xn+1‖2.

(3.3)

This implies that

∥∥xn+1 − p
∥∥2≤

(
1 + 2α2

n(1 + L)3
)∥∥xn − p

∥∥2
. (3.4)

Hence, by
∑∞

n=1 α
2
n < ∞, we have from Lemma 2.5 that limn→∞‖xn − p‖ exists; consequently,

{xn} is bounded. Moreover, by (3.3), we also have

∞∑

n=1

αnλ‖Tnxn+1 − xn+1‖2 ≤
∞∑

n=1

(∥∥xn − p
∥∥2 − ∥∥xn+1 − p

∥∥2
)
+ 2(1 + L)3M2

1

∞∑

n=1

α2
n < ∞, (3.5)

where M1 = supn≥1{‖xn − p‖}. It follows that lim infn→∞‖Tnxn+1 − xn+1‖ = 0. Since {xn} is
bounded,

‖xn+1 − Tn+1xn+1‖ ≤ ‖xn+1 − Tnxn+1‖ + ‖Tnxn+1 − Tn+1xn+1‖
≤ ‖xn+1 − Tnxn+1‖ + sup

z∈{xn}
‖Tnz − Tn+1z‖. (3.6)

Since {Tn} satisfies the AKTT-condition, it follows that lim infn→∞‖xn − Tnxn‖ = 0. This
completes the proof of (i) and (ii).

Lemma 3.2. Let E be a real Banach space with the Fréchet differentiable norm. For x ∈ E, let β∗(t) be
defined for 0 < t < ∞ by

β∗(t) = sup
y∈S(E)

∣∣∣∣∣

∥∥x + ty
∥∥2 − ‖x‖2
t

− 2
〈
y, j(x)

〉
∣∣∣∣∣
. (3.7)
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Then, limt→ 0+β
∗(t) = 0, and

‖x + h‖2 ≤ ‖x‖2 + 2
〈
h, j(x)

〉
+ ‖h‖β∗(‖h‖) (3.8)

for all h ∈ E \ {0}.

Proof. Let x ∈ E. Since E has the Fréchet differentiable norm, it follows that

lim
t→ 0

sup
y∈S(E)

∣
∣
∣
∣
∣
1/2

∥
∥x + ty

∥
∥2 − 1/2‖x‖2
t

− 〈
y, j(x)

〉
∣
∣
∣
∣
∣
= 0. (3.9)

Then limt→ 0+β
∗(t) = 0, and hence

∣∣∣∣∣

∥∥x + ty
∥∥2 − ‖x‖2
t

− 2
〈
y, j(x)

〉
∣∣∣∣∣
≤ β∗(t), ∀y ∈ S(E) (3.10)

which implies that

∥∥x + ty
∥∥2 ≤ ‖x‖2 + 2t

〈
y, j(x)

〉
+ tβ∗(t), ∀y ∈ S(E). (3.11)

Suppose that h/= 0. Put y = h/‖h‖ and t = ‖h‖. By (3.11), we have

‖x + h‖2 ≤ ‖x‖2 + 2
〈
h, j(x)

〉
+ ‖h‖β∗(‖h‖). (3.12)

This completes the proof.

Remark 3.3. In a real Hilbert space, we see that β∗(t) = t for t > 0.

In our more general setting, throughout this paper we will assume that

β∗(t) ≤ 2t, (3.13)

where β∗ is a function appearing in (3.8).
So we obtain the following results.

Lemma 3.4. Let E be a real Banach space with the Fréchet differentiable norm, and let K be
a nonempty, closed, and convex subset of E. Let {Tn}∞n=1 : K → K be a family of λ-strict
pseudocontractions for some 0 < λ < 1 such that F :=

⋂∞
n=1 F(Tn)/= ∅. Define a sequence {xn} by

x1 ∈ K,

xn+1 = (1 − αn)xn + αnTnxn, n ≥ 1, (3.14)

where {αn} ⊂ [0, 1] satisfying
∑∞

n=1 αn = ∞ and
∑∞

n=1 α
2
n < ∞. If ({Tn}, T) satisfies the AKTT-

condition, then limn→∞‖xn − Tnxn‖ = limn→∞‖xn − Txn‖ = 0.
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Proof. Let p ∈ F, and put M2 = supn≥1{‖xn − Tnxn‖} > 0. Then by (3.8) and (3.13)we have

