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Motivated by Halpern’s result, we prove strong convergence theorem of an iterative sequence in
CAT(0) spaces. We apply our result to find a common fixed point of a family of nonexpansive
mappings. A convergence theorem for nonself mappings is also discussed.

1. Introduction

Let (X, d) be a metric space and x, y ∈ X with l = d(x, y). A geodesic path from x to y is
an isometry c : [0, l] → X such that c(0) = x and c(l) = y. The image of a geodesic path is
called a geodesic segment. A metric spaceX is a (uniquely) geodesic space if every two points ofX
are joined by only one geodesic segment. A geodesic triangle �(x1, x2, x3) in a geodesic space
X consists of three points x1, x2, x3 of X and three geodesic segments joining each pair of
vertices. A comparison triangle of a geodesic triangle �(x1, x2, x3) is the triangle �(x1, x2, x3) :=
�(x1, x2, x3) in the Euclidean space R

2 such that d(xi, xj) = dR2(xi, xj) for all i, j = 1, 2, 3.
A geodesic space X is a CAT(0) space if for each geodesic triangle � := �(x1, x2, x3) in

X and its comparison triangle � := �(x1, x2, x3) in R
2, the CAT(0) inequality

d
(
x, y

) ≤ dR2
(
x, y

)
(1.1)

is satisfied by all x, y ∈ � and x, y ∈ �. The meaning of the CAT(0) inequality is that
a geodesic triangle in X is at least thin as its comparison triangle in the Euclidean plane.
A thorough discussion of these spaces and their important role in various branches of
mathematics are given in [1, 2]. The complex Hilbert ball with the hyperbolic metric is an
example of a CAT(0) space (see [3]).
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The concept of Δ-convergence introduced by Lim in 1976 was shown by Kirk and
Panyanak [4] in CAT(0) spaces to be very similar to the weak convergence in Banach space
setting. Several convergence theorems for finding a fixed point of a nonexpansive mapping
have been established with respect to this type of convergence (e.g., see [5–7]). The purpose
of this paper is to prove strong convergence of iterative schemes introduced by Halpern [8]
in CAT(0) spaces. Our results are proved under weaker assumptions as were the case in
previous papers and we do not use Δ-convergence. We apply our result to find a common
fixed point of a countable family of nonexpansive mappings. A convergence theorem for
nonself mappings is also discussed.

In this paper, we write (1 − t)x ⊕ ty for the the unique point z in the geodesic segment
joining from x to y such that

d(z, x) = td
(
x, y

)
, d

(
z, y

)
= (1 − t)d

(
x, y

)
. (1.2)

We also denote by [x, y] the geodesic segment joining from x to y, that is, [x, y] = {(1 − t)x ⊕
ty : t ∈ [0, 1]}. A subset C of a CAT(0) space is convex if [x, y] ⊂ C for all x, y ∈ C. For
elementary facts about CAT(0) spaces, we refer the readers to [1] (or, briefly in [5]).

The following lemma plays an important role in our paper.

Lemma 1.1. A geodesic space X is a CAT(0) space if and only if the following inequality

d2((1 − t)x ⊕ ty, z
) ≤ (1 − t)d2(x, z) + td2(y, z

) − t(1 − t)d2(x, y
)

(1.3)

is satisfied by all x, y, z ∈ X and all t ∈ [0, 1]. In particular, if x, y, z are points in a CAT(0) space
and t ∈ [0, 1], then

d
(
(1 − t)x ⊕ ty, z

) ≤ (1 − t)d(x, z) + td
(
y, z

)
. (1.4)

Recall that a continuous linear functional μ on �∞, the Banach space of bounded real
sequences, is called a Banach limit if ‖μ‖ = μ(1, 1, . . .) = 1 and μn(an) = μn(an+1) for all {an} ∈
�∞.

