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In the first part of this paper, we prove the existence of common fixed points for a commuting
pair consisting of a single-valued and a multivalued mapping both satisfying the Suzuki condition
in a uniformly convex Banach space. In this way, we generalize the result of Dhompongsa et al.
(2006). In the second part of this paper, we prove a fixed point theorem for upper semicontinuous
mappings satisfying the Suzuki condition in strictly L(τ) spaces; our result generalizes a recent
result of Domı́nguez-Benavides et al. (2009).

1. Introduction

A mapping T on a subset E of a Banach space X is said to be nonexpansive if

∥
∥Tx − Ty

∥
∥ ≤ ∥

∥x − y
∥
∥, x, y ∈ E. (1.1)

In 2008, Suzuki [1] introduced a condition which is weaker than nonexpansiveness.
Suzuki’s condition which was named by him the condition (C) reads as follows: a mapping
T is said to satisfy the condition (C) on E if

1
2
‖x − Tx‖ ≤ ∥

∥x − y
∥
∥ =⇒ ∥

∥Tx − Ty
∥
∥ ≤ ∥

∥x − y
∥
∥, x, y ∈ E. (1.2)

He then proved some fixed point and convergence theorems for such mappings. We shall
at times refer to this concept by saying that T is a generalized nonexpansive mapping in
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the sense of Suzuki. Very recently, the current authors used a modified Suzuki condition
for multivalued mappings and proved a fixed point theorem for multivalued mappings
satisfying this condition in uniformly convex Banach spaces (see [2]).

In this paper, we first present a common fixed point theorem for commuting pairs
consisting of a single-valued and a multivalued mapping both satisfying the Suzuki
condition. This result extends a result of Dhompongsa et al. [3].

In the next part, we shall consider a recent result of Domı́nguez-Benavides et al. [4]
on the existence of fixed points in an important class of spaces which are usually called
strictly L(τ) spaces. These spaces contain all Lebesgue function spaces Lp(Ω) for p ≥ 1. In this
paper, we also generalize results of Domı́nguez-Benavides et al. [4] to upper semicontinuous
mappings satisfying the Suzuki condition.

2. Preliminaries

Given a mapping T on a subset E of a Banach space X, the set of its fixed points will be
denoted by

Fix(T) = {x ∈ E : Tx = x}. (2.1)

We start by the following definition due to Suzuki.

Definition 2.1 (see [1]). Let T be a mapping on a subset E of a Banach space X. The mapping
T is said to satisfy the Suzuki condition (C) if

1
2
‖x − Tx‖ ≤ ∥

∥x − y
∥
∥ =⇒ ∥

∥Tx − Ty
∥
∥ ≤ ∥

∥x − y
∥
∥, x, y ∈ E. (2.2)

As the following example shows, the Suzuki condition is weaker than nonexpansive-
ness. Therefore, it is natural to call these mappings as “generalized nonexpansive mappings”.
However, we shall at times refer to these mappings as those satisfying the condition (C).

Example 2.2. LetX = R be equippedwith the usual metric d(x, y) = |x−y|, and letE = [0, 7/2].
We put

T(x) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0, x ∈ [0, 3],

4x − 12, x ∈
[

3,
13
4

]

,

−4x + 14, x ∈
[
13
4
,
7
2

]

.

(2.3)

Themapping T is continuous and satisfies the condition (C). However, T is not nonexpansive.

Lemma 2.3 (see [1, Lemma 4]). Let T be a mapping defined on a closed subset E of a Banach space
X. Assume that T satisfies the condition (C). Then Fix(T) is closed. Moreover, if X is strictly convex
and E is convex, then Fix(T) is also convex.
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Theorem 2.4 (see [5, Theorem 2.3]). Let E be a nonempty bounded closed convex subset of a
uniformly convex Banach space X. Let T : E → E be a mapping satisfying the condition (C). Then T
has a fixed point.

Let (X, d) be a metric space. We denote by CB(X) the collection of all nonempty closed
bounded subsets ofX; we also writeKC(X) to denote the collection of all nonempty compact
convex subsets of X. Let H be the Hausdorff metric with respect to d, that is,

H(A,B) := max

{

sup
x∈A

dist(x, B), sup
y∈B

dist
(

y,A
)

}

, (2.4)

for all A,B ∈ CB(X) where dist(x, B) = infy∈Bd(x, y).
Let T : X → 2X be a multivalued mapping. An element x ∈ X is said to be a fixed

point of T provided that x ∈ Tx.

