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We prove strong convergence theorems for countable families of asymptotically nonexpansive
mappings and semigroups in Hilbert spaces. Our results extend and improve the recent results
of Nakajo and Takahashi (2003) and of Zegeye and Shahzad (2008) from the class of nonexpansive
mappings to asymptotically nonexpansive mappings.

1. Introduction

Throughout this paper, Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖,
and we write xn → x to indicate that the sequence {xn} converges strongly to x. Let C be
a nonempty closed convex subset of H, and let T : C → C be a mapping. Recall that T is
nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C. We denote the set of fixed points of T by
F(T), that is, F(T) = {x ∈ C : x = Tx}. A mapping T is said to be asymptotically nonexpansive
if there exists a sequence {kn}with kn ≥ 1 for all n, limn→∞kn = 1, and

∥
∥Tnx − Tny

∥
∥ ≤ kn

∥
∥x − y

∥
∥ ∀n ≥ 1, x, y ∈ C. (1.1)

Mann’s iterative algorithmwas introduced byMann [1] in 1953. This iteration process is now
known as Mann’s iteration process, which is defined as

xn+1 = αnxn + (1 − αn)Txn, n ≥ 0, (1.2)



2 Fixed Point Theory and Applications

where the initial guess x0 is taken in C arbitrarily and the sequence {αn}∞n=0 is in the interval
[0, 1].

In 1967, Halpern [2] first introduced the following iteration scheme:

xn+1 = αnu + (1 − αn)Txn (1.3)

for all n ∈ N, where x1 = x ∈ C and {αn} is a sequence in [0, 1]. This iteration process is called
a Halpern-type iteration.

Recall also that a one-parameter family T = {T(t) : 0 ≤ t < ∞} of self-mappings
of a nonempty closed convex subset C of a Hilbert space H is said to be a (continuous)
Lipschitzian semigroup on C if the following conditions are satisfied:

(a) T(0)x = x, x ∈ C;

(b) T(t + s)x = T(t)T(s)x, for all t, s ≥ 0, x ∈ C;

(c) for each x ∈ C, the map t �→ T(t)x is continuous on [0,∞);

(d) there exists a bounded measurable function L : (0,∞) → [0,∞) such that, for each
t > 0, ‖T(t)x − T(t)y‖ ≤ Lt‖x − y‖, for all x, y ∈ C.

A Lipschitzian semigroup T is called nonexpansive if Lt = 1 for all t > 0, and
asymptotically nonexpansive if lim supt→∞Lt ≤ 1. We denote by F(T) the set of fixed points
of the semigroup T, that is, F(T) = {x ∈ C : T(s)x = x, ∀s > 0}.

In 2003, Nakajo and Takahashi [3] proposed the following modification of the Mann
iteration method for a nonexpansive mapping T in a Hilbert space H:

x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)Txn,

Cn =
{

v ∈ C :
∥
∥yn − v

∥
∥ ≤ ‖xn − v‖

}

,

Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≥ 0},

xn+1 = PCn∩Qn(x0),

(1.4)

where PC denotes the metric projection from H onto a closed convex subset C of H. They
proved that the sequence {xn} converges weakly to a fixed point of T . Moreover, they
introduced and studied an iteration process of a nonexpansive semigroup T = {T(t) : 0 ≤
t < ∞} in a Hilbert space H:

x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)
1
tn

∫ tn

0
T(u)xndu,

Cn =
{

v ∈ C :
∥
∥yn − v

∥
∥ ≤ ‖xn − v‖

}

,

Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≥ 0},

xn+1 = PCn∩Qn(x0).

(1.5)
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In 2006, Kim and Xu [4] adapted iteration (1.4) to an asymptotically nonexpansive
mapping in a Hilbert space H:

x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)Tnxn,

Cn =
{

v ∈ C :
∥
∥yn − v

∥
∥
2 ≤ ‖xn − v‖2 + θn

}

,

Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≥ 0},

xn+1 = PCn∩Qn(x0),

(1.6)

where θn = (1 − αn)(k2
n − 1)(diamC)2 → 0 as n → ∞. They also proved that if αn ≤ a for

all n and for some 0 < a < 1, then the sequence {xn} converges weakly to a fixed point
of T . Moreover, they modified an iterative method (1.5) to the case of an asymptotically
nonexpansive semigroup T = {T(t) : 0 ≤ t < ∞} in a Hilbert space H:

x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)
1
tn

∫ tn

0
T(u)xndu,

Cn =
{

v ∈ C :
∥
∥yn − v

∥
∥
2 ≤ ‖xn − v‖2 + θn

}

,

Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≥ 0},

xn+1 = PCn∩Qn(x0),

(1.7)

where θn = (1 − αn)[((1/tn)
∫ tn
0 Ludu)