Lemma 1.2 (see [9, Proposition 2]). Let (a1, a2, . . .) ∈ l∞ be such that μn(an) ≤ 0 for all Banach
limits μ and lim supn(an+1 − an) ≤ 0. Then lim supnan ≤ 0.

Lemma 1.3 (see [10, Lemma 2.3]). Let {sn} be a sequence of nonnegative real numbers, {αn} a
sequence of real numbers in [0, 1] with

∑∞
n=1 αn = ∞, {un} a sequence of nonnegative real numbers

with
∑∞

n=1 un < ∞, and {tn} a sequence of real numbers with lim supn→∞tn ≤ 0. Suppose that

sn+1 ≤ (1 − αn)sn + αntn + un ∀n ∈ N. (1.5)

Then limn→∞sn = 0.
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2. Halpern’s Iteration for a Single Mapping

Lemma 2.1. Let C be a closed convex subset of a complete CAT(0) space X and let T : C → C be a
nonexpansive mapping. Let u ∈ C be fixed. For each t ∈ (0, 1), the mapping St : C → C defined by

Stx = tu ⊕ (1 − t)Tx for x ∈ C (2.1)

has a unique fixed point xt ∈ C, that is,

xt = Stxt = tu ⊕ (1 − t)Txt. (2.2)

Proof. For x, y ∈ C, we consider the triangle �(u, Tx, Ty) and its comparison triangle and we
have the following:

d
(
tu ⊕ (1 − t)Tx, tu ⊕ (1 − t)Ty

) ≤ dR2

(
tu ⊕ (1 − t)Tx, tu ⊕ (1 − t)Ty

)

= (1 − t)dR2

(
Tx, Ty

)

= (1 − t)d
(
Tx, Ty

)

≤ (1 − t)d
(
x, y

)
.

(2.3)

This implies that St is a contraction mapping and hence the conclusion follows.

The following result is proved by Kirk in [11, Theorem 26] under the boundedness
assumption on C. We present here a new proof which is modified from Kirk’s proof.

Lemma 2.2. Let C, T be as the preceding lemma. Then F(T)/=∅ if and only if {xt} given by the
formula (2.2) remains bounded as t → 0. In this case, the following statements hold:

(1) {xt} converges to the unique fixed point z0 of T which is nearest u;

(2) d2(u, z0) ≤ μnd
2(u, xn) for all Banach limits μ and all bounded sequences {xn} with xn −

Txn → 0.

Proof. If F(T)/=∅, then it is clear that {xt} is bounded. Conversely, suppose that {xt} is
bounded. Let {tn} be any sequence in (0, 1) such that limn→∞tn = 0 and define g : C → R by

g(z) = lim sup
n→∞

d2(xtn , z) (2.4)

for all z ∈ C. By the boundedness of {xtn}, we have δ := inf{g(z) : z ∈ C} < ∞. We choose a
sequence {zm} in C such that limm→∞g(zm) = δ. It follows from Lemma 1.1 that

d2
(
xtn ,

1
2
zm ⊕ 1

2
zk

)
≤ 1

2
d2(xtn , zm) +

1
2
d2(xtn , zk) −

1
4
d2(zm, zk). (2.5)



4 Fixed Point Theory and Applications

Then, by the convexity of C,

δ ≤ lim sup
n→∞

d2
(
xtn ,

1
2
zm ⊕ 1

2
zk

)
≤ 1

2
g(zm) +

1
2
g(zk) − 1

4
d2(zm, zk). (2.6)

This implies that {zm} is a Cauchy sequence in C and hence it converges to a point z0 ∈ C.
Suppose that ẑ is a point in C satisfying g(ẑ) = δ. It follows then that

δ ≤ lim sup
n→∞

d2
(
xtn ,

1
2
z0 ⊕ 1

2
ẑ

)
≤ 1

2
g(z0) +

1
2
g(ẑ) − 1

4
d2(z0, ẑ), (2.7)

and hence ẑ = z0. Moreover, z0 is a fixed point of T . To see this, we consider

d(xtn , Txtn) =
tn

1 − tn
d(u, xtn) −→ 0, (2.8)

and

lim sup
n→∞

d2(xtn , Tz0) ≤ lim sup
n→∞

(d(xtn , Txtn) + d(Txtn , Tz0))
2

≤ lim sup
n→∞

(d(xtn , Txtn) + d(xtn , z0))
2

= lim sup
n→∞

d2(xtn , z0) = δ.