∥
∥xn+1 − p

∥
∥2 =

∥
∥(xn − p) + αn(Tnxn − xn)

∥
∥2

≤ ∥
∥xn − p

∥
∥2 + 2αn〈Tnxn − xn, j

(
xn − p

)〉
+ αn‖Tnxn − xn‖β∗(αn‖Tnxn − xn‖)

≤ ∥
∥xn − p

∥
∥2 − 2αnλ‖xn − Tnxn‖2 + 2α2

n‖xn − Tnxn‖2

≤ ∥
∥xn − p

∥
∥2 − 2αnλ‖xn − Tnxn‖2 + 2α2

nM
2
2.

(3.15)

It follows that

∞∑

n=1

αn‖xn − Tnxn‖2 < ∞. (3.16)

Observe that

‖xn − Tn+1xn+1‖2 = ‖(xn − Tnxn) + (Tnxn − Tn+1xn+1)‖2

≤ ‖xn − Tnxn‖2 + 2〈Tnxn − Tn+1xn+1, j(xn − Tn+1xn+1)〉

= ‖xn − Tnxn‖2 + 2
〈
Tnxn − Tnxn+1, j(xn − Tn+1xn+1)

〉

+ 2
〈
Tnxn+1 − Tn+1xn+1, j(xn − Tn+1xn+1)

〉

≤ ‖xn − Tnxn‖2 + 2L‖xn − xn+1‖‖xn − Tn+1xn+1‖
+ 2‖Tnxn+1 − Tn+1xn+1‖‖xn − Tn+1xn+1‖

≤ ‖xn − Tnxn‖2 + 2L‖xn − xn+1‖‖xn − Tnxn‖
+ 2L‖xn − xn+1‖‖Tnxn − Tnxn+1‖
+ 2L‖xn − xn+1‖‖Tnxn+1 − Tn+1xn+1‖
+ 2‖Tnxn+1 − Tn+1xn+1‖‖xn − xn+1‖
+ 2‖Tnxn+1 − Tn+1xn+1‖‖xn+1 − Tn+1xn+1‖

≤ ‖xn − Tnxn‖2 +
(
2Lαn + 2L2α2

n

)
‖xn − Tnxn‖2

+ (2LM2αn + 2M2αn + 2M2)‖Tnxn+1 − Tn+1xn+1‖

≤ ‖xn − Tnxn‖2 + 2L(1 + L)αn‖xn − Tnxn‖2

+ 2M2(L + 2)‖Tnxn+1 − Tn+1xn+1‖.

(3.17)
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By (3.17), we have

‖xn+1 − Tn+1xn+1‖2 ≤ (1 − αn)‖xn − Tn+1xn+1‖2 + αn‖Tnxn − Tn+1xn+1‖2

≤ ‖xn − Tn+1xn+1‖2

+ αn(‖Tnxn − Tnxn+1‖ + ‖Tnxn+1 − Tn+1xn+1‖)2

= ‖xn − Tn+1xn+1‖2 + αn‖Tnxn − Tnxn+1‖2

+ 2αn‖Tnxn − Tnxn+1‖‖Tnxn+1 − Tn+1xn+1‖

+ αn‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tn+1xn+1‖2 + α2
nL

2‖xn − Tnxn‖2

+ 2α2
nL‖xn − Tnxn‖‖Tnxn+1 − Tn+1xn+1‖

+ αn‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tn+1xn+1‖2 + α2
nL

2M2
2

+ 2LM2‖Tnxn+1 − Tn+1xn+1‖ + ‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tnxn‖2 + 2L(1 + L)αn‖xn − Tnxn‖2

+ 2M2(L + 2)‖Tnxn+1 − Tn+1xn+1‖ + α2
nL

2M2
2

+ 2LM2‖Tnxn+1 − Tn+1xn+1‖ + ‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tnxn‖2 + 2L(1 + L)αn‖xn − Tnxn‖2

+ α2
nL

2M2
2 + 2M2(2L + 2)‖Tnxn+1 − Tn+1xn+1‖

+ ‖Tnxn+1 − Tn+1xn+1‖2

≤ ‖xn − Tnxn‖2 + 2L(1 + L)αn‖xn − Tnxn‖2

+ α2
nL

2M2
2 + 2M2(2L + 2) sup

z∈{xn}
‖Tnz − Tn+1z‖

+ sup
z∈{xn}

‖Tnz − Tn+1z‖2.

