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Somemutual relations between p-cyclic contractive self-mappings, p-cyclic Kannan self-mappings,
and Meir-Keeler p-cyclic contractions are stated. On the other hand, related results about the
existence of the best proximity points and existence and uniqueness of fixed points are also
formulated.

1. Introduction

In the last years, important attention is being devoted to extend the Fixed Point Theory by
weakening the conditions on both the maps and the sets where those maps operate [1, 2]. For
instance, every nonexpansive self-mappings on weakly compact subsets of a metric space
have fixed points if the weak fixed point property holds [1]. Further, increasing research
interest relies on the generalization of Fixed Point Theory to more general spaces than the
usual metric spaces such as, for instance, ordered or partially ordered spaces (see, e.g.,
[3–5]). Also, important fields of application of Fixed Point Theory exist nowadays in the
investigation of the stability of complex continuous-time and discrete-time dynamic systems.
The theory has been focused, in particular, on systems possessing internal lags, those being
described by functional differential equations, those being characterized as hybrid dynamic
systems and those being described by coupled continuous-time and discrete-time dynamics,
[6–10]. On the other hand, Meir-Keeler self-mappings have received important attention in
the context of Fixed Point Theory perhaps due to the associated relaxing in the required
conditions for the existence of fixed points compared with the usual contractive mappings
[11–14]. It also turns out from their definition that such self-mappings are less restrictive



2 Fixed Point Theory and Applications

than strict contractive self-mappings so that their associated formalism is applicable to a
wider class of real-life problems. Another interest of such self-mappings is their usefulness
as a formal tool for the study of p(≥2)-cyclic contractions, even in the eventual case that the
involved subsets of the metric space under study do not intersect, [12] so that there is no
fixed point. In such a case, the usual role of fixed points is played by the best proximity
points between adjacent subsets in the metric space. The underlying idea is that the best
proximity points are fixed points if such subsets intersect while they play a close role to
fixed points otherwise. On the other hand, there are also close links between contractive self-
mappings and Kannan self-mappings [2, 15–17]with constant α (referred to in the following
as α-Kannan self-mappings). In fact, α-Kannan self-mappings are contractive for values of
the contraction constant being less than 1/3 [17].

The objective of this paper is to formulate some connections between p-cyclic
contractive self-mappings, p-cyclic Meir-Keeler contractions, and p-cyclic α-Kannan self-
mappings. In particular, the existence and uniqueness of potential fixed points and also the
best proximity points are investigated. The importance of cyclic maps in some problems as,
for instance, in the case that a controlled state-solution trajectory of a dynamic system has
to be driven from a set to its adjacent one in a certain time due to technical requirements, is
well known. Consider a metric space (X, d)and a self-mapping T : A ∪ B → A ∪ B such that
T(A) ⊆ B and T(B) ⊆ Awhere A and B are nonempty subsets of X. Then, T : A ∪ B → A ∪ B
is a 2-cyclic self-mapping what is said to be a 2-cyclic k-contraction self-mapping if it satisfies
in addition

d
(
Tx, Ty

) ≤ kd
(
x, y
)
+ (1 − k)dist(A,B), ∀x ∈ A, ∀y ∈ B (1.1)

for some real k ∈ [0, 1). The best proximity point is some z ∈ A ∪ B such that d(z, Tz) =
dist(A,B). It turns out that if A ∩ B /= ∅, then z ∈ F(T) ⊂ A ∪ B; that is, z is a fixed point
of T since dist(A,B) = 0 [11–13]. If k = 1, then d(Tx, Ty) ≤ d(x, y); ∀x ∈ A, ∀y ∈ B and
T : A∪B → A∪B is a 2-cyclic nonexpansive self-mapping [12]. Nonexpansive mappings, in
general, have received important attention in the last years. For instance, two hybrid methods
are used in [18] to prove some strong convergence theorems. Those theorems are used to
find a common element of the zero point set of a maximal monotone operator and the fixed
point set of a relatively nonexpansive mapping in a Banach space. The concept of a strongly
relatively nonexpansive sequence in a Banach space is given in [19]. The associate properties
are investigated and applied approximating a common fixed point of a countable family
of relatively nonexpansive mappings in uniformly convex and uniformly smooth Banach
spaces. Also, the so-called n-times reasonable expansive and their properties self-mappings
are investigated in [20].

1.1. Notation

R0+ := R+ ∪ {0}, Z0+ := Z+ ∪ {0}, R+ := {z ∈ R : z > 0}, and Z+ := {z ∈ Z : z > 0} are the
sets of nonnegative real and integer numbers and those of positive real and integer numbers,
respectively,

p :=
{
1, 2, . . . , p

} ⊂ Z+. (1.2)
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F(T) is the set of fixed points of a p-cyclic self-mapping T in a nonempty subsetA of a metric
space (X, d).

BPi(T) is the set of the best proximity points in a subset Ai of a p-cyclic self-mapping
T on

⋃p

i=1 Ai, namely, the union of a collection of nonempty subsets of a metric space (X, d)
which do not intersect.

Contractive self-mappings with constant k and Kannan self-mappings with constant
α are referred to as k-contractions and α-Kannan self-mappings, respectively.

¬p (referred to as “not p”) is the negation of a logic proposition p.

2. About 2-Cyclic k-Contraction, 2-Cyclic (α, β)-Kannan
Self-Mappings, Contractions of Meir-Keeler Type, and
Some Mutual Relationships

The definition of α-Kannan self-mappings T : X → X is as follows:

d
(
Tx, Ty

) ≤ α
(
d(x, Tx) + d

(
y, Ty

))
; ∀x, y ∈ A ∪ B (2.1)

for some real α ∈ [0, 1/2) [14, 15]. Let us extend the above concept in a natural way to 2-
cyclic Kannan self-mappings by considering the definition of 2-cyclic k-contractions (1.1) as
follows.

Definition 2.1. Consider a metric space (X, d) and a self-mapping T : A∪B → A∪B such that
T(A) ⊆ B and T(B) ⊆ A where A and B are nonempty subsets of X. Then T : A ∪ B → A ∪ B
is a 2-cyclic (α, β)-Kannan self-mapping for some real α ∈ [0, 1/2) if it satisfies

d
(
Tx, Ty

) ≤ α
(
d(x, Tx) + d

(
y, Ty

))
+ β(1 − α)dist(A,B); ∀x ∈ A, ∀y ∈ B (2.2)

for some β ∈ R+. Definition 2.1 is a natural counterpart of (2.1) for α-Kannan self-mappings
by taking into account the definition of a 2-cyclic k-contraction in (1.1).

Remark 2.2. Let (X, d) be a metric space and let T : A ∪ B → A ∪ B be a 2-cyclic k-contraction
self-mapping with A and B being nonempty nondisjoint subsets of X. It turns out that T :
A ∪ B → A ∪ B is also a contractive mapping with constant k.

Contraction self-mappings can also be 2-cyclic α-Kannan self-mappings and vice-versa
as addressed in the two following results:

Proposition 2.3. Assume that T : A ∪ B → A ∪ B is a 2-cyclic k-contraction self-mapping with
k ∈ [0, 1/3). Then, T : A ∪ B → A ∪ B is also a 2-cyclic (k/(1 − k), β)-Kannan self-mapping,
∀β ≥ β0 := (1 − k)/(1 − 2k).



4 Fixed Point Theory and Applications

Proof. The following inequalities follow from (1.1) and the triangle inequality of the distance
map d : X ×X → R0+:

d
(
Tx, Ty

) ≤ kd
(
x, y
)
+ (1 − k)dist(A,B)

≤ k
(
d(x, Tx) + d

(
y, Ty

))
+ kd
(
Tx, Ty

)

+ (1 − k)dist(A,B); ∀x ∈ A, ∀y ∈ B,

(2.3)

for some k ∈ [0, 1/3), what leads to

d
(
Tx, Ty

) ≤ k

1 − k

(
d(x, Tx) + d

(
y, Ty

))
+ dist(A,B)

≤ k

1 − k

(
d(x, Tx) + d

(
y, Ty

))
+ β

(
1 − 2k
1 − k

)
dist(A,B); ∀x ∈ A, ∀y ∈ B

(2.4)

for β((1 − 2k)/(1 − k)) ≥ 1, ∀k ∈ [0, 1/2), ∀β ≥ β0 := (1 − k)/(1 − 2k). Thus, T : A ∪ B →
A ∪ B is a 2-cyclic (k/(1 − k), β)-Kannan self-mapping from Definition 2.1 for β ∈ [β0,∞) if
α = k/(1 − k) ∈ [0, 1/2) ⇔ k ∈ [0, 1/3). The proof is complete.