2 − 1](diamC)2 → 0 as n → ∞.
In 2007, Zegeye and Shahzad [5] developed the iteration process for a finite family of

asymptotically nonexpansive mappings and asymptotically nonexpansive semigroups with
C a closed convex bounded subset of a Hilbert space H:

x0 ∈ C, chosen arbitrarily,

yn = αn0xn + αn1T
n
1 xn + αn2T

n
2 xn + · · · + αnrT

n
r xn,

Cn =
{

v ∈ C :
∥
∥yn − v

∥
∥
2 ≤ ‖xn − v‖2 + θn

}

,

Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≥ 0},

xn+1 = PCn∩Qn(x0),

(1.8)



4 Fixed Point Theory and Applications

where θn = [(k2
n1 − 1)αn1 + (k2

n2 − 1)αn2 + · · · + (k2
nr − 1)αnr](diamC)2 → 0 as n → ∞ and

x0 ∈ C, chosen arbitrarily,

yn = αn0xn + αn1

(

1
tn1

∫ tn1

0
T1(u)xndu

)

+

(

1
tn2

∫ tn2

0
T2(u)xndu

)

+ · · · +
(

1
tnr

∫ tnr

0
Tr(u)xndu

)

,

Cn =
{

v ∈ C :
∥
∥yn − v

∥
∥
2 ≤ ‖xn − v‖2 + θ̃n

}

,

Qn = {v ∈ C : 〈xn − v, xn − x0〉 ≥ 0},

xn+1 = PCn∩Qn(x0),
(1.9)

where θ̃n = [(L2
u1 − 1)αn1 + (L2

u2 − 1)αn2 + · · · + (L2
ur − 1)αnr](diamC)2 → 0 as n → ∞, with

Lui = (1/tni)
∫ tni
0 LTi

u du, for each i = 1, 2, 3, . . . , r.
Recently, Su and Qin [6] modified the hybrid iteration method of Nakajo and

Takahashi through the monotone hybrid method, and to prove strong convergence theorems.
In 2008, Takahashi et al. [7] proved strong convergence theorems by the new hybrid

methods for a family of nonexpansive mappings and nonexpansive semigroups in Hilbert
spaces:

yn = αnun + (1 − αn)Tnxn,

Cn+1 =
{

v ∈ Cn :
∥
∥yn − v

∥
∥ ≤ ‖un − v‖

}

,

xn+1 = PCn+1(x0), n ∈ N,

(1.10)

where 0 ≤ αn ≤ a < 1, and

yn = αnun + (1 − αn)
1
λn

∫λn

0
T(s)unds,

Cn+1 =
{

v ∈ Cn :
∥
∥yn − v

∥
∥ ≤ ‖un − v‖

}

,

xn+1 = PCn+1(x0), n ∈ N,

(1.11)

where 0 ≤ αn ≤ a < 1, 0 < λn < ∞ and λn → ∞.
In this paper, motivated and inspired by the above results, we modify iteration

process (1.4)–(1.11) by the new hybrid methods for countable families of asymptotically
nonexpansive mappings and semigroups in a Hilbert space, and to prove strong convergence
theorems. Our results presented are improvement and extension of the corresponding results
in [3, 5–8] and many authors.

2. Preliminaries

This section collects some lemmas which will be used in the proofs for the main results in the
next section.
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Lemma 2.1. Here holds the identity in a Hilbert spaceH:

∥
∥λx + (1 − λ)y

∥
∥
2 = λ‖x‖2 + (1 − λ)

∥
∥y

∥
∥
2 − λ(1 − λ)

∥
∥x − y

∥
∥
2 (2.1)

for all x, y ∈ H and λ ∈ [0, 1].