Definition 2.5. A multivalued mapping T : X → CB(X) is said to be nonexpansive provided
that

H
(

Tx, Ty
) ≤ ∥

∥x − y
∥
∥, x, y ∈ X. (2.5)

Suzuki’s condition can be modified to incorporate multivalued mappings. This was
done by the current authors in [2]. We call these mappings generalized multivalued
nonexpansive mappings in the sense of Suzuki or multivalued mappings satisfying the
condition (C). We now state Suzuki’s condition for multivalued mappings as follows.

Definition 2.6. A multivalued mapping T : X → CB(X) is said to satisfy the condition (C)
provided that

1
2
dist(x, Tx) ≤ ∥

∥x − y
∥
∥ =⇒ H

(

Tx, Ty
) ≤ ∥

∥x − y
∥
∥, x, y ∈ X. (2.6)

Example 2.7. Define a mapping T on [0, 5] by

T(x) =

⎧

⎪⎪
⎨

⎪⎪⎩

[

0,
x

5

]

, x /= 5,

{1}, x = 5.

(2.7)

It is not difficult to see that T satisfies the Suzuki condition; however, T is not nonexpansive.

The following lemma, proved by Goebel and Kirk [6], plays an important role in the
coming discussions.

Lemma 2.8. Let {zn} and {wn} be two bounded sequences in a Banach space X, and let 0 < λ < 1. If
for every natural number n we have zn+1 = λwn + (1 − λ)zn and ‖wn+1 −wn‖ ≤ ‖zn+1 − zn‖, then
limn→∞‖wn − zn‖ = 0.
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Definition 2.9. A multivalued mapping T : E → 2X is said to be upper semicontinuous on E
if {x ∈ E : Tx ⊂ V } is open in E whenever V ⊂ X is open.

We recall that if T is single valued, then T reduces to a continuous function.

3. Fixed Points in Uniformly Convex Banach Spaces

Let E be a nonempty closed convex subset of a Banach space X. Assume that {xn} is a
bounded sequence in X. For each x ∈ X, the asymptotic radius of {xn} at x is defined by

r(x, {xn}) = lim sup
n→∞

‖xn − x‖. (3.1)

Let

r = r(E, {xn}) = inf{r(x, {xn}) : x ∈ E},
A = A(E, {xn}) = {x ∈ E : r(x, {xn}) = r}.

(3.2)

The number r is known as the asymptotic radius of {xn} relative to E. Similarly, the set A
is called the asymptotic center of {xn} relative to E. In the case that X is a reflexive Banach
space and E is a nonempty closed convex bounded subset of X, the setA(E, {xn}) is always a
nonempty closed convex subset of E. To see this, observe that by the definition of r, for each
ε > 0, the set

Cε =
{

x ∈ E : lim sup
n→∞

‖xn − x‖ ≤ r + ε

}

(3.3)

is nonempty. It is not difficult to see that each Cε is closed and convex; hence

A =
⋂

ε>0

Cε (3.4)

is closed and convex. Moreover, it follows from the weak compactness of E that A is
nonempty. It is easy to see that if X is uniformly convex and if E is a closed convex subset of
X, then A consists of exactly one point.

A bounded sequence {xn} is said to be regular with respect to E if for every
subsequence {x′

n}we have

r(E, {xn}) = r
(

E,
{

x′
n

})

. (3.5)

It is also known that if X is uniformly convex and if E is a nonempty closed convex subset of
X, then for any x ∈ X, there exists a unique point a ∈ E such that ‖x − a‖ = dist(x, E).

The following lemma was proved by Goebel and Lim.

Lemma 3.1 (see [7, 8]). Let {xn} be a bounded sequence inX and let E be a nonempty closed convex
subset of X. Then {xn} has a subsequence which is regular relative to E.
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Definition 3.2. Let E be a nonempty closed convex bounded subset of a Banach space X, and
let t : E → X and T : E → CB(X) be two mappings. Then t and T are said to be commuting
mappings if for every x, y ∈ E such that x ∈ Ty and ty ∈ E, we have tx ∈ Tty.

Now the time is ripe to state and prove the main result of this section.

Theorem 3.3. Let E be a nonempty closed convex bounded subset of a uniformly convex Banach space
X. Let t : E → E be a single-valued mapping, and let T : E → KC(E) be a multivalued mapping.
If both t and T satisfy the condition (C) and if t and T are commuting, then they have a common fixed
point, that is, there exists a point z ∈ E such that z = t(z) ∈ T(z).

