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This paper deals with obtaining a numerical method in order to approximate the solution of
the nonlinear Volterra integro-differential equation. We define, following a fixed-point approach,
a sequence of functions which approximate the solution of this type of equation, due to some
properties of certain biorthogonal systems for the Banach spaces C[0, 1] and C[0, 1]2.

1. Introduction

The aim of this paper is to introduce a numerical method to approximate the solution of the
nonlinear Volterra integro-differential equation, which generalizes that developed in [1]. Let
us consider the nonlinear Volterra integro-differential equation

y′(t) = f
(
t, y(t)

)
+
∫ t

0
K
(
t, s, y(s)

)
ds (t ∈ [0, 1]),

y(0) = y0,

(1.1)

where y0 ∈ R and K : [0, 1] × [0, 1] ×R → R and f : [0, 1] ×R → R are continuous functions
satisfying a Lipschitz condition with respect to the last variables: there exist Lf , LK ≥ 0 such
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that

∣
∣f
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t, y1

) − f
(
t, y2

)∣∣ ≤ Lf

∣
∣y1 − y2

∣
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∣
∣K

(
t, s, y1

) −K
(
t, s, y2

)∣∣ ≤ LK

∣
∣y1 − y2

∣
∣,

(1.2)

for t, s ∈ [0, 1] and for y1, y2 ∈ R. In the sequel, these conditions will be assumed. It is a simple
matter to check that a function z : [0, 1] → R is a solution of (1.1) if, and only if, it is a fixed
point of the self-operator of the Banach space C[0, 1] (usual supnorm) T : C[0, 1] → C[0, 1]
given by the formula

Ty(t) = y0 +
∫ t

0
f
(
v, y(v)

)
dv +

∫ t

0

∫v

0
K
(
v, s, y(s)

)
ds dv. (1.3)

Section 2 shows that operator T satisfies the hypothesis of the Banach fixed point
theorem and thus the sequence {Tm(z0)}m∈N converges to the solution z of (1.1) for any
z0 ∈ C[0, 1]. However, such a sequence cannot be determined in an explicit way. The
method we present consists of replacing the first element of the convergent sequence, Tz0,
by the new easy to calculate function z1 ∈ C[0, 1], and in such a way that the error
‖Tz0 − z1‖ is small enough. By repeating the same process for the function Tz1 and so
on, we obtain a sequence {zm}m≥0 that approximates the solution z of (1.1) in the uniform
sense. To obtain such sequence, we will make use of some biorthogonal systems, the usual
Schauder bases for the spaces C[0, 1] and C[0, 1]2, as well as their properties. These questions
are also reviewed in Section 2. In Section 3 we define the sequence {zm}m∈N described
above and we study the error ‖z − zk‖. Finally, in Section 4 we apply the method to two
examples.

Volterra integro-differential equations are usually difficult to solve in an analytical
way. Many authors have paid attention to their study and numerical treatment (see for
instance [2–15] for the classical methods and recent results). Among the main advantages
of our numerical method as opposed to the classical ones, such as collocation or quadrature,
we can point out that it is not necessary to solve algebraic equation systems; furthermore,
the integrals involved are immediate and therefore we do not have to require any quadrature
method to calculate them. Let us point out that our method clearly applies to the case where
the involved functions are defined in [t0,T], although we have chosen the unit interval for
the sake of simplicity. Schauder bases have been used in order to solve numerically some
differential and integral problems (see [1, 16–20]).

2. Preliminaries

We first show that operator Tn also satisfies a suitable Lipschitz condition. This result is
proven by using an inductive argument. The proof is similar to that of the linear case (see
[1, Lemma 2]).
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Lemma 2.1. For any p, q ∈ C[0, 1] and n ∈ N, we have

∥
∥Tnp − Tnq

∥
∥ ≤ Ln

n!
∥
∥p − q

∥
∥, (2.1)

where L := Lf + LK.