Using this Lemma 2.1, we can prove that the set F(T) of fixed points of T is closed and
convex. Let C be a nonempty closed convex subset of H. Then, for any x ∈ H, there exists a
unique nearest point inC, denoted by PC(x), such that ‖x−PCx‖ ≤ ‖x−y‖ for all y ∈ C, where
PC is called the metric projection of H onto C. We know that for x ∈ H and z ∈ C, z = PCx is
equivalent to 〈x − z, z − u〉 ≥ 0 for all u ∈ C. We know that a Hilbert spaceH satisfies Opial’s
condition, that is, for any sequence {xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥
∥xn − y

∥
∥ (2.2)

hold for every y ∈ H with y /=H. We also know that H has the Kadec-Klee property, that is,
xn ⇀ x and ‖xn‖ → ‖x‖ imply xn → x. In fact, from

‖xn − x‖2 = ‖x‖2 − 2〈xn, x〉 + ‖x‖2 (2.3)

we get that a Hilbert space has the Kadec-Klee property.
Let C be a nonempty closed convex subset of a Hilbert spaceH. Motivated by Nakajo

et al. [9], we give the following definitions: Let {Tn} and T be families of nonexpansive
mappings of C into itself such that ∅/=F(T) ⊂

⋂∞
n=1 F(Tn), where F(TN) is the set of all fixed

points of Tn and F(T) is the set of all common fixed points of T. We consider the following
conditions of {Tn} and T (see [9]):

(i) NST-condition (I). For each bounded sequence {zn} ⊂ C, limn→∞‖zn − Tnzn‖ = 0
implies that limn→∞‖zn − Tzn‖ = 0 for all T ∈ T.

(ii) NST-condition (II). For each bounded sequence {zn} ⊂ C, limn→∞‖zn+1 − Tnzn‖ = 0
implies that limn→∞‖zn − Tmzn‖ = 0 for all m ∈ N.

(iii) NST-condition (III). There exists {an} ⊂ [0,∞)with
∑∞

n=1 an < ∞ such that for every
bounded subset B of C, there exists MB > 0 such that ‖Tnx − Tn+1x‖ ≤ anMB holds
for all n ∈ N and x ∈ B.

Lemma 2.2. Let C be a nonempty closed convex subset of E and let T be a nonexpansive mapping of
C into itself with F(T)/= ∅. Then, the following hold:

(i) {Tn} with Tn = T(∀n ∈ N) and T = {T} satisfy the condition (I) with
⋂∞

n=1 F(Tn) =
F(T) = F(T).

(ii) {Tn} with Tn = T(∀n ∈ N) and T = {T} satisfy the condition (I) with αn = 0 (∀n ∈ N).

Lemma 2.3 (Opial [10]). LetC be a closed convex subset of a real Hilbert spaceH and let T : C → C
be a nonexpansive mapping such that F(T)/= ∅. If {xn} is a sequence in C such that xn ⇀ z and
xn − Txn → 0, then z = Tz.
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Lemma 2.4 (Lin et al. [11]). Let T be an asymptotically nonexpansive mapping defined on a bounded
closed convex subset of a bounded closed convex subset C of a Hilbert space H. If {xn} is a sequence
in C such that xn ⇀ z and Txn − xn → 0, then z ∈ F(T).

Lemma 2.5 (Nakajo and Takahashi [3]). Let H be a real Hilbert space. Given a closed convex
subset C ⊂ H and points x, y, z ∈ H. Given also a real number a ∈ R. The set D := {v ∈ C :
‖y − v‖2 ≤ ‖x − v‖2 + 〈z, v〉 + a} is convex and closed.

Lemma 2.6 (Kim and Xu [4]). Let C be a nonempty bounded closed convex subset of H and T =
{T(t) : 0 ≤ t < ∞} be an asymptotically nonexpansive semigroup on C. If {xn} is a sequence in C
satisfying the properties

(a) xn ⇀ z;

(b) lim supt→∞lim supn→∞‖T(t)xn − xn‖ = 0,

then z ∈ F(T).