Proposition 2.4. Assume that A and B are closed disjoint nonempty bounded simply connected sets
with diam A ≤ KA dist(A,B) and diam B ≤ KB dist(A,B) for some KA ∈ R+, KB ∈ R+. Assume
also that T : A ∪ B → A ∪ B is a 2-cyclic (α, β)-Kannan self-mapping with α and β subject to
the constraints α ≤ max(1/KAB, 1/2) and β ≤ (1 − αKAB)/(1 − α) with KAB := 1 + min(KA +
2KB,KB + 2KA). Then, T : A∪B → A∪B is also a 2-cyclic k-contraction self-mapping for any real
constant k ≤ 1 − αKAB − β(1 − α).

Proof. Since T : A ∪ B → A ∪ B is a 2-cyclic (α, β)-Kannan self-mapping then from
Definition 2.1, it follows that

d
(
Tx, Ty

) ≤ α
(
d(x, Tx) + d

(
y, Ty

))
+ β(1 − α)dist(A,B)

≤ α
(
d
(
x, y
)
+ d
(
y, Tx

)
+ d
(
y, Ty

))

+ β(1 − α)dist(A,B) ∀x ∈ A, ∀y ∈ B.

(2.5)

Also, one has that d(y, Tx) ≤ diam(B), ∀x ∈ A, ∀y ∈ B, since Tx ∈ B; ∀x ∈ A. Choosing
x0 ∈ A and y0 ∈ B such that d(x0, y0) = dist(A,B), the triangle inequality for the distance
map yields

αd
(
y, Ty

) ≤ α
(
d
(
y, y0
)
+ d
(
y0, x0

)
+ d(x0, x)

)

≤ α(diam(A) + diam(B) + dist(A,B))

≤ α(KA +KB + 1)dist(A,B)

(2.6)
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so that one has since KAB ≥ KA + 2KB + 1:

α
(
d
(
y, Tx

)
+ d
(
y, Ty

))
+ β(1 − α)dist(A,B)

≤ (αKAB + β(1 − α)
)
dist(A,B) ≤ αdist(A,B) ≤ (1 − k)dist(A,B)

(2.7)

provided that k ≤ 1 − αKAB − β(1 − α) under the necessary conditions β ≤ (1 − αKAB)/(1 − α)
and α ≤ max(1/KAB, 1/2). The above derivation remains valid by interchanging the roles of
the sets A and B since KAB ≥ KB + 2KA + 1.

The following two results are direct.

Corollary 2.5. Proposition 2.4 holds “mutatis-mutandis” if either A or B is an open set.

Proof. It follows under the same reasoning by taking x0 in clA if A is open and y0 in clB if B
is open.

Corollary 2.6. Proposition 2.4 and Corollary 2.5 cannot be fulfilled for any (x, y) ∈ A×B ifA∩B /= ∅.

Proof. It is direct since A ∩ B = ∅ ⇒ dist(A,B) = 0 and KA and KB are infinite.

Definition 2.7 (see [12]). A 2-cyclic contraction self-mapping T : A ∪ B → A ∪ B is of Meir-
Keeler type if for any given ε ∈ R+, ∃δ = δ(ε) ∈ R+ such that

d
(
x, y
)
< ε + δ + dist(A,B) =⇒ d

(
Tx, Ty

)
< ε + dist(A,B); ∀(x, y) ∈ A × B. (2.8)

The subsequent result is concerned with 2-cyclic contraction self-mappings of Meir-
Keeler type

Proposition 2.8. Assume that T : A ∪ B → A ∪ B is a 2-cyclic contraction self-mapping of Meir-
Keeler type. Then, the following properties hold:

(i) If A ∩ B /= ∅, then F(T)(/= ∅) ⊂ A ∩ B and dist(A,B) = d(z, Tz); ∀z ∈ F(T), that is, all
the best proximity points are also fixed points.

(ii) If A ∩ B = ∅, then either ¬∃limj→∞d(Tjx, Tjy) or ∃limj→∞d(Tjx, Tjy) > 0; ∀(x, y) ∈
A × B.

Also, ∃ρ = ρ(ε) ∈ R+ such that

lim supj→∞d
(
Tjx, Tjy

)
< ρε + dist(A,B); ∀(x, y) ∈ A × B for some ρ = ρ(ε) ∈ R (2.9)

Proof. Note from (2.8) that

d
(
T�x, T�y

)
< ε + δ� + dist(A,B) =⇒ d

(
T�+1x, T�+1y

)
< ε + d

(
T�x, T�y

)
; ∀(x, y) ∈ A × B

(2.10)



6 Fixed Point Theory and Applications

for some δ� = δ�(ε) ∈ R+; ∀� ∈ Z0+. Define R+ � Mj = Mj(ε, δj) := δj/ε; ∀j ∈ Z+. Since T :
A∪B → A∪B is a 2-cyclic contraction self-mapping of Meir-Keeler type, one has proceeding
recursively with (2.10)

d
(
x, y
)
< ε + δ0 + dist(A,B) =⇒ d

(
Tj+1x, Tj+1y

)

<

(

1 −
j∑

�=1

M�

)

ε + dist(A,B); ∀(x, y) ∈ A × B,

(2.11)

so that (2.10) together with the constraint d(Tj+1x, Tj+1y) ≥ 0; ∀j ∈ Z0+ implies that

(

1 −
j∑

�=1

M�

)

ε + dist(A,B) ≥ 0 =⇒ M� −→ 0 as � −→ ∞. (2.12)

If, in addition, dist(A,B) = 0, that is, A ∩ B /= ∅, then lim supj→∞
∑j

�=1 M� ≤ 1 (otherwise,
0 ≤ lim supj→∞ d(Tj+1x, Tj+1y) < 0; ∀(x, y) ∈ A × B would be a contradiction), so that
∃limj→∞d(Tjx, Tjy) = 0 and ∃z ∈ F(T)(/= ∅) ⊂ A ∩ B ⊂ A ∪ B such that dist(A,B) = d(z, Tz)
which are the best proximity points and also fixed points.

If A ∩ B = ∅, then dist(A,B) = d(z, Tz) > 0 for some ∃z ∈ A ∪ B which is not obviously
a fixed point, since A ∩ B = ∅, so that

lim sup
j→∞

d
(
Tjx, Tjy

)
< ρε + dist(A,B); ∀(x, y) ∈ A × B (2.13)

for some ρ = ρ(ε) ∈ R defined by ρ := lim infj→∞(1−
∑j

�=1 M�) ≥ −dist(A,B)/ε. Furthermore,
¬∃limj→∞d(Tjx, Tjy) since (Tjx, Tjy) ∈ A × B (resp., (Tjx, Tjy) ∈ B × A), what yields
(Tj+1x, T

j+1
y) ∈ A × B (resp., (Tj+1x, Tj+1y) ∈ A × B); ∀j ∈ Z0+ and A × B ∩ B × A = ∅ since

A ∩ B = ∅.

Definition 2.9. A 2-cyclic (α, β)-Kannan self-mapping T : A∪B → A∪B defined for some real
α ∈ [0, 1/2) and some β ∈ R+ (see Definitions 2.1 and 2.7) is of Meir-Keeler type if for any
given ε ∈ R+, ∃δ = δ(ε) ∈ R+ such that (2.8) holds.

Proposition 2.3, Definitions 2.1 and 2.9, and Proposition 2.8 yield directly the following
result.

Proposition 2.10. Assume that T : A ∪ B → A ∪ B is a 2-cyclic contraction self-mapping of Meir-
Keeler type with k ∈ [0, 1/3). Then, T : A ∪ B → A ∪ B is also a 2-cyclic (k/(1 − k), β)-Kannan
self-mapping, ∀β ≥ β0 := (1 − k)/(1 − 2k). If A ∩ B /= ∅, then F(T)(/= ∅) ⊂ A ∩ B.

From the definition of k-contraction self-mappings and Definition 2.7 for Meir-Keeler
type contraction self-mappings, the following result holds.
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Proposition 2.11. If T : A ∪ B → A ∪ B is a k-contraction self-mapping of Meir-Keeler type, then
for any given ε ∈ R+, ∃δ = δ(ε) ∈ R+ and ε0 = ε0(ε) ∈ [0, ε) ∩ R such that

d
(
Tx, Ty

) ≤ dist(A,B) +min
(
ε0, k
(
d
(
x, y
) − dist(A,B)

))
; ∀(x, y) ∈ A × B (2.14)

Proof. Since T : A ∪ B → A ∪ B is a contraction self-mapping which is also of Meir-Keeler
type, the result follows directly by combining (1.1) and (2.8).