(3.18)

Since
∑∞

n=1 αn‖xn − Tnxn‖2 < ∞,
∑∞

n=1 α
2
n < ∞, and

∑∞
n=1 sup{‖Tn+1z − Tnz‖ : z ∈ {xn}} < ∞,

it follows from Lemma 2.5 that limn→∞‖xn − Tnxn‖ exists. Hence, by Lemma 3.1(ii), we can
conclude that limn→∞‖xn − Tnxn‖ = 0. Since

‖xn − Txn‖ ≤ ‖xn − Tnxn‖ + ‖Tnxn − Txn‖
≤ ‖xn − Tnxn‖ + sup

z∈{xn}
‖Tnz − Tz‖, (3.19)

it follows from Lemma 2.6 that limn→∞‖xn − Txn‖ = 0. This completes the proof.
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Now, we prove our main result.

Theorem 3.5. Let E be a real uniformly convex Banach space with the Fréchet differentiable norm,
and letK be a nonempty, closed, and convex subset of E. Let {Tn}∞n=1 : K → K be a family of λ-strict
pseudocontractions for some 0 < λ < 1 such that F :=

⋂∞
n=1 F(Tn)/= ∅. Define a sequence {xn} by

x1 ∈ K,

xn+1 = (1 − αn)xn + αnTnxn, n ≥ 1, (3.20)

where {αn} ⊂ [0, λ] satisfying
∑∞

n=1 αn = ∞ and
∑∞

n=1 α
2
n < ∞. If ({Tn}, T) satisfies the AKTT-

condition, then {xn} converges weakly to a common fixed point of {Tn}.

Proof. Let p ∈ F, and define Sn : K → K by

Snx = (1 − αn)x + αnTnx, x ∈ K. (3.21)

Then
⋂∞

n=1 F(Sn) = F = F(T). By (3.8), we have for bounded x, y ∈ K that

∥∥Snx − Sny
∥∥2 =

∥∥x − y − αn[x − y − (Tnx − Tny)]
∥∥2

≤ ∥∥x − y
∥∥2 − 2αn〈(I − Tn)x − (I − Tn)y, j

(
x − y

)〉
+ αn

∥∥x − y − (
Tnx − Tny

)∥∥β∗
(
αn

∥∥x − y − (
Tnx − Tny

)∥∥)

≤ ∥∥x − y
∥∥2 − 2αnλ

∥∥x − y − (Tnx − Tny)
∥∥2

+ 2α2
n

∥∥x − y − (Tnx − Tny)
∥∥2

=
∥∥x − y

∥∥2 − 2αn(λ − αn)
∥∥x − y − (Tnx − Tny)

∥∥2

≤ ∥∥x − y
∥∥2

.

(3.22)

This implies that Sn is nonexpansive. By Lemma 3.1(i), we know that {xn} is bounded. By
Lemma 3.4, we also know that limn→∞‖xn − Txn‖ = 0. Applying Lemma 2.2, we also have
ωω(xn) ⊂ F(T).

Finally, we will show that ωω(xn) is a singleton. Suppose that x∗, y∗ ∈ ωω(xn) ⊂ F(T).
Hence x∗, y∗ ∈ ⋂∞

n=1 F(Sn). By Lemma 2.4, limn→∞〈xn, j(x∗ − y∗)〉 exists. Suppose that {xnk}
and {xmk} are subsequences of {xn} such that xnk ⇀ x∗ and xmk ⇀ y∗. Then

‖x∗ − y∗‖2 = 〈
x∗ − y∗, j

(
x∗ − y∗)〉 = lim

k→∞
〈
xnk − xmk , j

(
x∗ − y∗)〉 = 0. (3.23)

Hence x∗ = y∗; consequently, xn ⇀ x∗ ∈ ⋂∞
n=1 F(Sn) = F as n → ∞. This completes the

proof.