Lemma 2.7 (Kim and Xu [4]). Let C be a nonempty bounded closed convex subset of H and T =
{T(t) : 0 ≤ t < ∞} be an asymtotically nonexpansive semigroup on C. Then it holds that

lim sup
s→∞

lim sup
t→∞

sup
x∈C

∥
∥
∥
∥
∥

1
t

∫ t

0
T(u)xdu − T(s)

(

1
t

∫ t

0
T(u)xdu

)∥
∥
∥
∥
∥
= 0. (2.4)

3. Strong Convergence for a Family of Asymptotically
Nonexpansive Mappings

Theorem 3.1. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let Ti :
C → C for i = 1, 2, 3, . . . be a countable family of asymptotically nonexpansive mapping with sequence
{tni}n≥0 for i = 1, 2, 3, . . ., respectively. Assume {αn}n≥0 ⊂ (0, 1) such that αn ≤ a < 1 for all n and
αn → 0 as n → ∞. Let F(T) =

⋂∞
i=1 F(Ti)/= ∅. Further, suppose that {Ti} satisfies NST-condition

(I) and (III) with T. Define a sequence {xn} in C by the following algorithm:

x0 = x ∈ C, C0 = C,

yn = αnxn + (1 − αn)Tn
i xn,

Cn+1 =
{

v ∈ Cn :
∥
∥yn − v

∥
∥
2 ≤ ‖xn − v‖2 + θn

}

,

xn+1 = PCn+1(x), n = 0, 1, 2 . . . ,

(3.1)

where θn = (1 − αn)(t2ni − 1)(diamC)2 → 0 as n → ∞. Then {xn} converges in norm to PF(T)(x0).

Proof. We first show that Cn+1 is closed and convex for all n ∈ N∪ {0}. From the Lemma 2.5, it
is observed that Cn+1 is closed and convex for each n ∈ N ∪ {0}.
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Next, we show that F(T) ⊂ Cn for all n ≥ 0. Indeed, let p ∈ F(T), we have

∥
∥yn − p

∥
∥
2 =

∥
∥αnxn + (1 − αn)Tn

i xn − p
∥
∥
2

=
∥
∥αn(xn − p) + (1 − αn)(Tn

i xn − p)
∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥Tn

i xn − p
∥
∥
2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)t2ni

∥
∥xn − p

∥
∥
2

=
∥
∥xn − p

∥
∥
2 + (1 − αn)

(

t2ni
∥
∥xn − p

∥
∥
2 −

∥
∥xn − p

∥
∥
2
)

=
∥
∥xn − p

∥
∥
2 + (1 − αn)

(

t2ni − 1
)∥
∥xn − p

∥
∥
2

=
∥
∥xn − p

∥
∥
2 + θn −→ 0 as n −→ ∞.

(3.2)

Thus p ∈ Cn+1 and hence F(T) ⊂ Cn+1 for all n ≥ 0. Thus {xn} is well defined.
From xn = PCnx0 and xn+1 = PCn+1x0 ∈ Cn+1 ⊂ Cn, we have

〈x0 − xn, xn − xn+1〉 ≥ 0 ∀x0 ∈ F(T), n ∈ N ∪ {0}. (3.3)

So, for xn+1 ∈ Cn, we have

0 ≤ 〈x0 − xn, xn − xn+1〉,

= 〈x0 − xn, xn − x0 + x0 − xn+1〉,

= −〈xn − x0, xn − x0〉 + 〈x0 − xn, x0 − xn+1〉,

≤ −‖xn − x0‖2 + ‖x0 − xn‖‖x0 − xn+1‖

(3.4)

for all n ∈ N. This implies that

‖x0 − xn‖2 ≤ ‖x0 − xn‖‖x0 − xn+1‖ (3.5)

hence

‖x0 − xn‖ ≤ ‖x0 − xn+1‖ (3.6)

for all n ∈ N ∪ {0}. Therefore {‖x0 − xn‖} is nondecreasing.
From xn = PCnx0, we have

〈

x0 − xn, xn − y
〉

≥ 0 ∀y ∈ Cn. (3.7)

Using F(T) ⊂ Cn, we also have

〈

x0 − xn, xn − p
〉

≥ 0 ∀p ∈ F(T), n ∈ N ∪ {0}. (3.8)
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So, for p ∈ F(T), we have

0 ≥ 〈x0 − xn, xn − p〉,

= 〈x0 − xn, xn − x0 + x0 − p〉,

= −‖x0 − xn‖2 + ‖x0 − xn‖
∥
∥x0 − p

∥
∥.