3. p-Cyclic k-Contraction, Contractions of Meir-Keeler Type, p-Cyclic
(α, β)-Kannan Self-Mappings, and Some Mutual Relationships

A set of relevant results for p-cyclic self-mappings for p > 2 are obtained in [12]. Those self-
mappings obey the subsequent definitions.

Definition 3.1 (see [12]). Let Ai be nonempty subsets of a metric space (X, d); ∀i ∈ p. Then,
T :
⋃p

i=1 Ai → ⋃p

i=1 Ai is a p-cyclic self-mapping if T(Ai) ⊆ Ai+1; ∀i ∈ p with Ap+j = Aj ;
∀j ∈ Z+.

Definition 3.2. LetAi be nonempty, ∀i ∈ p subsets of a metric space (X, d). Then, T :
⋃p

i=1 Ai →⋃p

i=1 Ai is a p-cyclic k-contraction self-mapping if T(Ai) ⊆ Ai+1; ∀i ∈ p withAp+j = Aj ; ∀j ∈ Z+

and, furthermore,

d
(
Tx, Ty

) ≤ kd
(
x, y
)
+ (1 − k)dist(Ai,Ai+1); ∀x ∈ Ai, ∀y ∈ Ai+1 (3.1)

for some real constant k ∈ [0, 1).

A point x ∈ Ai is said to be the best proximity point if d(x, Tx) = dist(Ai,Ai+1), [12].
In this paper, it is also proven that if T :

⋃p

i=1 Ai → ⋃p

i=1 Ai is a p-cyclic nonexpansive self-
mapping, that is, d(Tx, Ty) ≤ d(x, y); ∀(x, y) ∈ Ai × Ai+1; ∀i ∈ p, then dist(Ai,Ai+1) = dA ∈
R0+; ∀i ∈ p (i.e., the distances between adjacent sets are identical). Some properties concerned
with p-cyclic nonexpansive self-mappings are stated and proven in the next lemma.

Lemma 3.3. The following properties hold:
(i) let T :

⋃p

i=1 Ai →
⋃p

i=1 Ai be a p-cyclic k-contraction self-mapping, then,

d
(
Tjx, Tjy

)
≤ kjd

(
x, y
)
+ (1 − k)jdA, (3.2)

∀(x, y) ∈ Ai ×Ai+1; ∀i ∈ p, ∀j ∈ Z0+,

d
(
Tip+�x, T ip+�y

)
≤ kip+�d

(
x, y
)
+ (1 − k)

(
ip + �

)
dA

∀(x, y) ∈ Ai ×Ai+1, ∀� ∈ p − 1 ∪ {0}, ∀i ∈ p, ∀j ∈ Z0+

(3.3)

where dA := dist(Ai,Ai+1); ∀i ∈ p.
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Let the mappings T(j, i) : Ai ∪Ai+1 → Aj ∪Aj+1; ∀j ∈ p \ i, ∀i ∈ p, be defined by

T
(
j, i
)
(Ai) :=

⎛

⎜
⎜
⎜
⎝

T ◦ T◦
j − i
︸︷︷︸
· · · ◦T

⎞

⎟
⎟
⎟
⎠

(Ai) = T

⎛

⎜
⎜
⎜
⎝

T

⎛

⎜
⎜
⎜
⎝

j − i
︸︷︷︸
· · · (T)

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

(Ai). (3.4)

If
⋂p

i=1 T(j, i)(Ai)/= ∅; ∀j ∈ p \ i, ∀i ∈ p, with T(i + 1, i) = T ; ∀i ∈ p, there is z ∈ F(T)(/= ∅) which is
unique if (X, d) is complete.

(ii) If T :
⋃p

i=1 Ai →
⋃p

i=1 Ai is a p-cyclic nonexpansive self-mapping and, in particular, if t is
a p-cyclic k-contraction, then

d
(
Tjx, Tjy

)
≤ d
(
x, y
)
; ∀(x, y) ∈ Ai ×Ai+1; ∀j ∈ Z0+, ∀i ∈ p. (3.5)

Proof. (i) Equation (3.2) follows by constructing a recursion directly from (1.1); ∀(x, y) ∈
Ai × Ai+1; ∀i ∈ p, ∀j ∈ Z0+ which can be also written equivalently in the form (3.3) by using
the index identity j = ip + �; ∀i ∈ p, ∀� ∈ p − 1 ∪ {0}. If ⋂p

i=1 T(j, i)(Ai)/= ∅ ⇒ ⋂p

i=1 Ai /= ∅ ⇒
dA = 0, then limj→∞d(Tjx, Tjy) ≤ limj→∞kjd(x, y) = 0; ∀(x, y) ∈ (Ai,Ai+1),∀i ∈ p from (3.2)
since k ∈ [0, 1), so that there exists limj→∞Tjx = z ∈ (

⋂p

i=1 T(p + i, i)); ∀x ∈ ⋃p

i=1 Ai. The
point z is in F(T)/= ∅ since F(T) ⊇ F(

⋂p

i=1 T(p + i, i))/= ∅ by construction of the self-mappings
T(j, i) : Ai ∪ Ai+1 → Aj ∪ Aj+1; ∀j ∈ p \ i, ∀i ∈ p since

⋂p

i=1 T(p + i, i)/= ∅. Also, z is unique if
(X, d) is complete. Property (i) has been proven.

(ii) It follows from the recursion d(Tjx, Tjy) ≤ · · · ≤ d(Tx, Ty) ≤ d(x, y) ∀(x, y) ∈ Ai ×
Ai+1; ∀j ∈ Z0+, obtained from (3.2) for k = 1, since T :

⋃p

i=1 Ai →
⋃p

i=1 Ai is nonexpansive.

The auxiliary properties of Remark 3.4 below have been used in the proof of
Lemma 3.3.

Remark 3.4. Note that

p⋂

i=1

T
(
p + i, i

)
(Ai) =

⋂

j∈p\i

p⋂

i=1

T
(
j, i
)
(Ai), (3.6)

so that

F(T) ⊇ F
(
T
(
p + i, i

)) ⊇ F

(
p⋂

i=1

T
(
p + i, i

)
)

; ∀i ∈ p,

⋂

j∈p\i

p⋂

i=1

T
(
j, i
)
(Ai) ⊆

p⋂

i=1

T(Ai) ⊆
p⋂

i=1

Ai,

(3.7)

so that

p⋂

i=1

T
(
p + i, i

)
(Ai)/= ∅ =⇒

p⋂

i=1

T(Ai)/= ∅ =⇒
p⋂

i=1

Ai /= ∅. (3.8)
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The concepts of p-cyclic nonexpansive self-mapping and p-cyclic k-contraction are
generalized in the following. Consider the mappings Ti : Ai ∪ Ai+1 → Ai+1 ∪ Ai+2 with
Ti(Aj) ⊆ Aj+1; j = i, i + 1, ∀i ∈ p and Ap+j = Aj ; ∀j ∈ Z+ which fulfil the constraint

d
(
Tix, Tiy

) ≤ kid
(
x, y
)
+ |1 − ki|dist(Ai,Ai+1); ∀x ∈ Ai, ∀y ∈ Ai+1; ∀i ∈ p (3.9)

for some ki ∈ R+; ∀i ∈ p and associated composed mappings T(j, i) : Ai ∪ Ai+1 → Aj ∪ Aj+1

defined by T(j, i) := Tj ◦ Tj−1 ◦ · · · ◦ Ti+1 ◦ Ti; ∀i, j(> i) ∈ p, subject to 1 ≤ j − i ≤ p.

Remark 3.5. Note that T(p + i, i) : Ai ∪Ai+1 → Ai ∪Ai+1 is also defined for points x ∈ ⋂j∈Ii Aj

for some nonempty indexing set Ii ⊂ p, which contains i ∈ p, by restricting its domain and
image as Ti :

⋂
j∈Ii Aj → ⋂

j∈Ii+1 Aj for some nonempty indexing set Ii+1 ⊂ p such that Tix ∈⋂
j∈Ii+1 Aj ⊂ Ai+1 (since x ∈ ⋂j∈Ii Aj ⊂ Ai). An important observation is that a set of constraints

of type (3.9) have to be satisfied if card(Ii) > 1

d
(
Tjx, Tjy

) ≤ kjd
(
x, y
)
+
∣∣1 − kj

∣∣dist
(
Aj,Aj+1

)
;

∀x ∈
⋂

j∈Ii
Aj , ∀y ∈

⋂

j∈Ii+1
Aj ; ∀j ∈ Ii for each i ∈ p.