(2.9)

This implies that z0 = Tz0 and hence F(T)/=∅.
(1) is proved in [12, Theorem 26]. In fact, it is shown that z0 is the nearest point of F(T)

to u. Finally, we prove (2). Suppose that {ztm} is a sequence given by the formula (2.2), where
{tm} is a sequence in (0, 1) such that limm→∞tm = 0. We also assume that z0 = limm→∞ztm is
the nearest point of F(T) to u. By the first inequality in Lemma 1.1, we have

d2(xn, ztm) = d2(xn, tmu ⊕ (1 − tm)Tztm)

≤ tmd
2(xn, u) + (1 − tm)d2(xn, Tztm) − tm(1 − tm)d2(u, Tztm)

≤ tmd
2(xn, u) + (1 − tm)(d(xn, Txn) + d(Txn, Tztm))

2 − tm(1 − tm)d2(u, Tztm)

≤ tmd
2(xn, u) + (1 − tm)(d(xn, Txn) + d(xn, ztm))

2 − tm(1 − tm)d2(u, Tztm).
(2.10)

Let μ be a Banach limit. Then

μnd
2(xn, ztm) ≤ tmμnd

2(xn, u) + (1 − tm)μnd
2(xn, ztm) − tm(1 − tm)d2(u, Tztm). (2.11)

This implies that

μnd
2(xn, ztm) ≤ μnd

2(xn, u) − (1 − tm)d2(u, Tztm). (2.12)
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Letting m → ∞ gives

μnd
2(xn, z) ≤ μnd

2(xn, u) − d2(u, z). (2.13)

In particular,

d2(u, z) ≤ μnd
2(xn, u) for all Banach limits μ. (2.14)

Inspired by the results of Wittmann [13] and of Shioji and Takahashi [9], we use
the iterative scheme introduced by Halpern to obtain a strong convergence theorem for a
nonexpansive mapping in CAT(0) space setting. A part of the following theorem is proved in
[14].

Theorem 2.3. Let C be a closed convex subset of a complete CAT(0) space X and let T : C → C be a
nonexpansive mapping with a nonempty fixed point set F(T). Suppose that u, x1 ∈ C are arbitrarily
chosen and {xn} is iteratively generated by

xn+1 = αnu ⊕ (1 − αn)Txn ∀n ≥ 1, (2.15)

where {αn} is a sequence in (0, 1) satisfying

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3)
∑∞

n=1 |αn − αn+1| < ∞ or limn→∞(αn/αn+1) = 1.

Then {xn} converges to z ∈ F(T) which is the nearest point of F(T) to u.

Proof. We first show that the sequence {xn} is bounded. Let p ∈ F(T). Then

d
(
xn+1, p

)
= d

(
αnu ⊕ (1 − αn)Txn, p

)

≤ αnd
(
u, p

)
+ (1 − αn)d

(
Txn, p

)

≤ αnd
(
u, p

)
+ (1 − αn)d

(
xn, p

)

≤ max
{
d
(
u, p

)
, d

(
xn, p

)}
.