(3.9)

This implies that

‖x0 − xn‖ ≤
∥
∥x0 − p

∥
∥ ∀p ∈ F(T), n ∈ N ∪ {0}. (3.10)

Thus, {‖x0 − xn‖} is bounded. So, limn→∞‖xn − x0‖ exists.
Next, we show that ‖xn+1 − xn‖ → 0. From (3.3), we have

‖xn − xn+1‖2 = ‖xn − x0 + x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 + 2〈xn − x0, x0 − xn + xn − xn+1〉 + ‖x0 − xn+1‖2

= ‖xn − x0‖2 − 2〈x0 − xn, x0 − xn〉 − 2〈x0 − xn, xn − xn+1〉 + ‖x0 − xn+1‖2

≤ ‖xn − x0‖2 − 2‖xn − x0‖2 + ‖x0 − xn+1‖2

= −‖xn − x0‖2 + ‖x0 − xn+1‖2.

(3.11)

Since limn→∞‖xn − x0‖ exists, we conclude that limn→∞‖xn − xn+1‖ = 0.
Since xn+1 ∈ Cn+1 ⊂ Cn, we have ‖yn − xn+1‖2 ≤ ‖xn − xn+1‖2 + θn which implies that

‖yn − xn+1‖ ≤ ‖xn − xn+1‖ +
√

θn. Now we claim that ‖Tixn − xn‖ → 0 as n → ∞ for all i ∈ N.
We first show that ‖Tn

i xn − xn‖ → 0 as n → ∞. Indeed, by the definition of yn, we have

∥
∥yn − xn

∥
∥ =

∥
∥αnxn + (1 − αn)Tn

i xn − xn

∥
∥,

=
∥
∥(1 − αn)Tn

i xn + (1 − αn)xn

∥
∥,

=
∥
∥(1 − αn)

(

Tn
i xn − xn

)∥
∥,

= (1 − αn)
∥
∥Tn

i xn − xn

∥
∥

(3.12)

for all i ∈ N and it follows that

∥
∥Tn

i xn − xn

∥
∥ =

1
1 − αn

∥
∥yn − xn

∥
∥,

≤ 1
1 − αn

(∥
∥yn − xn+1

∥
∥ + ‖xn+1 − xn‖

)

,

≤ 1
1 − αn

(

‖xn − xn+1‖ +
√

θn + ‖xn+1 − xn‖
)

.

(3.13)



Fixed Point Theory and Applications 9

Since ‖xn − xn+1‖ → 0 as n → ∞,we obtain

lim
n→∞

∥
∥Tn

i xn − xn

∥
∥ = 0 (3.14)

for all i ∈ N.
Let t∞ = sup{tn : n ≥ 1} < ∞. Now, for i = 1, 2, 3, . . . ,we get

‖Tixn − xn‖ ≤
∥
∥
∥Tixn − Tn+1

i xn

∥
∥
∥ +

∥
∥
∥Tn+1

i xn − Tn+1
i xn+1

∥
∥
∥ +

∥
∥
∥Tn+1

i xn+1 − xn+1

∥
∥
∥ + ‖xn+1 − xn‖,

≤ t∞
∥
∥xn − Tn

i xn

∥
∥ +

∥
∥
∥Tn+1

i xn+1 − xn+1

∥
∥
∥ + (1 + t∞)‖xn − xn+1‖,

(3.15)

from (3.14) and ‖xn − xn+1‖ → 0 as n → ∞, yields

lim
n→∞

‖xn − Tixn‖ = 0 (3.16)

for each i = 1, 2, 3, . . . . Let m ∈ N and take n ∈ N with i > n. By NST-condition (III), there
exists MB > 0 such that

‖Tnxn − xn‖ ≤ ‖Tnxn − Tixn‖ + ‖Tixn − xn‖

≤ ‖Tnxn − Tn+1xn‖ + ‖Tn+1xn − Tn+2xn‖ + · · · + ‖Ti−1xn − Tixn‖ + ‖Tixn − xn‖

≤ MB

i−1∑

k=n

ak + ‖Tixn − xn‖.

(3.17)

By (3.16) and
∑i−1

k=n ak < ∞, we get

lim sup
n→∞

‖xn − Tnxn‖ = 0. (3.18)

By the assumption of {Tn} and NST-condition (I), we have

‖Txn − xn‖ −→ 0 as n −→ ∞. (3.19)

Put z0 = PF(T)x0. Since ‖xn −x0‖ ≤ ‖z0 −x0‖ for all n ∈ N∪{0}, {xn} is bounded. Let {xni} be a
subsequence of {xn} such that xni ⇀ w. Since C is closed and convex, C is weakly closed and
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hence w ∈ C. From (3.19), we have that w = Tw. If not, since H satisfies Opial’s condition,
we have

lim inf
n→∞

‖xni −w‖ ≤ lim inf
n→∞

‖xni − Tw‖,

≤ lim inf
n→∞

(‖xni − Txni‖ + ‖Txni − Tw‖),

≤ lim inf
n→∞

(‖xni − Txni‖ + ‖xni −w‖),

= lim inf
n→∞

‖xni −w‖.