(3.10)

The subsequent definitions extend Definitions 3.1-3.2 by removing the necessity of
the set inclusions T(Ai) ⊆ T(Ai+1); ∀i ∈ p and allowing obtaining of contractions from the
composed mappings Ti : Ai ∪ Ai+1 → Ai+1 ∪ Ai+2; ∀i ∈ p which are not all necessarily
contractions provided that Ai ⊆ Ai+1; ∀i ∈ p.

Definition 3.6. Let Ai be nonempty subsets of a metric space with Ap+i = Ai, ∀i ∈ p. Then,
T(p + i, i) : Ai ∪Ai+1 → Ai ∪Ai+1; ∀i ∈ p is a composed p-cyclic self-mapping if T(Ai) ⊆ Ai+1;
∀i ∈ p with Ap+j = Aj ; ∀j ∈ Z+.

Definition 3.7. Let Ai be nonempty subsets of a metric space (X, d) with Ap+i = Ai, ∀i ∈ p.
Then, T(p + i, i) : Ai ∪ Ai+1 → Ai ∪ Ai+1; i ∈ p is a composed p-cyclic k-contraction self-
mapping if Ti : Ai ∪Ai+1 → Ai+1 ∪Ai+2 satisfies (3.9), subject to Ti(Aj) ⊆ Aj+1, j = i, i+ 1, and,
furthermore,

d
(
T
(
p + i, i

)
x,T
(
p + i, i

)
y
) ≤ kd

(
x, y
)
+ (1 − k)dist(Ai,Ai+1); ∀x ∈ Ai, ∀y ∈ Ai+1 (3.11)

for some real constant k ∈ [0, 1)and, furthermore, if T(Ai) ⊆ Ai+1; ∀i ∈ p with Ap+j = Aj ;
∀j ∈ Z+.

Definition 3.8. If T(p + i, i) : Ai ∪Ai+1 → Ai ∪Ai+1 fulfils Definition 3.7 with (3.11) being true
also for k = 1, then it is said to be a composed p-cyclic nonexpansive mapping.

Note that if T(p + i, i) : Ai ∪ Ai+1 → Ai ∪ Ai+1 is a composed p-cyclic nonexpansive
self-mapping (resp., a composed p-cyclic k-contraction self-mapping) for some i ∈ p then it
is so for all i ∈ p. Composed p-cyclic contractions are characterized according to tests stated
and proven in the subsequent result.
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Proposition 3.9. Assume thatAi are nonempty subsets of a metric space (X, d); ∀i ∈ p. Assume also
that Ti(Aj) ⊆ Aj+1; j = i, i + 1; ∀i ∈ p and that T(p + i, i) : Ai ∪ Ai+1 → Ai ∪ Ai+1; ∀i ∈ p fulfils
(3.9) for some ki ∈ R+; ∀i ∈ p.

Then, the self-mapping T(p + i, i) : Ai ∪Ai+1 → Ai ∪Ai+1; i ∈ p is a composed p-cyclic
k-contraction self-mapping if the following two conditions hold:

k :=
p∏

i=1

[ki] < 1, (C1)

dist(Ai,Ai+1) ≥
∑p−1

�(/= i)=1

(∏p−1
j=�+1

[
kj
])|1 − k� |dist(A�,A�+1)

(
1 −∏p

j=1

[
kj
]
(1 + |1 − ki|)

) if
p∏

j=1

[
kj
]
(1 + |1 − ki|)/= 1

(C2)

or A� ⊆ A�+1; ∀� ∈ p, otherwise.
If k < 1 and A� ⊆ A�+1; ∀� ∈ p, then T(p + i, i) : Ai ∪ Ai+1 → Ai ∪ Ai+1; i ∈ p is a

composed p-cyclic k-contraction self-mapping.

Proof. If T(p + i, i) : Ai ∪Ai+1 → Ai ∪Ai+1; ∀i ∈ p fulfils (3.9), then for any i ∈ p

d
(
T
(
p + i, i

)
x,T
(
p + i, i

)
y
) ≤

p+i∏

j=i

[
kj
]
d
(
x, y
)
+

p+i∑

�=i

⎛

⎝
p+i∏

j=�+1

[
kj
]
⎞

⎠|1 − k� |dist(A�,A�+1)

∀x ∈ Ai, ∀y ∈ Ai+1,

(3.12)

since ki+p = ki;Ai+p = Ai; ∀i ∈ p. Then, T(p+ i, i) : Ai∪Ai+1 → Ai∪Ai+1 is a composed p-cyclic
k-contraction self-mapping from (3.12) and (3.11) (see Definition 3.7) if

p+i∏

j=i

[
kj
]
< 1,

p+i∑

�=i

⎛

⎝
p+i∏

j=�+1

[
kj
]
⎞

⎠|1 − k� |dist(A�,A�+1) ≤
⎛

⎝1 −
p∏

j=1

[
kj
]
⎞

⎠dist(Ai,Ai+1)

∀x ∈ Ai, ∀y ∈ Ai+1,

(3.13)
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since ki+p = ki; ∀i ∈ p. The second inequality of (3.13) is equivalent to

p+i∑

�=i+1

⎛

⎝
p+i∏

j=�+1

[
kj
]
⎞

⎠|1 − k� |dist(A�,A�+1) +

⎛

⎝
p+i∏

j=i+1

[
kj
]
⎞

⎠|1 − ki|dist(Ai,Ai+1)

≤
⎛

⎝1 −
p∏

j=1

[
kj
]
⎞

⎠dist(Ai,Ai+1)

(3.14)

⇐⇒
p+i∑

�=i+1

⎛

⎝
p+i∏

j=�+1

[
kj
]
⎞

⎠|1 − k� |dist(A�,A�+1)

≤
⎛

⎝

⎛

⎝1 −
p∏

j=1

[
kj
]
⎞

⎠ −
⎛

⎝
p+i∏

j=i+1

[
kj
]
⎞

⎠|1 − ki|
⎞

⎠dist(Ai,Ai+1).

(3.15)

Again since ki+p = ki; ∀i ∈ p and since Ai+p = Ai; ∀i ∈ p, then
∏p+i

j=i+1[kj] =
∏p

j=1[kj], and

p+i−1∑

�=i+1

⎛

⎝
p+i−1∏

j=�+1

[
kj
]
⎞

⎠|1 − k� |dist(A�,A�+1) =
p∑

�(/= i)=1

⎛

⎝
p∏

j=�+1

[
kj
]
⎞

⎠|1 − k� |dist(A�,A�+1). (3.16)

Then (3.15) and (3.14), are equivalent to

p−1∑

�(/= i)=1

⎛

⎝
p−1∏

j=�+1

[
kj
]
⎞

⎠|1 − k� |dist(A�,A�+1) ≤
⎛

⎝1 −
p∏

j=1

[
kj
]
(1 + |1 − ki|)

⎞

⎠dist(Ai,Ai+1).

(3.17)

The first part of the result has been proven since (3.11) holds. The second one is a direct
conclusion of the first one for the case dist(A�,A�+1) = 0.

It is now proven that if
∏p

i=1[ki] < 1 and Ai ⊆ Ai+1; ∀i ∈ p, then all the self-mappings
T(p + i, i) : Ai ∪Ai+1 → Ai ∪Ai+1; ∀i ∈ p are composed p-cyclic k-contraction self-mappings
possessing fixed points. If, furthermore, (X, d) is a complete metric space, then each of those
self-mappings possesses a unique fixed point.

Corollary 3.10. Assume that Ai are nonempty subsets of a metric space (X, d); ∀i ∈ p and the
composed p-cyclic k-contraction self-mappingT(p+i, i) : Ai∪Ai+1 → Ai∪Ai+1 fulfils Proposition 3.9
for some i ∈ p, subject to Ti(Aj) ⊆ Aj+1; j = i, i + 1; ∀i ∈ p. Then, the following properties hold
provided that Ai ⊆ Ai+1; ∀i ∈ p.

(i) T(p + i, i) : Ai ∪ Ai+1 → Ai ∪ Ai+1; ∀i ∈ p are all composed p-cyclic k-contraction self-
mappings which satisfy, in addition,Ai ⊆ Ai+1; ∀i ∈ p (i.e., k :=

∏p

i=1[ki] < 1 and dist(Ai,Ai+1) = 0;
∀i ∈ p) and which possess common fixed points in

⋂p

j=1 Tj(Aj), that is, F ≡ F(T(p + i, i)) = F(T(p +

j, j)) ⊂ ⋂p

j=1 Tj(Aj); ∀i, j(/= i) ∈ p.
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(ii) There is a unique set {xi1, xi2, . . . , xip} satisfying the constraints xij+1 = Tjxij ∈ Aj+1,
subject to xip+1 = xi1, for any given xi1 ∈ F ⊂ Ai and for any given i ∈ p. Furthermore, each of those
sets satisfies the limiting property xij+1 = (Tj ◦ Tj−1 ◦ · · · ◦ Ti) ◦ lim�→∞(Tp�(p + i, i))xi; ∀j ∈ p for
each xi ∈ Ai and any given i ∈ p.