In view of the Banach fixed point theorem and Lemma 2.1, T has a unique fixed point
z and

for all z0 ∈ C([0, 1]) and m ≥ 1, ‖z − Tmz0‖ ≤
∞∑

k=m

Lk

k!
‖Tz0 − z0‖. (2.2)

Now let us consider a special kind of biorthogonal system for a Banach space. Let
us recall that a sequence {bn}n≥1 in a Banach space E is said to be a Schauder basis if for
every x ∈ E there exists a unique sequence of scalars {βn}n≥1 such that x =

∑
n≥1 βnbn. The

associated sequence of (continuous and linear) projections {Pn}n≥1 is defined by the partial
sums Pn(

∑
k≥1 βkbk) =

∑n
k=1 βkbk. We now consider the usual Schauder basis for the space

C[0, 1] (supnorm), also known as the Faber-Schauder basis: for a dense sequence of distinct
points {ti}i≥1, with t1 = 0 and t2 = 1, we define b1(t) := 1, (t ∈ [0, 1]) and for all n ≥ 2 we
use bn to stand for the piecewise linear function with nodes at the points {t1, . . . , tn} with
bn(tk) = 0 for all k < n and bn(tn) = 1. It is straightforward to show (see [21]) that the
sequence of projections {Pn}n≥1 satisfies the following interpolation property:

x ∈ C[0, 1], n ≥ 1, i ≤ n =⇒ Pn(x)(ti) = x(ti). (2.3)

In order to define an analogous basis for the Banach space C[0, 1]2 (supnorm), let us consider
the mapping σ : N → N × N given by (for a real number x, [x] denotes its integer part)

σ(n) :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(√
n,

√
n
)

if
[√

n
]
=
√
n,

(
n − [√

n
]2
,
[√

n
]
+ 1

)
if 0 < n − [√

n
]2 ≤ [√

n
]
,

([√
n
]
+ 1, n − [√

n
]2 − [√

n
])

if
[√

n
]
< n − [√

n
]2
.

(2.4)

If {bi}i≥1 is a Schauder base for the space C[0, 1], then the sequence

Bn(s, t) := bi(s)bj(t) (s, t ∈ [0, 1]), (2.5)

with σ(n) = (i, j), is a Schauder basis for C[0, 1]2 (see [21]). Therefore, from now on, if
{ti : i ≥ 1} is a dense subset of distinct points in [0, 1], with t1 = 0 and t2 = 1, and {bi}i≥1 is the
associated usual Schauder basis, then we will write {Bn}n≥1 to denote the Schauder basis for
C[0, 1]2 obtained in this “natural” way. It is not difficult to check that this basis satisfies similar
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properties to the ones for the one-dimensional case: for instance, the sequence of projections
{Qn}n≥1 satisfies, for all x ∈ C[0, 1]2 and for all n, i, j ∈ N with σ−1(i, j) ≤ n,

Qn(x)
(
ti, tj

)
= x

(
ti, tj

)
. (2.6)

Under certain weak conditions, we can estimate the rate of convergence of the sequence of
projections. For this purpose, consider the dense subset {ti}i≥1 of distinct points in [0, 1] and
let Tn be the set {t1, . . . , tn} ordered in an increasing way for n ≥ 2. Clearly, Tn is a partition
of [0, 1]. Let ΔTn denote the norm of the partition Tn. The following remarks follow easily
from the interpolating properties (2.3) and (2.6) and the mean-value theorems for one and
two variables:

x ∈ C1[0, 1], n ≥ 2 =⇒ ‖x − Pn(x)‖ ≤ 2
∥
∥x′∥∥ΔTn, (2.7)

x ∈ C1[0, 1]2, n ≥ 2 =⇒ ‖x −Qn2(x)‖ ≤ 4max
{∥∥∥∥

∂x

∂s

∥∥∥∥,
∥∥∥∥
∂x

∂t

∥∥∥∥

}
ΔTn. (2.8)

3. A Method for Approximating the Solution

We now turn to the main purpose of this paper, that is, to approximate the unique fixed point
of the nonlinear operator T : C[0, 1] → C[0, 1] given by (1.3), with the adequate conditions.
We then define the approximating sequence described in the Introduction.

Theorem 3.1. Let K ∈ C1([0, 1]2 × R), f ∈ C1([0, 1] × R), z0 ∈ C1[0, 1], and m ∈ N.
Let {ε1, . . . , εm} be a set of positive numbers and, with the notation above, define inductively, for
k ∈ {1, . . . , m} and 0 ≤ t, s ≤ 1, the functions

Ψk−1(t) := f(t, zk−1(t)),

Φk−1(t, s) := K(t, s, zk−1(s)),
(3.1)

zk(t) := y0 +
∫ t

0
Pmk(Ψk−1(v))dv +

∫ t

0

∫v

0
Qnk

2(Φk−1(v, s))dsdv, (3.2)

where

(1) mk is a natural number such that ΔTmk ≤
εk

4‖Ψ′
k−1‖

(2) nk is a natural number such that ΔTnk ≤
εk

4Mk−1
, with

Mk−1 := max
{∥∥∥∥

∂Φk−1
∂t

∥∥∥∥,
∥∥∥∥
∂Φk−1
∂s

∥∥∥∥

}
. (3.3)