(3.20)

This is a contradiction. So, we have that w = Tw. Then, we have

‖x0 − z0‖ ≤ ‖x0 −w‖ ≤ lim inf
i→∞

‖x0 − xni‖ ≤ lim sup
i→∞

‖x0 − xni‖ ≤ ‖z0 − x0‖, (3.21)

and hence ‖x0 − z0‖ = ‖x0 − w‖. From z0 = PF(x0), we have z0 = w. This implies that {xn}
converges weakly to z0, and we have

‖x0 − z0‖ ≤ lim inf
n→∞

‖x0 − xn‖ ≤ lim sup
n→∞

‖x0 − xn‖ ≤ ‖z0 − x0‖, (3.22)

and hence limn→∞‖x0 − xn‖ = ‖z0 − x0‖. From xn ⇀ z0, we also have x0 − xn ⇀ x0 − z0. Since
H satisfies the Kadec-Klee property, it follows that x0 − xn → x0 − z0. So, we have

‖xn − z0‖ = ‖xn − x0 − (z0 − x0)‖ −→ 0 (3.23)

and hence xn → z0 = PF(x0). This completes the proof.

Corollary 3.2. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let T :
C → C be an asymptotically nonexpansive mapping with sequence {tn}n≥0. Assume {αn}n≥0 ⊂ (0, 1)
such that αn ≤ a < 1 for all n and αn → 0 as n → ∞. Let F(T)/= ∅. Define a sequence {xn} in C by
the following algorithm:

x0 = x ∈ C, C0 = C,

yn = αnxn + (1 − αn)Tnxn,

Cn+1 =
{

v ∈ Cn :
∥
∥yn − v

∥
∥
2 ≤ ‖xn − v‖2 + θn

}

,

xn+1 = PCn+1(x), n = 0, 1, 2 . . . ,

(3.24)

where θn = (1 − αn)(t2n − 1)(diamC)2 → 0 as n → ∞. Then {xn} converges in norm to PF(T)(x0).

Proof. Setting Tn
i ≡ Tn for all i ∈ N∪{0} from Lemma 2.2(i) and Theorem 3.1, we immediately

obtain the corollary.
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Since every family’s nonexpansive mapping is family’s asymptotically nonexpansive
mapping we obtain the following result.

Corollary 3.3. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let
{Ti} : C → C be a family of nonexpansive mappings with sequence {ti}i≥0. Assume {αn}n≥0 ⊂ (0, 1)
such that αn ≤ a < 1 for all n and αn → 0 as n → ∞. Let F(T) =

⋂∞
i=1 F(Ti)/= ∅. Further, suppose

that {Ti} satisfies NST-condition (I) with T. Define a sequence {xn} in C by the following algorithm:

x0 = x ∈ C, C0 = C,

yn = αnxn + (1 − αn)Tixn,

Cn+1 =
{

v ∈ Cn :
∥
∥yn − v

∥
∥
2 ≤ ‖xn − v‖2

}

,

xn+1 = PCn+1(x), n = 0, 1, 2 . . . .

(3.25)

Assume that if for each bounded sequence {zn} ∈ C, limn→∞‖zn − Tizn‖ = 0, for all i ∈ N implies
that limn→∞‖zn − Tzn‖ = 0. Then {xn} converges in norm to PF(T)(x0).

We have the following corollary for nonexpansive mappings by Lemma 2.2(i) and
Theorem 3.1.

Corollary 3.4 (Takahashi et al. [7, Theorem 4.1]). Let C be a bounded closed convex subset of a
Hilbert space H and let T : C → C be a nonexpansive mapping such that F(T)/= ∅. Assume that
0 ≤ αn ≤ a < 1 for all n. Then the sequence {xn} generated by

x0 = x ∈ C, C0 = C,

yn = αnxn + (1 − αn)Txn,

Cn+1 =
{

v ∈ Cn :
∥
∥yn − v

∥
∥ ≤ ‖xn − v‖

}

,

xn+1 = PCn+1(x), n = 0, 1, 2 . . . ,

(3.26)

converges in norm to PF(T)x0.