Proof. By Theorem 2.4, the mapping t has a nonempty fixed point set Fix(t) which is a closed
convex subset of X (by Lemma 2.3). We show that for x ∈ Fix(t), Tx ∩ Fix(t)/= ∅. To see this,
let x ∈ Fix(t); since t and T are commuting, we have ty ∈ Tx for each y ∈ Tx. Therefore, Tx
is invariant under t for each x ∈ Fix(t). Since Tx is a bounded closed convex subset of the
uniformly convex Banach space X, we conclude that t has a fixed point in Tx and therefore,
Tx ∩ Fix(t)/= ∅ for x ∈ Fix(t).

Now we find an approximate fixed point sequence for T in Fix(t). Take x0 ∈ Fix(t),
since Tx0 ∩ Fix(t)/= ∅, therefore, we can choose y0 ∈ Tx0 ∩ Fix(t). Define

x1 =
1
2
(

x0 + y0
)

. (3.6)

Since Fix(t) is a convex set, we have x1 ∈ Fix(t). Let y1 ∈ T(x1) be chosen in such a way that

∥
∥y0 − y1

∥
∥ = dist

(

y0, T(x1)
)

. (3.7)

We see that y1 ∈ Fix(t). Indeed, we have

1
2
∥
∥y0 − ty0

∥
∥ = 0 ≤ ∥

∥y0 − y1
∥
∥. (3.8)

Since t satisfies the condition (C), we get

∥
∥y0 − ty1

∥
∥ =

∥
∥ty0 − ty1

∥
∥ ≤ ∥

∥y0 − y1
∥
∥ (3.9)

which contradicts the uniqueness of y1 as the unique nearest point of y0 (note that ty1 ∈ Tx1).
Similarly, put x2 = (1/2)(x1 + y1); again we choose y2 ∈ T(x2) in such a way that

∥
∥y1 − y2

∥
∥ = dist

(

y1, T(x2)
)

. (3.10)

By the same argument, we get y2 ∈ Fix(t). In this way, we will find a sequence {xn} in Fix(t)
such that xn+1 = (1/2)(xn + yn)where yn ∈ T(xn) ∩ Fix(t) and

∥
∥yn−1 − yn

∥
∥ = dist

(

yn−1, T(xn)
)

. (3.11)
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Therefore, for every natural number n ≥ 1, we have

1
2
∥
∥xn − yn

∥
∥ = ‖xn − xn+1‖ (3.12)

from which it follows that

1
2
dist(xn, T(xn)) ≤ 1

2
∥
∥xn − yn

∥
∥ = ‖xn − xn+1‖, n ≥ 1. (3.13)

Our assumption now gives

H(T(xn), T(xn+1)) ≤ ‖xn − xn+1‖, n ≥ 1, (3.14)

hence

∥
∥yn − yn+1

∥
∥ = dist

(

yn, T(xn+1)
) ≤ H(T(xn), T(xn+1)) ≤ ‖xn − xn+1‖, n ≥ 1. (3.15)

We now apply Lemma 2.8 to conclude that limn→∞‖xn−yn‖ = 0 where yn ∈ T(xn). Moreover,
by passing to a subsequence we may assume that {xn} is regular (see Lemma 3.1). Since
X is uniformly convex, A(Fix(t), {xn}) is singleton, say w (note that w ∈ Fix(t)). Let r =
r(Fix(t), {xn}). For each n ≥ 1, we choose zn ∈ T(w) such that

∥
∥yn − zn

∥
∥ = dist

(

yn, T(w)
)

. (3.16)

On the other hand, there is a natural number n0 such that for every n ≥ n0 we have (1/2)‖xn−
yn‖ ≤ ‖xn −w‖. This implies that

1
2
dist(xn, T(xn)) ≤ ‖xn −w‖, (3.17)

and hence from our assumption we obtain

H(T(xn), T(w)) ≤ ‖xn −w‖, n ≥ n0. (3.18)

Therefore,

∥
∥yn − zn

∥
∥ ≤ H(T(xn), T(w)) ≤ ‖xn −w‖, n ≥ n0. (3.19)

Moreover, zn ∈ Fix(t) for all natural numbers n ≥ 1. Indeed, since

∥
∥yn − tyn

∥
∥ = 0 ≤ ∥

∥yn − zn
∥
∥, n ≥ 1, (3.20)
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we have

∥
∥yn − tzn

∥
∥ =

∥
∥tyn − tzn

∥
∥ ≤ ∥

∥yn − zn
∥
∥. (3.21)

Since w ∈ Fix(t) and zn ∈ T(w), by the fact that the mappings t and T are commuting, we
obtain tzn ∈ Ttw = Tw. Now, by the uniqueness of zn as the nearest point to yn, we get
tzn = zn ∈ Fix(t).