(2.16)

By induction, we have

d
(
xn+1, p

) ≤ max
{
d
(
u, p

)
, d

(
x1, p

)}
(2.17)

for all n ∈ N. This implies that {xn} is bounded and so is the sequence {Txn}.
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Next, we show that d(xn+1, xn) → 0. To see this, we consider the following:

d(xn+1, xn) = d(αnu ⊕ (1 − αn)Txn, αn−1u ⊕ (1 − αn−1)Txn−1)

≤ d(αnu ⊕ (1 − αn)Txn, αnu ⊕ (1 − αn)Txn−1)

+ d(αnu ⊕ (1 − αn)Txn−1, αn−1u ⊕ (1 − αn−1)Txn−1)

≤ (1 − αn)d(Txn, Txn−1) + |αn − αn−1|d(u, Txn−1)

≤ (1 − αn)d(xn, xn−1) + |αn − αn−1|d(u, Txn−1).

(2.18)

By the conditions (C2) and (C3), we have

d(xn+1, xn) −→ 0. (2.19)

Consequently, by the condition (C1),

d(xn, Txn) ≤ d(xn, xn+1) + d(xn+1, Txn)

= d(xn, xn+1) + d(αnu ⊕ (1 − αn)Txn, Txn)

= d(xn, xn+1) + αnd(u, Txn) −→ 0.

(2.20)

From Lemma 2.2, let z = limt→ 0xt where xt is given by the formula (2.2). Then z is the nearest
point of F(T) to u. We next consider the following:

d2(xn+1, z) = d2(αnu ⊕ (1 − αn)Txn, z)

≤ αnd
2(u, z) + (1 − αn)d2(Txn, z) − αn(1 − αn)d2(u, Txn)

≤ (1 − αn)d2(xn, z) + αn

(
d2(u, z) − (1 − αn)d2(u, Txn)

)
.

(2.21)

By Lemma 2.2, we have μn(d2(u, z) − d2(u, xn)) ≤ 0 for all Banach limits μ. Moreover, since
xn+1 − xn → 0,

lim sup
n→∞

(
d2(u, z) − d2(u, xn)

)
−
(
d2(u, z) − d2(u, xn+1)

)
= 0. (2.22)

It follows from xn − Txn → 0 and Lemma 1.2 that

lim sup
n→∞

(
d2(u, z) − (1 − αn)d2(u, Txn)

)
= lim sup

n→∞

(
d2(u, z) − d2(u, xn)

)
≤ 0. (2.23)

Hence the conclusion follows by Lemma 1.3.
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3. Halpern’s Iteration for a Family of Mappings

3.1. Finitely Many Mappings

We use the “cyclic method” [15] and Bauschke’s condition [16] to obtain the following strong
convergence theorem for a finite family of nonexpansive mappings.

Theorem 3.1. Let X be a complete CAT(0) space and C a closed convex subset of X. Let
T1, T2, . . . , TN : C → C be nonexpansive mappings with

⋂N
i=1 F(Ti)/=∅ and let u, x1 ∈ C be

arbitrarily chosen. Define an iterative sequence {xn} by

xn+1 = αnu ⊕ (1 − αn)Tn mod Nxn ∀n ≥ 1, (3.1)

where {αn} is a sequence in (0, 1) satisfying

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3)
∑∞

n=1 |αn − αn+N | < ∞ or limn→∞(αn/αn+N) = 1.

Suppose, in addition, that

N⋂

i=1

F(Ti) = F(TN ◦ TN−1 ◦ · · · ◦ T1). (3.2)

Then {xn} converges to z ∈ ⋂N
i=1 F(Ti) which is nearest u.

Here the modN function takes values in {1, 2, . . . ,N}.

Proof. By [16, Theorem 2], we have

N⋂

i=1

F(Ti) = F(T1 ◦ TN ◦ TN−1 ◦ · · · ◦ T2) = · · · = F(TN−1 ◦ TN ◦ T1 ◦ · · · ◦ TN−2). (3.3)

The proof line now follows from the proofs of Theorem 2.3 and [15, Theorem 3.1].