4. Strong Convergence for a Family of Asymptotically
Nonexpansive Semigroups

Theorem 4.1. Let C be a nonempty bounded closed convex subset of a Hilbert space H and let
Ti = {Ti(t) : t ∈ R

+, i = 1, 2, 3, . . .} be a countable family of asymptotically nonexpansive
semigroups. Assume {αn}n≥0 ⊂ (0, 1) such that αn ≤ a < 1 for all n and αn → 0 as n → ∞. Let
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{tni}, i = 1, 2, 3, . . . be a countable positive and divergent real sequence. Let F =
⋂∞

i=1 F(Ti)/= ∅. Fur-
ther, suppose that {Ti} satisfies NST-condition (I) with T. Define a sequence {xn} inC by the following
algorithm:

x0 = x ∈ C, C0 = C,

yn = αnxn + (1 − αn)
1
tni

∫ tni

0
Ti(u)xndu,

Cn+1 =
{

v ∈ Cn :
∥
∥yn − v

∥
∥
2 ≤ ‖xn − v‖2 + θ̃n

}

,

xn+1 = PCn+1(x), n = 0, 1, 2 . . . ,

(4.1)

where θ̃n = (1 − αn)(t̃ 2ni − 1)(diamC)2 → 0 as n → ∞ with t̃ni = (1/tni)
∫ tni
0 LTi

u du. Then {xn}
converges in norm to PF(x0).

Proof. First observe that F ⊂ Cn for all n. Indeed, we have for all p ∈ F

∥
∥yn − p

∥
∥
2 =

∥
∥
∥
∥
∥
αnxn + (1 − αn)

1
tni

∫ tni

0
Ti(u)xndu − p

∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
αn

(

xn − p
)

+ (1 − αn)

(

1
tni

∫ tni

0
Ti(u)xndu − p

)∥
∥
∥
∥
∥

2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

∥
∥
∥
∥
∥

1
tni

∫ tni

0
Ti(u)xndu − p

∥
∥
∥
∥
∥

2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

(

1
tni

∫ tni

0

∥
∥Ti(u)xn − p

∥
∥du

)2

≤ αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

(

1
tni

∫ tni

0
LTi
u du

)

∥
∥xn − p

∥
∥
2

= αn

∥
∥xn − p

∥
∥
2 + (1 − αn)

(

t̃2ni
∥
∥xn − p

∥
∥
2
)

≤
∥
∥xn − p

∥
∥
2 + (1 − αn)

(

t̃2ni − 1
)∥
∥xn − p

∥
∥
2

≤
∥
∥xn − p

∥
∥
2 + θ̃n.

(4.2)
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So, p ∈ Cn+1. Hence F ⊂ Cn for all n ∈ N. By the same argument as in the proof of Theorem 3.1,
Cn is closed and convex, {xn} is well defined. Also, similar to the proof of Theorem 3.1

lim
n→∞

‖xn − xn+1‖ = 0. (4.3)

We next claim that lim sups→∞ lim supn→∞ ‖Ti(s)xn−xn‖ = 0. Indeed, by definition of yn and
xn+1 ∈ Cn we have

∥
∥yn − xn

∥
∥ =

∥
∥
∥
∥
∥
αnxn + (1 − αn)

1
tni

∫ tni

0
Ti(u)xndu − xn

∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
(1 − αn)

1
tni

∫ tni

0
Ti(u)xndu − (1 − αn)xn

∥
∥
∥
∥
∥

= (1 − αn)

∥
∥
∥
∥
∥

1
tni

∫ tni

0
Ti(u)xndu − xn

∥
∥
∥
∥
∥

(4.4)

and then

∥
∥
∥
∥
∥

1
tni

∫ tni

0
Ti(u)xndu − xn

∥
∥
∥
∥
∥
=

1
1 − αn

∥
∥yn − xn

∥
∥

≤ 1
1 − αn

∥
∥yn − xn+1

∥
∥ + ‖xn+1 − xn‖.