Since T(w) is compact, the sequence {zn} has a convergent subsequence {znk} with
limk→∞znk = v ∈ T(w). Because znk ∈ Fix(t) for all n, and Fix(t) is closed, we obtain v ∈
Fix(t). Note that

‖xnk − v‖ ≤ ∥
∥xnk − ynk

∥
∥ +

∥
∥ynk − znk

∥
∥ + ‖znk − v‖ (3.22)

and for nk ≥ n0 we have ‖ynk − znk‖ ≤ ‖xnk −w‖. This entails

lim sup
k→∞

‖xnk − v‖ ≤ lim sup
k→∞

‖xnk −w‖ ≤ r. (3.23)

Since {xn} is regular, this shows that w = v ∈ T(w). And hence w = tw ∈ Tw.

As a consequence, we obtain the theorem already proved by Dhompongsa et al. (see
[3, Theorem 4.2]).

Corollary 3.4. Let E be a nonempty closed convex bounded subset of a uniformly convex Banach
space X, t : E → E, and T : E → KC(E) a single-valued and a multivalued nonexpansive mapping,
respectively. Assume that t and T are commuting mappings. Then there exists a point z ∈ E such that
z = t(z) ∈ T(z).

Corollary 3.5. Let E be a nonempty bounded closed convex subset of a uniformly convex Banach
space X, and let T : E → KC(E) be a multivalued mapping satisfying the Suzuki condition (C).
Then T has a fixed point.

Corollary 3.6. Let E be a nonempty closed convex bounded subset of a uniformly convex Banach
space X, and let T : E → KC(E) be a nonexpansive multivalued mapping. Then T has a fixed point.

4. Strictly L(τ) Spaces

Definition 4.1. Let (X, ‖ · ‖) be a Banach space and let τ be a linear topology on X. We say that
X is a strictly L(τ) space if there exists a function δ : [0,∞) × [0,∞) → [0,∞) satisfying the
following

(i) δ is continuous;

(ii) δ(·, s) is strictly increasing;

(iii) δ(0, s) = s, for every s ∈ [0,∞);

(iv) δ(r, ·) is strictly increasing;
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(v) Φ(xn)(y) = δ(Φ(xn)(0), ‖y‖), for every y ∈ X and for every bounded and τ-null
sequence (xn), where Φ(xn)(y) : X → [0,∞) is defined by

Φ(xn)
(

y
)

:= lim supn→∞
∥
∥xn − y

∥
∥. (4.1)

In this case we also say that X satisfies the strict property L(τ)with respect to δ.

Example 4.2 (see [9]). Let (Ω,Σ, μ) be a positive σ-finite measure space. For every 1 ≤ p < +∞,
consider the Banach space Lp(Ω) with the usual norm. Let τ be the topology of convergence
locally in measure (clm). Then Lp(Ω) endowed with the clm-topology satisfies the property
L(τ)with δ(r, s) = (rp + sp)1/p

Definition 4.3. Let (X, ‖ · ‖) be a Banach space and let τ be a linear topology on X which is
weaker than the norm topology. Let E be a closed convex bounded subset of (X, ‖ · ‖); then
for x0 ∈ X, we write PE(x0) = {x ∈ E : ‖x − x0‖ = dist(x0, E)}. We say that E has property (P)
if for every x ∈ E

τ
the set PE(x) is a nonempty and norm-compact subset of E.

Theorem 4.4. Let X be a strictly L(τ) Banach space and let E be a nonempty closed convex bounded
subset of X satisfying the property (P). Suppose, in addition, that E

τ
is τ-sequentially compact. If

T : E → KC(E) satisfies the condition (C), and if T is an upper semicontinuous mapping, then T
has a fixed point.