Then, for all k ∈ {1, . . . , m}, it is satisfied that

‖Tzk−1 − zk‖ ≤ εk. (3.4)
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Proof. In view of condition (1) we have, by applying (2.7), that for all k ∈ {1, . . . , m}, the
inequality

‖Ψk−1 − Pmk−1(Ψk−1)‖ ≤ εk
2
. (3.5)

is valid. Analogously, it follows from condition (2) and (2.8) that for all k ∈ {1, . . . , m}

‖Φk−1 −Qm2
k−1
(Φk−1)‖ ≤ εk. (3.6)

As a consequence, we derive that for all t ∈ [0, 1] we have

|Tzk−1(t) − zk(t)| ≤
∣
∣∣∣∣

∫ t

0
(Ψk−1(v) − Pmk−1(Ψk−1(v)))dv

∣
∣∣∣∣

+

∣∣∣∣∣

∫ t

0

∫v

0

(
Φk−1(v, s) −Qm2

k−1
(Φk−1(v, s))

)
dsdv

∣∣∣∣∣

≤ εk
2

+ εk

∫ t

0

∫v

0
dsdv

= εk,

(3.7)

and therefore,

‖Tzk−1 − zk‖ ≤ εk (3.8)

as announced.

The next result is used in order to establish the fact that the sequence defined in
Theorem 3.1 approximates the solution of the nonlinear Volterra integro-differential equation,
as well as giving an upper bond of the error committed.

Proposition 3.2. Let m ∈ N and {z0, z1, . . . , zm} be any subset of C[0, 1]. Then

‖z − zm‖ ≤
∞∑

k=m

Lk

k!
‖Tz0 − z0‖ +

m∑

k=1

Lm−k

(m − k)!
‖Tzk−1 − zk‖, (3.9)

with z being the fixed point of the operator T and L = Lf + LK.

Proof. We know from Lemma 2.1 that

∥∥∥Tm−k+1zk−1 − Tm−kzk
∥∥∥ ≤ Lm−k

(m − k)!
‖Tzk−1 − zk‖ (3.10)
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for k ∈ {1, . . . , m}, which implies

m∑

k=1

∥
∥
∥Tm−k+1zk−1 − Tm−kzk

∥
∥
∥ ≤

m∑

k=1

Lm−k

(m − k)!
‖Tzk−1 − zk‖. (3.11)

The proof is complete by applying (2.2) to ‖z − Tmz0‖ and taking into account that

‖z − zm‖ ≤ ‖z − Tmz0‖ +
m∑

k=1

∥
∥
∥Tm−k+1zk−1 − Tm−kzk

∥
∥
∥. (3.12)

As a consequence of Theorem 3.1 and Proposition 3.2, if z is the exact solution of the
nonlinear Volterra integro-differential (1.1), then for the sequence of approximating functions
{zm}m≥0 the error ‖z − zm‖ is given by

‖z − zm‖ ≤
∞∑

k=m

Lk

k!
‖Tz0 − z0‖ +

m∑

k=1

Lm−k

(m − k)!
εk, (3.13)

where L = Lf + LK. In particular, it follows from this inequality that given ε > 0, there exists
m ≥ 1 such that ‖z − zm‖ < ε.

In order to choosemk and nk (projections Pmk andQn2
k
in Theorem 3.1), we can observe

the fact, which is not difficult to check, that the sequences {Ψ′
k}k≥0 and {Mk}k≥0 are bounded

(and hence conditions (1.1) and (1.3)) in Theorem 3.1 are easy to verify), provided that the
scalar sequence {εk}k≥1 is bounded, f and K are C1−functions, and ∂f/∂t, ∂f/∂s, ∂K/∂t,
∂K/∂s, and ∂K/∂u satisfy a Lipschitz condition at their last variables. Indeed in view of
inequality (3.13),

‖z − zk‖ ≤ eL
(

‖Tz0 − z0‖ + sup
k≥1

εk

)

, (3.14)

and in particular {zk}k≥0 is bounded. Therefore, taking into account that the Schauder bases
considered are monotone (norm-one projections, see [21]), we arrive at

∥∥z′k
∥∥ ≤ max

t∈[0,1]

∣∣f(t, zk−1(t))
∣∣ + max

t,s∈[0,1]
|K(t, s, zk−1(s))|. (3.15)