(iii) F = {z ∈ ⋂p

j=1 Tj(Aj)} consists of a unique point z if (X, d) is a complete metric space.
(iv) If (X, d) is a complete metric space, then there is a unique set {x1, x2, . . . , xp} satisfying

xj+1 = Tjxj = (Tj ◦ Tj−1 ◦ · · · ◦ Ti) ◦ lim�→∞(Tp�(p + i, i))ωi = lim�→∞(Tp�+j(p + i, i))ωi ∈ Aj+1;
∀j ∈ p with x1 = z ∈ F for any ωi ∈ Ai and any given i ∈ p.

Proof. (i) If Ai ⊆ Ai+1; ∀i ∈ p, then dist(Ai,Ai+1) = 0 and
⋂p

i=1 Ti(Ai) ⊆ ⋂p

i=1 Ai /= ∅. From
Proposition 3.9, constraint (3.11) holds with k ∈ [0, 1) and dist(Ai,Ai+1) = 0; ∀i ∈ p so that
the limit limj→∞d(Tjp(p + i, i)x,Tjp(p + i, i)y) = lim�→∞d(T�(p + i, i)x,T�(p + i, i)y) exists
and is equal to zero; ∀x ∈ Ai, ∀y ∈ Ai+1,∀i ∈ p. Then, ∃zi ∈ F(T(p + i, i))/= ∅; ∀i ∈ p since
F(T(p + i, i)) ⊂ Ai, zi ⊂ Ai; ∀i ∈ p.

If (X, d) is complete, then F(T(p + i, i)) = {zi ∈ Ai} since the fixed point is unique. It is
now proven by contradiction that zi ∈

⋂p

j=1 Aj ; ∀i ∈ p. Assume that F(T(p+i, i)) � zi /∈
⋂p

j=1 Aj

so that zi /∈
⋂p

j=1 Tj(Aj) since
⋂p

j=1 Tj(Aj) ⊆ ⋂p

j=1 Aj . Then, T(p + i, i)z ∈ ⋂p

j=1 Tj(Aj); ∀z ∈ Ai

from the definition of the composed self-mapping T(p + i, i) : Ai → Ai as T(p + i, i) :=
Tp+i ◦ Tp+i−1 ◦ · · · ◦ Ti+1 ◦ Ti; ∀i ∈ p.

As a result, F(T(p + i, i)) � zi = T(p + i, i)zi ∈ ⋂p

j=1 Tj(Aj) ⊆ ⋂p

j=1 Aj which is
a contradiction to the above assumption and proves the result. Now, it is proven that
F ≡ F(T(p + i, i)) = F(T(p + j, j)); ∀i, j(/= i) ∈ p. Proceed by contradiction. Assume that
zj ∈ F(T(p + j, j)) ∩ F(T(p + i, i)) for some (i, j(/= i)) ∈ p × p. Note that zj ∈ ⋂p

�=1 T(Aj) ⊆
⋂p

�=1 Aj ⊆ Ai for the given i ∈ p since F(T(p + i, i)) ⊂ ⋂p

j=1 Tj(Aj) ⊆ ⋂p

j=1 Aj . Thus,

lim�→∞Tp�(p + j, j)zj = zj ∈ F(T(p + i, i)) since zj ∈ Ai which contradicts zj ∈ F(T(p + i, i)).
Then, F ≡ F(T(p + i, i)) = F(T(p + j, j)). Property (i) has been proven.

(ii) Let z ∈ F ≡ F(T(p + i, i)) be a fixed point of T(p + i, i) : Ai ∪ Ai+1 → Ai ∪ Ai+1 for
any i ∈ p. A sequence xj+1 = Tjxj ; j = i, i + 1, . . . , i + p of p points exists obeying the iteration

xi+j =
(
Ti+j−1 ◦ Ti+j−2 ◦ · · · ◦ Ti

)
z

=
(
Ti ◦ T

(
p + i, i

))
z

= lim
j→∞

(
Ti+j−1 ◦ Ti+j−2 ◦ · · · ◦ Ti ◦ Tpj(p + i, i

))
yi

=
(
Ti+j−1 ◦ Ti+j−2 ◦ · · · ◦ Ti ◦ lim

j→∞
Tpj(p + i, i

)
)
yi

=
(
Ti+j−1 ◦ Ti+j−2 ◦ · · · ◦ Ti

)
z

(3.18)

for some yi ∈ Ai for any i ∈ p; ∀j ∈ p subject to xj+p = xj , since

F � z = T
(
p + i, i

)
z = lim

j→∞
Tpj(p + i, i

)
yi for some yi ∈ Ai, ∀i ∈ p (3.19)
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Then, the p-tuple S(z) = (x1, x2, . . . , xp) ∈ A1 ×A2 × · · · ×Ap, and thus the corresponding set
{x1, x2, . . . , xp} is unique for each z ≡ xj ∈ F(T) and some j ∈ p since Ti is a self-mapping on
Ai; ∀i ∈ p. On the other hand, there exists zi ∈ F(T) such that zi = T(p+i, i)zi = limj→∞Tpj(p+
i, i)yi for each yi ∈ Ai and each i ∈ p. Thus, a unique p-tuple S(zi) exists for each zi ∈ F(T) and
then a unique set {xi1, xi2, . . . , xip}; ∀i ∈ p. Property (ii) has been proven. Property (iii) follows
directly from Property (i) together with Property (ii) since (X, d) is complete. Property (iv)
follows directly from Properties (ii) and (iii).

Note that only a point in the unique set {x1, x2, . . . , xp}, referred to in Corollary 3.10(iv),
is a fixed point of the composed p-cyclic k-contraction self-mappings T(p + i, i) on Ai ∪Ai+1,
∀i ∈ p if the metric space (X, d) is complete. Also, there is only a guaranteed fixed point of
the composed p-cyclic k-contraction self-mappings T(p + i, i) on Ai ∪Ai+1; ∀i ∈ p, referred to
in Corollary 3.10(ii), in each of the corresponding unique sets {xi1, xi2, . . . , xip} if (X, d) is not
complete.

An extra conclusion result can be obtained from Corollary 3.10 as follows in view of
Remark 3.5:

Corollary 3.11. The images of the mappings Tp�(p+ i, i) are in
⋂

i∈p
⋂

j∈Ii T(Aj); ∀� ∈ Z+, ∀i ∈ p. If,
furthermore,

∏p

i=1[ki] < 1 and Ai ⊆ Ai+1; ∀i ∈ p, then the image of Tp�(p + i, i) is in
⋂

j∈p T(Aj) ⊂⋂
j∈p Aj as � → ∞; ∀i ∈ p. Also,

F =
⋃

�∈p
F
(
T
(
p + �, �

)) ⊂
⋂

�∈p
T(A�) ⊂

⋂

�∈p
A�. (3.20)

Now, the self-mapping T :
⋃p

j=1 Aj → ⋃p

j=1 Aj is defined as Tx = T(p + i, i)x for each

x ∈ ⋃p

j=1 Aj such that x ∈ Ai ∪ Ai+1 ∧ x /∈Aj for some i ∈ p; ∀j(< i) ∈ p such that Aj /=Ai.
It turns out that such a mapping is a p-cyclic k-contraction if the composed self-mappings
T(p + i, i) on Ai ∪ Ai+1are composed p-cyclic k-contractions. Note that there always exists a
unique i = i(x) ∈ p for each given x ∈ ⋃p

j=1 Aj which, in addition, fulfils x ∈ ⋃p

j=i Aj since
T(Aj) ⊆ Aj+1; ∀j ∈ p. The following result is obtained directly from Corollaries 3.10(i) and
3.10(iv).

Corollary 3.12. Consider the self-mapping T :
⋃p

j=1 Aj → ⋃p

j=1 Aj , subject to Ti(Aj) ⊆ Aj+1; j = i,

i + 1, and assume that k =
∏p

i=1[ki] < 1 and Ai ⊆ Ai+1; ∀i ∈ p so that T :
⋃p

j=1 Aj → ⋃p

j=1 Aj is

a p-cyclic k-contraction. Then, F(T) ≡ F = {z ∈ ⋂p

j=1 Tj(Aj)}/= ∅ which, furthermore, consists of a
single point if (X, d) is a complete metric space.