As a direct consequence of Theorem 3.5, Lemmas 2.7 and 2.8 we also obtain the
following results.
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Theorem 3.6. Let E be a real uniformly convex Banach space with the Fréchet differentiable norm,
and let K be a nonempty, closed, and convex subset of E. Let {Sk}∞k=1 be a sequence of λk-strict
pseudocontractions of K into itself such that

⋂∞
k=1 F(Sk)/= ∅ and inf{λk : k ∈ N} = λ > 0. Define a

sequence {xn} by x1 ∈ K,

xn+1 = (1 − αn)xn + αn

n∑

k=1

βknSkxn, n ≥ 1, (3.24)

where {αn} ⊂ [0, λ] satisfying
∑∞

n=1 αn = ∞ and
∑∞

n=1 α
2
n < ∞ and {βkn} satisfies conditions (i)–(iii)

of Lemma 2.8. Then, {xn} converges weakly to a common fixed point of {Sk}∞k=1.

Remark 3.7. (i) Theorems 3.5 and 3.6 extend and improve Theorems 3.3 and 3.4 of Chidume-
Shahzad [17] in the following senses:

(i) from real uniformly smooth and uniformly convex Banach spaces to real uniformly
convex Banach spaces with Fréchet differentiable norms;

(ii) from finite strict pseudocontractions to infinite strict pseudocontractions.

Using Opial’s condition, we also obtain the following results in a real reflexive Banach
space.

Theorem 3.8. Let E be a real Fréchet smooth and reflexive Banach space which satisfies Opial’s
condition, and let K be a nonempty, closed, and convex subset of E. Let {Tn}∞n=1 be a family of λ-
strict pseudocontractions for some 0 < λ < 1 such that F :=

⋂∞
n=1 F(Tn)/= ∅. Define a sequence {xn}

by x1 ∈ K,

xn+1 = (1 − αn)xn + αnTnxn, n ≥ 1, (3.25)

where {αn} ⊂ [0, λ] satisfying
∑∞

n=1 αn = ∞ and
∑∞

n=1 α
2
n < ∞. If ({Tn}, T) satisfies the AKTT-

condition, then {xn} converges weakly to a common fixed point of {Tn}.

Proof. Let p ∈ F. By Lemma 3.1(i), we know that limn→∞‖xn − p‖ exists. Since E has the
Fréchet differentiable norm, by Lemma 3.4, we know that limn→∞‖xn − Txn‖ = 0. It follows
from Lemma 2.3 that ωω(xn) ⊂ F(T) = F. Finally, we show that ωω(xn) is a singleton. Let
x∗, y∗ ∈ ωω(xn), and let {xnk} and {xmk} be subsequences of {xn} chosen so that xnk ⇀ x∗ and
xmk ⇀ y∗. If x∗ /=y∗, then Opial’s condition of E implies that

lim
n→∞

‖xn − x∗‖ = lim
k→∞

‖xnk − x∗‖ < lim
k→∞

∥∥xnk − y∗∥∥ = lim
k→∞

∥∥xmk − y∗∥∥

< lim
k→∞

‖xmk − x∗‖ = lim
n→∞

‖xn − x∗‖.
(3.26)

This is a contradiction, and thus the proof is complete.

Theorem 3.9. Let E be a real Fréchet smooth and reflexive Banach space which satisfies Opial’s
condition, and let K be a nonempty, closed, and convex subset of E. Let {Sk}∞k=1 be a sequence of
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λk-strict pseudocontractions of K into itself such that
⋂∞

k=1 F(Sk)/= ∅ and inf{λk : k ∈ N} = λ > 0.
Define a sequence {xn} by x1 ∈ K,

xn+1 = (1 − αn)xn + αn

n∑

k=1

βknSkxn, n ≥ 1, (3.27)

where {αn} ⊂ [0, λ] satisfying
∑∞

n=1 αn = ∞ and
∑∞

n=1 α
2
n < ∞ and {βkn} satisfies conditions (i)–(iii)

of Lemma 2.8. Then, {xn} converges weakly to a common fixed point of {Sk}∞k=1.
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