TakeMf := max0≤t≤1|f(t, 0)| andMK := max0≤t,s≤1|K(t, s, 0)| to derive from the triangle
inequality and the last inequality that

∥∥z′k
∥∥ ≤ Lf‖zk−1‖ +Mf + LK‖zk−1‖ +MK. (3.16)

Finally, since the sequence {zk}k≥0 is bounded, {z′k}k≥0 also is. Similarly, one proves
that {Ψ′

k}k≥1 is bounded (sequences {zk}k≥0 and {z′k}k≥0 are bounded and ∂f/∂t and ∂f/∂s
are Lipschitz at their second variables) and {Mk}k≥1 is bounded (sequences {zk}k≥0 and
{z′k}k≥0 are bounded and ∂K/∂t, ∂K/∂s, and ∂K/∂s are Lipschitz at the third variables).
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We have chosen the Schauder bases above for simplicity in the exposition, although
our numerical method also works by considering fundamental biorthogonal systems in
C[0, 1] and C[0, 1]2.

4. Numerical Examples

The behaviour of the numerical method introduced above will be illustrated with the
following two examples.

Example 4.1. ([22, Problem 2]). The equation

y′(t) = 2t − 1
2

(
sin

(
t4
))

+
∫ t

0
t2s cos

(
t2y(s)

)
ds (t ∈ [0, 1]),

y(0) = 0

(4.1)

has exact solution z(t) = t2.

Example 4.2. Consider the equation

y′(t) = 3t2 +
1
3
(
cos

(
y(t)

) − 1
)
+
∫ t

0
s2 sin

(
y(s)

)
ds (t ∈ [0, 1]),

y(0) = 0

(4.2)

whose exact solution is z(t) = t3.

The computations associated with the examples were performed using Mathematica
7. In both cases, we choose the dense subset of [0, 1]

{

0, 1,
1
2
,
1
4
,
3
4
, . . . ,

1
2k

,
3
2k

, . . . ,
2k − 1
2k

, . . .

}

(4.3)

to construct the Schauder bases in C[0, 1] and C[0, 1]2. To define the sequence {zm}m∈N
introduced in Theorem 3.1, we take z0(t) = y0 andmk = nk = j (for all k ∈ N) in the expression
(3.2), that is

zk(t) = y0 +
∫ t

0
Pj(Ψk−1(v))dv +

∫ t

0

∫v

0
Qj2(Φk−1(v, s))dsdv. (4.4)

In Tables 1 and 2 we exhibit, for j = 9, 17 and 33, the absolute errors committed in eight
points (ti) of [0, 1] when we approximate the exact solution z by the iteration zm. The results
in Table 1 improve those in [22].
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Table 1: Absolute errors for Example 4.1.

j = 9 j = 17 j = 33
ti |z3(ti) − z(ti)| |z3(ti) − z(ti)| |z3(ti) − z(ti)|
0.125 3.81 × 10−6 1.03 × 10−6 2.63 × 10−7

0.250 3.30 × 10−5 8.42 × 10−6 2.11 × 10−6

0.375 1.13 × 10−4 2.85 × 10−5 7.14 × 10−6

0.5 2.69 × 10−4 6.76 × 10−5 1.69 × 10−5

0.625 5.24 × 10−4 1.31 × 10−4 3.28 × 10−5

0.750 8.85 × 10−4 2.21 × 10−4 5.53 × 10−5

0.875 1.30 × 10−3 3.23 × 10−4 8.07 × 10−5

1 1.52 × 10−3 3.75 × 10−4 9.36 × 10−5

Table 2: Absolute errors for Example 4.2.

j = 9 j = 17 j = 33
ti |z2(ti) − z(ti)| |z2(ti) − z(ti)| |z2(ti) − z(ti)|
0.125 9.76 × 10−4 2.44 × 10−4 6.10 × 10−5

0.250 1.95 × 10−3 4.88 × 10−4 1.22 × 10−4

0.375 2.92 × 10−3 7.32 × 10−4 1.83 × 10−4

0.5 3.90 × 10−3 9.75 × 10−4 2.43 × 10−4

0.625 4.87 × 10−3 1.21 × 10−3 3.04 × 10−4

0.750 5.83 × 10−3 1.45 × 10−3 3.64 × 10−4

0.875 6.77 × 10−3 1.69 × 10−3 4.23 × 10−4

1 7.68 × 10−3 1.92 × 10−3 4.80 × 10−4
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