3.2. Countable Mappings

The following concept is introduced by Aoyama et al. [10]. LetX be a complete CAT(0) space
and C a subset of X. Let {Tn}∞n=1 be a countable family of mappings from C into itself. We say
that a family {Tn} satisfies AKTT-condition if

∞∑

n=1

sup{d(Tn+1z, Tnz) : z ∈ B} < ∞ (3.4)

for each bounded subset of B of C.
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IfC is a closed subset and {Tn} satisfies AKTT-condition, thenwe can define T : C → C
such that

Tx = lim
n→∞

Tnx (x ∈ C). (3.5)

In this case, we also say that ({Tn}, T) satisfies AKTT-condition.

Theorem 3.2. Let X be a complete CAT(0) space and C a closed convex subset of X. Let {Tn} : C →
C be a countable family of nonexpansive mappings with

⋂∞
n=1 F(Tn)/=∅. Suppose that u, x1 ∈ C are

arbitrarily chosen and {xn} is defined by

xn+1 = αnu ⊕ (1 − αn)Tnxn ∀n ≥ 1, (3.6)

where {αn} is a sequence in (0, 1) satisfying

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3)
∑∞

n=1 |αn − αn+1| < ∞ or limn→∞(αn/αn+1) = 1.

Suppose, in addition, that

(M1) ({Tn}, T) satisfies AKTT-condition;
(M2) F(T) =

⋂∞
n=1 F(Tn).

Then {xn} converges to z ∈ ⋂∞
n=1 F(Tn) which is nearest u.

Proof. Since the proof of this theorem is very similar to that of Theorem 2.3, we present here
only the sketch proof. First, we notice that both sequences {xn} and {Tnxn} are bounded and

d(xn+1, xn) = d(αnu ⊕ (1 − αn)Tnxn, αn−1u ⊕ (1 − αn−1)Tn−1xn−1)

≤ d(αnu ⊕ (1 − αn)Tnxn, αnu ⊕ (1 − αn)Tnxn−1)

+ d(αnu ⊕ (1 − αn)Tnxn−1, αnu ⊕ (1 − αn)Tn−1xn−1)

+ d(αnu ⊕ (1 − αn)Tn−1xn−1, αn−1u ⊕ (1 − αn−1)Tn−1xn−1)

≤ (1 − αn)d(Tnxn, Tnxn−1) + (1 − αn)d(Tnxn−1, Tn−1xn−1)

+ |αn − αn−1|d(u, Tn−1xn−1)

≤ (1 − αn)d(xn, xn−1) + d(Tnxn−1, Tn−1xn−1)

+ |αn − αn−1|d(u, Tn−1xn−1)

≤ (1 − αn)d(xn, xn−1) + |αn − αn−1|d(u, Tn−1xn−1)

+ sup
{
d
(
Tny, Tn−1y

)
: y ∈ {xn}

}
.

(3.7)

By conditions (C2), (C3), AKTT-condition, and Lemma 1.3, we have

d(xn+1, xn) −→ 0. (3.8)
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Consequently, d(xn, Tnxn) → 0 and hence

d(xn, Txn) ≤ d(xn, Tnxn) + d(Tnxn, Txn)

≤ d(xn, Tnxn) + sup{d(Tnz, Tz) : z ∈ {xn}}

≤ d(xn, Tnxn) +
∞∑

k=n

sup{d(Tkz, Tk+1z) : z ∈ {xn}} −→ 0.

(3.9)

Let z ∈ F(T) =
⋂∞

n=1 F(Tn) be the nearest point of F(T) to u. As in the proof of Theorem 2.3,
we have d2(u, z) ≤ μnd

2(u, xn) for all Banach limits μ and lim supn→∞(d
2(u, z) − d2(u, xn)) −

(d2(u, z) − d2(u, xn+1)) = 0. We observe that

d2(xn+1, z) = d2(αnu ⊕ (1 − αn)Tnxn, z)

≤ αnd
2(u, z) + (1 − αn)d2(Tnxn, z) − αn(1 − αn)d2(u, Tnxn)

≤ (1 − αn)d2(xn, z) + αn

(
d2(u, z) − (1 − αn)d2(u, Tnxn)

)
,

(3.10)

and this implies that

lim sup
n→∞

(
d2(u, z) − (1 − αn)d2(u, Tnxn)

)
= lim sup

n→∞

(
d2(u, z) − d2(u, xn)

)
≤ 0. (3.11)

Therefore, limn→∞d2(xn, z) = 0 and hence {xn} converges to z.