Proof. First, we find an approximate fixed point sequence. Choose x0 ∈ E and y0 ∈ T(x0).
Define

x1 =
1
2
(

x0 + y0
)

. (4.2)

Let y1 ∈ T(x1) be chosen in such a way that

∥
∥y0 − y1

∥
∥ = dist

(

y0, T(x1)
)

. (4.3)

Similarly, put x2 = (1/2)(x1 + y1); again we choose y2 ∈ T(x2) in such a way that

∥
∥y1 − y2

∥
∥ = dist

(

y1, T(x2)
)

. (4.4)

In this way, wewill find a sequence {xn} inE such that xn+1 = (1/2)(xn+yn), where yn ∈ T(xn)
and

∥
∥yn−1 − yn

∥
∥ = dist

(

yn−1, T(xn)
)

. (4.5)

Therefore, for every natural number n ≥ 1, we have

1
2
∥
∥xn − yn

∥
∥ = ‖xn − xn+1‖, (4.6)
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from which it follows that

1
2
dist(xn, T(xn)) ≤ 1

2
∥
∥xn − yn

∥
∥ = ‖xn − xn+1‖, n ≥ 1. (4.7)

Our assumption now gives

H(T(xn), T(xn+1)) ≤ ‖xn − xn+1‖, n ≥ 1. (4.8)

Hence

∥
∥yn − yn+1

∥
∥ = dist

(

yn, T(xn+1)
) ≤ H(T(xn), T(xn+1)) ≤ ‖xn − xn+1‖, n ≥ 1. (4.9)

We now apply Lemma 2.8 to conclude that limn→∞‖xn − yn‖ = 0 where yn ∈ T(xn). Since
E
τ
is τ-sequentially compact, by passing to a subsequence, we may assume that (xn) is τ-

convergent to x0 ∈ E
τ
. Now we are going to show that

PE(x0) ∩ T(z)/= ∅, ∀z ∈ PE(x0). (4.10)

Taking any z ∈ PE(x0), by the compactness of Tz, we can find zn ∈ Tz such that ‖yn − zn‖ =
dist(yn, T(z)). On the other hand, there is a natural number n0 such that for every n ≥ n0 we
have (1/2)‖xn − yn‖ ≤ ‖xn − z‖. This implies that

1
2
dist(xn, T(xn)) ≤ ‖xn − z‖, (4.11)

and hence from the assumption we obtain

H(T(xn), T(z)) ≤ ‖xn − z‖, n ≥ n0. (4.12)

Therefore,

∥
∥yn − zn

∥
∥ = dist

(

yn, T(z)
) ≤ H(T(xn), T(z)) ≤ ‖xn − z‖, n ≥ n0. (4.13)

Since T(z) is compact, the sequence {zn} has a convergent subsequence {znk} with
limk→∞znk = w0 ∈ T(z). It follows that

Φ(xnk
)(w0) = lim sup

k→∞

∥
∥ynk −w0

∥
∥ = lim sup

k→∞

∥
∥ynk − znk

∥
∥

≤ lim sup
k→∞

‖xnk − z‖ = δ
(

Φ(xnk
)(x0), ‖z − x0‖

)

.
(4.14)
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On the other hand, we have that Φ(xnk
)(w0) = δ(Φ(xnk

)(x0), ‖w0 − x0‖). Since δ is strictly
increasing, it follows that ‖w0 − x0‖ ≤ ‖z − x0‖. Hence w0 ∈ PE(x0) and so PE(x0) ∩ T(z)/= ∅.
Now we define the mapping

T̃ : PE(x0) −→ KC(PE(x0)) (4.15)

by T̃(z) = PE(x0) ∩ T(z). From [10, Proposition 2.45], we know that the mapping T̃ is upper
semicontinuous. Since PE(x0) ∩ T(z) is a compact convex set, we can apply the Kakutani-
Bohnenblust-Karlin Theorem (see [11]) to obtain a fixed point for T̃ and hence for T .

Corollary 4.5. Let X be a strictly L(τ) Banach space and let E be a nonempty closed convex bounded
subset of X satisfying the property (P). Suppose, in addition, that E

τ
is τ-sequentially compact. If

T : E → KC(E) is a nonexpansive mapping, then T has a fixed point.

Corollary 4.6. Let X be a strictly L(τ) Banach space and let E be a nonempty closed convex and
bounded subset of X satisfying the property (P). Suppose, in addition, that E

τ
is τ-sequentially

compact. If T : E → E is a continuous mapping satisfying the condition (C), then T has a fixed
point.

Finally we mention that by Example 2.2, this corollary generalizes the recent result of
Domı́nguez-Benavides et al. [4].
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