The relation between composed p-cyclic k-contractions satisfying Corollaries 3.10–
3.12 and the so-called p-cyclic (α, β)-Kannan self-mappings defined below is now discussed.
Let Ai be nonempty subsets of a metric space (X, d); ∀i ∈ p. Consider the mappings
Ti : Ai ∪ Ai+1 → Ai+1 ∪ Ai+2 satisfying Ti(Aj) ⊆ Aj+1 for j = i, i + 1; ∀i ∈ p for the nonempty
subsets Ai of the metric space (X, d). Note that this implies that T(p + i, i)(Ai ∪ Ai+1) ⊆
Ai ∪ Ai+1,T(p + i, i)(Ai) ⊆ Ai, and T(p + i, i)(Ai+1) ⊆ Ai+1. The following definition which
generalizes Definition 2.1 is then used to prove further results.
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Definition 3.13. A self-mapping T(p+ i, i) : Ai∪Ai+1 → Ai∪Ai+1 is a composed p-cyclic (α, β)-
Kannan self-mapping if it satisfies the following property for some real α ∈ [0, 1/2) and some
β ∈ R+:

d
(
T
(
p + i, i

)
x,T
(
p + i, i

)
y
) ≤ α

(
d
(
x,T
(
p + i, i

)
x
)
+ d
(
y,T
(
p + i, i

)
y
))

+ β(1 − α)dist(Ai,Ai+1); ∀x ∈ Ai, ∀y ∈ Ai+1.
(3.21)

Proposition 3.14. Consider the self-mappings T(p + i, i) : Ai ∪ Ai+1 → Ai ∪ Ai+1 with
T(p + i, i)(Aj) ⊆ Aj+1 for j = i,i + 1; ∀i ∈ p being composed p-cyclic k-contractions satisfying
k =
∏p

i=1[ki] ∈ [0, 1/3). The following properties hold.

(i) The self-mappings T(p+ i, i) : Ai ∪Ai+1 → Ai ∪Ai+1; ∀i ∈ p and T :
⋃p

j=1 Aj → ⋃p

j=1 Aj

are α-Kannan self-mappings with α := k/(1 − k) ∈ [0, 1/2).

(ii) The self-mappings T(p + i, i) : Ai ∪ Ai+1 → Ai ∪ Ai+1 and T :
⋃p

j=1 Aj → ⋃p

j=1 Aj

are, respectively, p-cyclic (α, β)-Kannan self-mappings for all i ∈ p and composed p-cyclic
(α, β)-Kannan self-mappings for some real constant α ∈ [0, 1/2) and any β ∈ R+.

Proof. (i) From (3.12) and the triangle inequality of the distance mapping

d
(
T
(
p + i, i

)
x,T
(
p + i, i

)
y
) ≤ kd

(
x, y
)

≤ k
(
d
(
x,T
(
p + i, i

)
x
)
+ d
(
T
(
p + i, i

)
x,T
(
p + i, i

)
y
)

+d
(
y,T
(
p + i, i

)
y
))

(3.22)

for a given i ∈ p and ∀(x, y) ∈ Ai ×Ai+1 since Ai ⊆ Ai+1; ∀i ∈ p. Since k ∈ [0, 1),

d
(
T
(
p + i, i

)
x,T
(
p + i, i

)
y
) ≤ α

(
d
(
x,T
(
p + i, i

)
x
)
+ d
(
y,T
(
p + i, i

)
y
))

(3.23)

with α := k/(1 − k) ∈ [0, 1/2) since k ∈ [0, 1/3) so that T(p + i, i) : Ai ∪Ai+1 → Ai ∪Ai+1 is a
α-Kannan self-mapping ∀i ∈ p from (2.1) and so it is T :

⋃p

j=1 Aj → ⋃p

j=1 Aj by construction.
Property (i) has been proven. (ii) The proof follows directly since β(1−α)dist(Ai,Ai+1); ∀i ∈ p
so that (3.23) implies that (3.21) holds.

Remark 3.15. It turns out that Proposition 3.14(ii) which is slightly modified still holds if the
inclusion conditionsAi ⊆ Ai+1; ∀i ∈ p are removed. In fact, the self-mappings T(p + i, i) and T
on Ai ∪ Ai+1 and on

⋃p

j=1 Aj , respectively, are p-cyclic (α, β)-Kannan self-mappings; ∀i ∈ p

and composed p-cyclic (α, β)-Kannan self-mappings, respectively, for some real constant
α ∈ [0, 1/2) and ∀β ≥ β0 := (1 − k)/(1 − 2k). The proof follows directly from that of
Proposition 3.14(ii) and Definition 3.13 (see, in particular, (3.21)).

Definition 2.7 is generalized as follows for the case p ≥ 3, and the subsequent theorem
compares p-cyclic k-contractions with those of Meir-Keeler type.
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Definition 3.16 (see [12]). Assume that Ai ⊆ Ai+1 are nonempty subsets of a metric space
(X, d) with Ap+1 = Ap. A p-cyclic self-mapping T :

⋃p

i=1 Ai → ⋃p

i=1 Ai is a contraction of
Meir-Keeler type if for any given ε ∈ R+, ∃δ = δ(ε) ∈ R+ such that

d
(
x, y
)
< ε + δ + dist(Ai,Ai+1) =⇒ d

(
Tx, Ty

)
< ε + dist(Ai,Ai+1);

∀(x, y) ∈ Ai ×Ai+1, ∀i ∈ p.
(3.24)

Note that the equivalent contrapositive logic proposition to (3.24) is

d
(
Tx, Ty

) ≥ ε + dist(Ai,Ai+1) =⇒ d
(
x, y
) ≥ ε + δ + dist(Ai,Ai+1);

∀(x, y) ∈ Ai ×Ai+1, ∀i ∈ p
(3.25)

which can be used equivalently to state Definition 3.16. The following technical simple result
will be then used in the proof of Theorem 3.18 below.

Assertion 1. If (3.24), and equivalently (3.25), holds for some δ = δ(ε) ∈ R+, for any given
ε ∈ R+, then they also hold for some δ ∈ (0, ε].

Proof. If δ ∈ (0, ε] for the given ε ∈ R+, the result is proven. If δ > ε, then (3.25) leads directly
to the property

d
(
Tx, Ty

) ≥ ε + dist(Ai,Ai+1) =⇒ d
(
x, y
) ≥ ε + δ + dist(Ai,Ai+1) ≥ ε + δ′ + dist(Ai,Ai+1)

(3.26)

for any δ′ = δ′(δ(ε)) ≤ δ(ε); ∀(x, y) ∈ Ai × Ai+1, ∀i ∈ p , and the result holds with the
replacement δ → δ′.

Proposition 3.17. Let T be a p-cyclic self-mapping on
⋃p

i=1 Ai. Thus, if T :
⋃p

i=1 Ai → ⋃p

i=1 Ai is a
p-cyclic k-contraction, then it is also a contraction of Meir-Keeler type

δ ≤ ε < 2kD < 2D,

2δ ≤ (1 − k)ε + kδ ≤ D := max
(
diam(Ai) : i ∈ p

)

≤ 1
2
(ε + δ + (1 − k)(ε − δ)) ≤ ε + (1 − k)(ε − δ).

(3.27)

Proof. Since T :
⋃p

i=1 Ai → ⋃p

i=1 Ai is a p-cyclic k-contraction, then it is p-cyclic nonexpansive
so that dA := dist(Ai,Ai+1); ∀i ∈ p. Take any (x, y) ∈ Ai × Ai+1 for some i ∈ p such that
d(x, y) < ε + δ + d. Then, since T :

⋃p

i=1 Ai →
⋃p

i=1 Ai is a p-cyclic k-contraction, one gets that

d
(
Tx, Ty

) ≤ kd
(
x, y
)
+ (1 − k)dist(Ai,Ai+1) < k(ε + δ + dA) + (1 − k)dA

= k(ε + δ) + dA < ε + d; ∀(x, y) ∈ Ai ×Ai+1, ∀i ∈ p
(3.28)



16 Fixed Point Theory and Applications

provided that for any given ε ∈ R+, δ = δ(ε) ∈ [0, (1−k)(ε+d)/k) since k ∈ [0, 1). Then, the p-
cyclic self-mapping T on

⋃p

i=1 Ai is also a contraction ofMeir-Keeler type fromDefinition 3.16.

The subsequent result relies on the limiting property to the best proximity points of
the distances between points in adjacent sets in self-mappings being p-cyclic contractions of
Meir-Keeler type.

Theorem 3.18. Let T :
⋃p

i=1 Ai → ⋃p

i=1 Ai be a p-cyclic contraction of Meir-Keeler type. Then the
following properties hold.