We next show how to generate a family of mappings from a given family of mappings
to satisfy conditions (M1) and (M2) of the preceding theorem. The following is an analogue
of Bruck’s result [17] in CAT(0) space setting. The idea using here is from [10].

Theorem 3.3. Let X be a complete CAT(0) space and C a closed convex subset of X. Suppose that
{Tn} : C → X is a countable family of nonexpansive mappings with

⋂∞
n=1 F(Tn)/=∅. Then there

exist a family of nonexpansive mappings {Sn} : C → X and a nonexpansive mapping S : C → X
such that

(M1) ({Sn}, S) satisfies AKTT-condition;

(M2) F(S) =
⋂∞

n=1 F(Tn).

Lemma 3.4. Let X and C be as above. Suppose that S, T : C → X are nonexpansive mappings and
F(S) ∩ F(T)/=∅. Then, for any 0 < t < 1, the mappingU := (1 − t)S ⊕ tT : C → X is nonexpansive
and F(U) = F(S) ∩ F(T).

Proof. To see that U is nonexpansive, we only apply the triangle inequality and two
applications of the second inequality in Lemma 1.1. We next prove the latter. It is clear that
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F(S) ∩ F(T) ⊂ F(U). To see the reverse inclusion, let p ∈ F(U) and q ∈ F(S) ∩ F(T). Then, by
the first inequality of Lemma 1.1,

d2(q, p
)
= d2(q,Up

)

= d2(q, (1 − t)Sp ⊕ tTp
)

≤ (1 − t)d2(q, Sp
)
+ td2(q, Tp

) − t(1 − t)d2(Sp, Tp
)

≤ d2(q, p
) − t(1 − t)d2(Sp, Tp

)
.

(3.12)

This implies Sp = Tp. As p = Up, we have p ∈ F(S) ∩ F(T), as desired.

Proof of Theorem 3.3. We first define a family of mappings {Sn} : C → X by

S1x =
1
2
x ⊕ 1

2
T1x

S2x =
22 − 1
22

S1x ⊕ 1
22

T2x

...

Snx =
2n − 1
2n

Sn−1x ⊕ 1
2n

Tnx

...

(3.13)

By Lemma 3.4, each Sn is a nonexpansive mapping satisfying F(Sn) =
⋂n

k=1 F(Tk). Notice that,
for fixed p ∈ ⋂∞

n=1 F(Tn),

d2(Sn+1x, Snx) = d2

(
2n+1 − 1
2n+1

Snx ⊕ 1
2n+1

Tn+1x, Snx

)

=
1

2n+1
d2(Tn+1x, Snx)

=
1

2n+1
(
d(Tn+1x, p) + d(p, Snx)

)2

≤ 1
2n−1

d2(x, p
)
.

(3.14)

From the estimation above, we have

∞∑

n=1

sup{d(Sn+1x, Snx) : x ∈ B} < ∞ (3.15)
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for each bounded subset B of C. In particular, {Snx} is a Cauchy sequence for each x ∈ C. We
now define the nonexpansive mapping S : C → X by

Sx = lim
n→∞

Snx. (3.16)

Finally, we prove that

F(S) =
∞⋂

n=1

F(Sn) =
∞⋂

n=1

F(Tn). (3.17)

The latter equality is clearly verified and
⋂∞

n=1 F(Sn) ⊂ F(S) holds. On the other hand, let
p ∈ F(S) and q ∈ ⋂∞

n=1 F(Tn). We consider the following:

d2(q, Snp
)
= d2

(
q,

2n − 1
2n

Sn−1p ⊕ 1
2n

Tnp

)

≤ 2n − 1
2n

d2(q, Sn−1p
)
+

1
2n

d2(q, Tnp
)

≤ 2n − 1
2n

d2(q, Sn−1p
)
+

1
2n

d2(q, p
)
.