(4.5)

Since xn+1 ∈ Cn+1 ⊂ Cn, we have

∥
∥yn − xn+1

∥
∥
2 ≤ ‖xn − xn+1‖2 + θ̃n (4.6)

which in turn implies that

∥
∥yn − xn+1

∥
∥ ≤ ‖xn − xn+1‖ +

√

θ̃n. (4.7)

It follows from (4.5) that

∥
∥
∥
∥
∥

1
tni

∫ tni

0
Ti(u)xndu − xn

∥
∥
∥
∥
∥
≤ 1

1 − a

(

2‖xn+1 − xn‖ +
√

θ̃n

)

−→ 0 as n −→ ∞. (4.8)
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Let L∞ := sup{kni, i = 1, 2, 3, . . .} and for each i ∈ {1, 2, 3, . . .}, we get that

‖Ti(s)xn − xn‖ ≤
∥
∥
∥
∥
∥
Ti(s)xn − Ti(s)

(

1
tni

∫ tni

0
Ti(u)xndu

)∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
Ti(s)

(

1
tni

∫ tni

0
Ti(u)xndu

)

− 1
tni

∫ tni

0
Ti(u)xndu

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

1
tni

∫ tni

0
Ti(u)xndu − xn

∥
∥
∥
∥
∥

≤ (L∞ + 1)

∥
∥
∥
∥
∥

1
tni

∫ tni

0
Ti(u)xndu − xn

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥
Ti(s)

(

1
tni

∫ tni

0
Ti(u)xndu

)

− 1
tni

∫ tni

0
Ti(u)xndu

∥
∥
∥
∥
∥
.

(4.9)

By (4.8) and Lemma 2.7, we obtain that

lim sup
s→∞

lim sup
n→∞

‖Ti(s)xn − xn‖ = 0. (4.10)

Furthermore, from (4.9) and Lemma 2.6 and the boundedness of {xn} we obtain that
∅/=ωw(xn) ⊂ F. By the fact that ‖xn − x0‖ ≤ ‖p − x0‖ for any n ≥ 0, where p = PF(x0)
and the weak lower semi-continuity of the norm, we have ‖ω − x0‖ ≤ ‖p − x0‖ for all
w ∈ ωw(xn). However, since ωw(xn) ⊂ F, we must have w = p for all w ∈ ωw(xn).
Thus ωw(xn) = {p} and then xn converges weakly to p. Moreover, following the method
of Theorem 3.1, xn → p = PF(x0). This completes the proof.

Corollary 4.2. Let C be a bounded closed convex subset of a Hilbert space H and T = {T(t) : 0 ≤
t < ∞} be an asymptotically nonexpansive semigroup on C. Assume also that 0 < αn ≤ a < 1 for all
n ∈ N ∪ {0} and {tn} is a positive real divergent sequence. Then, the sequence {xn} generated by

x0 = x ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)
1
tn

∫ tn

0
T(u)xndu,

Cn+1 =
{

v ∈ Cn :
∥
∥yn − v

∥
∥
2 ≤ ‖xn − v‖2 + θn

}

,

xn+1 = PCn+1(x), n = 0, 1, 2 . . . ,

(4.11)

converges in norm to PF(T)x0, where θn = (1 − αn)[((1/tn)
∫ tn
0 Ludu)

2 − 1](diamC)2 → 0 as
n → ∞.

Proof. By Theorem 4.1, if the semigroup T = {T(t) : 0 ≤ t < ∞} = I := {I(t) : 0 ≤ t < ∞}, then
T(t)xn = xn for all n and for all t > 0. Hence (1/tn)

∫ tn
0 T(u)xndu = xn for all n and zn = xn

then, (4.1) reduces to (4.11).
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Corollary 4.3 (Takahashi et al. [7, Theorem 4.4]). Let C be a nonempty closed convex subset of
a Hilbert space H and T = {T(t) : 0 ≤ t < ∞} be a nonexpansive semigroup on C. Assume that
0 < αn ≤ a < 1 for all n ∈ N ∪ {0} and {tn} is a positive real divergent sequence. If F(T)/= ∅, then the
sequence {xn} generated by

x0 ∈ C, chosen arbitrarily,

yn = αnxn + (1 − αn)
1
tn

∫ tn

0
T(u)xndu,

Cn+1 =
{

v ∈ C :
∥
∥yn − v

∥
∥ ≤ ‖xn − v‖

}

,

xn+1 = PCn+1(x0), n = 0, 1, 2 . . . ,

(4.12)

converges in norm to PF(T)x0.
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