(i) If d(x, y) ≤ ε+δ+dA for some real constants ε, δ = δ(ε) ∈ R+ then the inequalities dA ≤
d(Tjx, Tjy) < εj + δj + dA hold for some bounded positive strictly monotone decreasing
real sequences {εi}∞0 , {δi(ε)}∞0 ∀j ∈ Z0+ which converge to zero, with ε0 = ε, δ0 = δ, and
furthermore, d(Tjx, Tjy) → dA as j → ∞; ∀(x, y) ∈ Ai ×Ai+1, ∀i ∈ p, where

dA := dist(Ai,Ai+1) = d(zi, Tzi) = d
(
zj , T

j−izj
)

for zj = Tj−izi ∈ BPj(T), zi ∈ BPi(T)
(3.29)

for ∀i, j ∈ p. As a result, there exists a finite M = M(ρ, ε) ∈ Z0+ such that

dA ≤ d
(
Tjx, Tjy

)
≤ dA + ρ; ∀(x, y) ∈ Ai ×Ai+1, ∀i ∈ p (3.30)

for any given ρ ∈ R+ and ∀j(≥ M) ∈ Z0+.

(ii) If
⋂p

i=1 Ai /= ∅, then ⋂p

i=1 Ai ⊃ F(T) � z = limi→∞Tix; ∀x ∈ ⋃p

i=1 Ai, and F(T) consists of
a unique fixed point if (X, d) is complete.

(iii) There exists some real constant ξ ∈ (0, 1) such that

∞∑

j=0

δj =
N−1∑

j=0

δj +
1

1 − ξ
= ε < ∞ (3.31)

and, furthermore, ξ = (ε − δ)/(1 + ε − δ) under the constraint ε < 1 which allows the
choice δi < 1; ∀i ∈ Z0+.
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Proof. (i)-(ii) A recursion in (3.24) leads to the following recursion of implications for dA :=
dist(Ai,Ai+1); ∀i ∈ p:

dA ≤ d
(
x, y
)

< ε + δ + dA =⇒ dA ≤ d
(
Tx, Ty

)
< ε + dA = ε1 + δ1 + dA

< ε + δ + dA =⇒ dA ≤ d
(
T3x, T3y

)
< ε2 + dA = ε3 + δ3 + dA

≤ ε2 + δ2 + dA =⇒ dA ≤ d
(
T3x, T3y

)
< ε2 + dA = ε3 + δ3 + dA

≤ ε2 + δ2 + dA =⇒ dA ≤ d
(
Tjx, Tjy

)
< εj−1 + dA = εj + δj + dA

≤ εj−1 + δj−1 + dA ∀(x, y) ∈ Ai ×Ai+1, ∀i ∈ p

(3.32)

for δ = δ(ε) ∈ R+ for any arbitrary given ε ∈ R+ and some positive real sequences {δi}∞0 and
{εi}∞0 which depend on ε according to the respective implicit dependences:

δi = δi
(
εj : j(≤ i) ∈ Z0+

)
= gi(ε); εi = εi

(
εj : j(≤ i − 1) ∈ Z0+

)
= hi(ε); ∀i ∈ Z0+ (3.33)

with ε0 = ε, δ0 = δ which satisfy the constraints

0 < δi := εi−1 − εi ≤ εi−1 − εi + δi−1; ∀i ∈ Z+ (3.34)

which imply that

0 < εi < εi−1 < ε0 = ε < ∞; ∀i ∈ Z0+ =⇒ εi −→ 0, as i −→ ∞,

0 <
i∑

j=1

δj = ε − εi < ∞; ∀i ∈ Z0+ =⇒ 0 <
∞∑

j=1

δj = lim
i→∞

i∑

j=1

δj

= ε < ∞ =⇒ δi −→ 0, as i −→ ∞.

(3.35)

Furthermore, from (3.35) into (3.32), it follows that

dA ≤ inf
(x,y)∈Ai×Ai+1,i∈p

lim inf
j→∞

d
(
Tjx, Tjy

)

≤ sup
(x,y)∈Ai×Ai+1,i∈p

lim sup
j→∞

d
(
Tjx, Tjy

)
< dA + ε < ∞

(3.36)

so that

sup
(x,y)∈Ai×Ai+1,i∈p

lim sup
j→∞

d
(
Tjx, Tjy

)
= dA + ε0 < dA + ε < ∞ (3.37)
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for some ε0 ∈ [0, ε)∩R0+, which does not depend neither on the particular initial pair (x, y) ∈
Ai × Ai+1, i ∈ p nor on the given arbitrary ε ∈ R+ since it is the supremum of all the limit
superiors. Assume that ε0(/= 0) ∈ R+. Since ε ∈ R+ is arbitrary, it may be chosen as ε = ε0/2
which contradicts dA + ε0 < dA + ε. Then,

sup
(x,y)∈Ai×Ai+1,i∈p

lim sup
j→∞

d
(
Tjx, Tjy

)
= dA,

dA ≤ lim inf
i→∞

d
(
Tix, T iy

)
≤ lim sup

i→∞
d
(
Tix, T iy

)
= dA =⇒ ∃ lim

i→∞
d
(
Tix, T iy

)
= dA,

∀(x, y) ∈ Ai ×Ai+1, ∀i ∈ p.

(3.38)

Also, since

dA = dist(Ai,Ai+1) = d(zi, Tzi) = d
(
zj , T

j−izj
)
,

zj = Tj−izi ∈ BPj(T), zi ∈ BPi(T)
(3.39)

for ∀i, j ∈ p. If dA = 0, then BPi(T) ≡ F(T); ∀i ∈ p so that limi→∞d(Tix, T iy) = 0, ∀(x, y) ∈
Ai×Ai+1, ∀i ∈ p, and since (Ai∩F(T)) � z = Tz ∈ (Ai+1∩F(T)) from T(Ai) ⊆ Ai+1; ∀i ∈ p, then⋂p

i=1 Ai ⊃ F(T) � z = limi→∞Tix; ∀x ∈ ⋃p

i=1 Ai. This conclusion is direct from the following
reasoning. Assume that F(T) � z ∈ Ai for some arbitrary i ∈ p which exists since z is a fixed
point. Then, z = Tjz ∈ Ai+j for any j ∈ Z+ with Aj+p = Aj ; ∀j ∈ Z+. Thus, z ∈ ⋂p

i=1 Ai. Also,
F(T) consists of a unique fixed point if (X, d) is complete. Properties (i) and (ii) have been
proven.

It turns out from (3.35) that for some finite Z0+ � N = N(ε), δi < 1; ∀i ≥ N. Then, by
construction, it follows that there exist some real constant ξ0 ∈ (0, 1) and some real constant
ξ(≤ ξ0) ∈ (0, 1) (both of them are dependent on N and ε) which are the respective ratios of
the geometric series

∑∞
j=N ξ

j

0 and
∑∞

j=0 ξ
j , such that the following identities hold for any given

sequence {δi}∞0 that satisfies (3.35):

∞∑

j=N

δj =
∞∑

j=N

ξ
j

0 =
∞∑

j=0

ξj =
ξN0

1 − ξ0
=

1
1 − ξ

≤ ε < ∞,

∞∑

j=0

δj =
N−1∑

j=0

δj +
∞∑

j=N

δj =
N−1∑

j=0

δj +
∞∑

j=N

ξ
j

0 =
N−1∑

j=0

δj +
ξN0

1 − ξ0

=
N−1∑

j=0

δj +
∞∑

j=0

ξj =
N−1∑

j=0

δj +
1

1 − ξ
= ε < ∞.

(3.40)

If ε < 1, then a sequence satisfying δi < 1; ∀i ∈ Z0+ is valid from Assertion 1. Thus,N = 0, and
since δ may be always taken as on being larger than ε, then

δ +
∞∑

j=1

δj = δ +
∞∑

j=1

ξj = δ +
ξ

1 − ξ
= ε < ∞ ⇐⇒ ξ =

ε − δ

1 + ε − δ
, (3.41)
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and together with (3.38), it follows that 2εi ≥ εi + δi ≥ δ; ∀i ∈ Z+ since

εi+1 = ε − δi+1 −
i∑

j=1

δj ≥ ε − δi+1 −
∞∑

j=1

δj ≥ ε − δi+1 − ξ

1 − ξ
= δ − δi+1 , ∀i ∈ Z0+ (3.42)

under the constraints ε < 1 and δi < 1; ∀i ∈ Z0+. Property (iii) has been proven.