(3.18)

Then

d2(q, Snp
) ≤

(
n∏

k=2

2k − 1
2k

)

d2(q, S1p
)
+

(

1 −
n∏

k=2

2k − 1
2k

)

d2(q, p
)

≤
(

n∏

k=2

2k − 1
2k

)(
1
2
d2(q, p

)
+
1
2
d2(q, T1p

) − 1
4
d2(p, T1p

)
)

+

(

1 −
n∏

k=2

2k − 1
2k

)

d2(q, p
)

≤
(

n∏

k=2

2k − 1
2k

)(
d2(q, p

) − 1
4
d2(p, T1p

)
)
+

(

1 −
n∏

k=2

2k − 1
2k

)

d2(q, p
)
.

(3.19)

Letting n → ∞ yields

d2(q, p
) ≤

( ∞∏

k=2

2k − 1
2k

)(
d2(q, p

) − 1
4
d2(p, T1p

)
)
+

(

1 −
∞∏

k=2

2k − 1
2k

)

d2(q, p
)
. (3.20)
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Because
∏∞

k=2((2
k − 1)/2k) > 0, we have p = T1p. Continuing this procedure we obtain that

p ∈ ⋂∞
n=1 F(Tn) and hence F(S) ⊂ ⋂∞

n=1 F(Tn). This completes the proof.

4. Nonself Mappings

From Bridson and Haefliger’s book (page 176), the following result is proved.

Theorem 4.1. Let X be a complete CAT(0) space and C a closed convex subset of X. Then the
followings hold true.

(i) For each x ∈ X, there exists an element π(x) ∈ C such that

d(x, π(x)) = dist(x,C). (4.1)

(ii) π(x) = π(x′) for all x′ ∈ [x, π(x)].

(iii) The mapping x �→ π(x) is nonexpansive.

The mapping π in the preceding theorem is called the metric projection from X onto C.
From this, we have the following result.

Theorem 4.2. Let X be a complete CAT(0) space and C a closed convex subset of X. Let T : C → X
be a nonself nonexpansive mapping with F(T)/=∅ and π : X → C the metric projection from X onto
C. Then the mapping π ◦ T is nonexpansive and F(π ◦ T) = F(T).

Proof. It follows from Theorem 4.1 that π ◦ T is nonexpansive. To see the latter, it suffices to
show that F(π ◦ T) ⊂ F(T). Let p ∈ F(π ◦ T) and q ∈ F(T). Since

d2(q, p
)
= d2

(
π
(
q
)
, π

(
1
2
Tp ⊕ 1

2
p

))

≤ d2
(
q,

1
2
Tp ⊕ 1

2
p

)

≤ 1
2
d2(q, Tp

)
+
1
2
d2(q, p

) − 1
4
d2(Tp, p

)

≤ d2(q, p
) − 1

4
d2(Tp, p

)
,

(4.2)

we have p = Tp and this finishes the proof.

By the preceding theorem and Theorem 2.3, we obtain the following result.

Theorem 4.3. Let X, C, T : C → X, and π : X → C be as the same as Theorem 4.2. Suppose that
u, x1 ∈ C are arbitrarily chosen and the sequence {xn} is defined by

xn+1 = αnu ⊕ (1 − αn)(π ◦ Txn) ∀n ≥ 1, (4.3)
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where {αn} is a sequence in (0, 1) satisfying

(C1) limn→∞αn = 0;

(C2)
∑∞

n=1 αn = ∞;

(C3)
∑∞

n=1 |αn − αn+1| < ∞ or limn→∞(αn/αn+1) = 1.

Then {xn} converges to z ∈ F(T) which is nearest u.
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