It is interesting to discuss when the composed self-mappings T(p + i, i) on Ai ∪ Ai+1

for set-depending self-mappings Tj : Aj ∪ Aj+1 → Aj+1 ∪ Aj+2; i, j ∈ p as well as the self-
mappings T on

⋃p

i=1 Ai defined by Tx = T(p + i, i)x are guaranteed to be p-cyclic Meir-Keeler
contractions without requiring that the property holds for each individual Ti : AiAj+1Ai+1 →
Ai+1Aj+1Ai+2 subject to Ai+p ≡ Ai ∈ {A1, A2, . . . , Ap}. For the related discussion, assume that
αj ≤ d(Tj+ix, T j+iy) ≤ βj ; ∀j ∈ p, ∀i ∈ Z0+ for a set of real constants αi, βi(≥ αi) ∈ R0+; ∀i ∈ p. A
direct calculation on p iterations yields directly

max

⎛

⎝dA, d
(
T(i, �)x,T(i, �)y

) −
p∑

j=1

(
βj − αj

)
⎞

⎠

≤ d
(
T
(
p + i, �

)
x,T
(
p + i, �

)
y
)

≤ d
(
T(i, �)x,T(i, �)y

)

+
p∑

j=1

(
d
(
T
(
j + i, �

)
x,T
(
j + i, �

)
y
) − d

(
T
(
j + i − 1, �

)
x,T
(
j + i − 1, �

)
y
))

≤ d
(
T(i, �)x,T(i, �)y

)
+

p∑

j=1

(
βj − αj

)
; ∀(x, y) ∈ A� ×A�+1, ∀� ∈ p, ∀i ∈ Z0+.

(3.43)

If the self-mappings Ti ≡ T : Ai ∪Ai+1 → Ai+1 ∪Ai+2 are identical; ∀i ∈ p, then (3.43) becomes
in particular:

max

⎛

⎝dA, d
(
Tix, T iy

)
−

p∑

j=1

(
βj − αj

)
⎞

⎠

≤ d
(
Ti+px, T i+py

)
≤ d
(
Tix, T iy

)
+

p∑

j=1

(
d
(
Tjx, Tjy

)
− d
(
Tix, T iy

))

≤ d
(
Tix, T iy

)
+

p∑

j=1

(
βj − αj

)
; ∀(x, y) ∈ A� ×A�+1, ∀� ∈ p , ∀i ∈ Z0+.

(3.44)

The following result holds directly from (3.43) and (3.44) and Theorem 3.18.
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Theorem 3.19. The composed self-mappings T(p + i, i) on Ai for set- depending self-mappings Tj :
Aj∪Aj+1 → Aj+1∪Aj+2; i, j ∈ p as well as the self-mappings T on

⋃p

i=1 Ai defined by Tx = T(p+i, i)x
are guaranteed to be as follows.

(a) p-cyclic Meir-Keeler contractions if
∑p

j=1(βj − αj) < 0,

Thus, there is an asymptotic convergence from any initial point to the best proximity point
in general and to a fixed point if the sets in {A1, A2, . . . , Ap} have a nonempty intersection.
The fixed point is unique if (X, d) is complete.

(b) Nonexpansive p-cyclic self-mappings if
∑p

j=1(βj − αj) ≤ 0.

(c) Expansive p-cyclic self-mappings if
∑p

j=1(βj − αj) > 0.

More general conditions than the Meir-Keeler ones guaranteeing that the composed
self-mappings T(p + i, i) on Ai ∪Ai+1, i ∈ p are asymptotic contractions are now discussed.

Theorem 3.20. Assume that there is a real sequence {δi}∞1 of finite sum δ ∈ R+ which satisfies the
conditions

0 < δ :=
∞∑

j=1

δj < ∞,

ε +
∞∑

j=i

δj > 0, δi > 0; ∀i(≥ N) ∈ Z+

(3.45)

for some given real constant ε ∈ R+, whose elements are defined in such a way that the composed
self-mapping T(i, 1) on satisfies

dA ≤ d
(
T(i, 1)x,T(i, 1)y

)
< dA + ε +

∞∑

j=i

δj = dA + ε + δ −
i−1∑

j=1

δj ;

∀(x, y) ∈ A� ×A�+1, ∀� ∈ p , ∀i ∈ Z+

(3.46)

Then, ∃limi→∞d(T(i, 1)x,T(i, 1)y) = dA; ∀i ∈ p.

Proof. From the properties of the{δi}∞1 sequence and (3.46), one gets

d
(
T(i + 1, 1)x,T(i + 1, 1)y

)
< dA + ε +

∞∑

j=i+1

δj = dA + ε + δ −
i∑

j=1

δj < dA + ε

∀(x, y) ∈ A� ×A�+1, ∀� ∈ p ∀i(≥ N) ∈ Z+

(3.47)

for some sufficiently large finite N = N(ε).The constraint on the upperbounds in (3.47)
guarantees that the strict upper-bound dA + ε +

∑∞
j=i+1 δj for d(T(i+ 1, 1)x,T(i+ 1, 1)y) is less
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than a strict upper-bound for d(T(i, 1)x,T(i, 1)y) for any sufficiently large i ∈ Z+ provided
that

i∑

j=1

δj = δi +
i−1∑

j=1

δj >
i−1∑

j=1

δj =⇒ δi > 0; ∀i(≥ N) ∈ Z+. (3.48)

Furthermore, (3.46) holds ∀i ∈ Z+ if ε+
∑∞

j=i δj > 0; ∀i ∈ Z+. As a result, d(T(i, 1)x,T(i, 1)y) →
dA as i → ∞ since the supremum of all limits superior converge to dA (see the proof of
Theorem 3.19).

Theorem 3.20 may be particularized to p-cyclic asymptotic contractions as follows.

Theorem 3.21. Assume that there is a real sequence {δi}∞1 of finite sum δ ∈ R+ which satisfies the
following conditions for some i ∈ p:

0 < δ(i) :=
∞∑

j=i

δj < ∞, ε + δ(i) > 0,

ε +
∞∑

j=np+i

δj > 0 , δnp+i > 0; ∀n(≥ N) ∈ Z+

(3.49)

for some given real constant ε ∈ R+ whose elements are defined in such a way that the composed
self-mapping satisfies

dA ≤ d
(
T
(
np + i, i

)
x,T
(
np + i, i

)
y
)
< dA + ε +

∞∑

j=np+i

δj

= dA + ε + δ(i) −
np+i−1∑

j=i

δj ; ∀(x, y) ∈ Ai ×Ai+1 for the given i ∈ p.

(3.50)

Then, ∃limn→∞d(T(np + i, i)x,T(np + i, i)y) = dA for the given i ∈ p.

Proof. From the properties of the {δi}∞1 sequence and (3.50), one gets.

d
(
T
(
np + i + 1, i

)
x,T
(
np + i + 1, i

)
y
)

< dA + ε +
∞∑

j=np+i+1

δj = dA + ε + δ −
np+i∑

j=i

δj < dA + ε;

∀(x, y) ∈ Ai ×Ai+1 for the given i ∈ p, ∀n(≥ N) ∈ Z0+

(3.51)

for some sufficiently large finiteN = N(ε, i) and the given i ∈ p. The constraint on the upper-
bounds in (3.51) guarantees that the strict upper-bound dA + ε+

∑∞
j=np+i+1 δj for d(T(np+ i+
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1, i)x,T(np + i + 1, i)y) is less than a strict upper-bound for d(T(np + i, 1)x,T(np + i, 1)y) for
any sufficiently large n ∈ Z+ provided that

np+i∑

j=i

δj = δnpi +
np+i−1∑

j=i

δj >
np+i−1∑

j=i

δj =⇒ δnp+i > 0; ∀n(≥ N) ∈ Z+ for the given i ∈ p. (3.52)

Furthermore, (3.50) holds ∀n ∈ Z+ for the given i ∈ p if ε +
∑∞

j=np+i δj > 0; ∀n ∈ Z+ for the
given i ∈ p. As a result, d(T(np + i, i)x,T(np + i, i)y) → dA as n → ∞ since the supremum of
all limit superiors converges to dA (see the proof of Theorem 3.19).

Note that Theorem 3.21 guarantees that the self-mapping T(p + i, i) on Ai ∪ Ai+1has
a p-cyclic Meir-Keeler asymptotic contraction for a particular i ∈ p, while Theorem 3.20
guarantees that all the self-mappings T(p+ i, i) are asymptotic contractions. In both cases, the
self-mappings can be locally expansive in the sense that it can happen that d(T(j+1, i)x,T(j+
1, i)y) > d(T(j, i)x,T(j, i)y) for some finite j(≥ i), i ∈ Z0+, some (x, y) ∈ A� ×A�+1, and some
� ∈ p.
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[3] Dž. Burgić, S. Kalabušić, and M. R. S. Kulenović, “Global attractivity results for mixed-monotone
mappings in partially ordered complete metric spaces,” Fixed Point Theory and Applications, vol. 2009,
Article ID 762478, 17 pages, 2009.
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