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We define a new concept of integral with respect to a cone. Moreover, certain fixed point theorems
in those spaces are proved. Finally, an extension of Meir-Keeler fixed point in cone metric space is
proved.

1. Introduction

In 2007, Huang and Zhang in [1] introduced cone metric space by substituting an ordered
Banach space for the real numbers and proved some fixed point theorems in this space. Many
authors study this subject and many fixed point theorems are proved; see [2–5]. In this paper,
the concept of integral in this space is introduced and a fixed point theorem is proved. In
order to do this, we recall some definitions, examples, and lemmas from [1, 4] as follows.

Let E be a real Banach space. A subset P of E is called a cone if and only if the following
hold:

(i) P is closed, nonempty, and P /= {0},
(ii) a, b ∈ R, a, b ≥ 0, and x, y ∈ P imply that ax + by ∈ P,

(iii) x ∈ P and −x ∈ P imply that x = 0.

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and only if
y − x ∈ P. We will write x < y to indicate that x ≤ y but x /=y, while x � y will stand for
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y − x ∈ intP, where intP denotes the interior of P. The cone P is called normal if there is a
number K > 0 such that 0 ≤ x ≤ y implies ‖x‖ ≤ K‖y‖, for all x, y ∈ E. The least positive
number satisfying above is called the normal constant [1].

The cone P is called regular if every increasing sequence which is bounded from above
is convergent. That is, if {xn}n≥1 is a sequence such that x1 ≤ x2 ≤ · · · ≤ y for some y ∈ E,
then there is x ∈ E such that limn→∞‖xn − x‖ = 0. Equivalently, the cone P is regular if and
only if every decreasing sequence which is bounded from below is convergent [1]. Also every
regular cone is normal [4]. In addition, there are some nonnormal cones.

Example 1.1. Suppose E = C2
R
([0, 1])with the norm ‖f‖ = ‖f‖∞ + ‖f ′‖∞ and consider the cone

P = {f ∈ E: f ≥ 0}. For all K ≥ 1, set f(x) = x and g(x) = x2K. Then 0 ≤ g ≤ f, ‖f‖ = 2 and
‖g‖ = 2K + 1. Since K‖f‖ < ‖g‖, K is not normal constant of P. Therefore, P is non-normal
cone.

From now on, we suppose that E is a real Banach space, P is a cone in E with int P /= ∅,
and ≤ is partial ordering with respect to P . Let X be a nonempty set. As it has been defined
in [1], a function d : X × X → E is called a cone metric on X if it satisfies the following
conditions:

(i) d(x, y) ≥ 0 for all x, y ∈ X and d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x), for all x, y ∈ X,

(iii) d(x, y) ≤ d(x, z) + d(y, z), for all x, y, z ∈ X.

Then (X, d) is called a cone metric space.

Example 1.2. Suppose E = l1, P = {{xn}n∈N ∈ E : xn ≥ 0, for all n, (X, ρ) is a metric space and
d : X ×X → E is defined by d(x, y) = {ρ(x, y)/2n}n∈N. Then (X, d) is a cone metric space and
the normal constant of P is equal to 1.

Definition 1.3. Let (X, d) be a cone metric space. Let {xn}n∈N be a sequence in X and x ∈ X. If
for any c ∈ E with 0 � c, there is n0 ∈ N such that for all n > n0, d(xn, x) � c, then {xn}n∈N
is said to be convergent to x, and x is the limit of {xn}n∈N. We denote this by

lim
n→∞

xn = x or xn −→ x (n −→ ∞). (1.1)

Definition 1.4. Let (X, d) be a cone metric space and {xn}n∈N be a sequence in X. If for any
c ∈ E with 0 � c, there is n0 ∈ N such that for all m,n > n0, d(xn, xm) � c, then {xn}n∈N is
called a Cauchy sequence in X.

Definition 1.5. Let (X, d) be a cone metric space, if every Cauchy sequence is convergent in X,
then X is called a complete cone metric space.

Definition 1.6. Let (X, d) be a cone metric space. Let T be a self-map on X. If for all sequence
{xn}n∈N in X,

lim
n→∞

xn = x implies lim
n→∞

T(xn) = T(x), (1.2)

then T is called continuous on X.
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The following lemmas are useful for us to prove the main result.

Lemma 1.7. Let (X, d) be a cone metric space and P a normal cone with normal constant K. Let
{xn}n∈N be a sequence in X. Then {xn}n∈N converges to x if and only if

lim
n∈N

d(xn, x) = 0. (1.3)

Lemma 1.8. Let (X, d) be a cone metric space and P a normal cone with normal constant K. Let
{xn}n∈N be a sequence in X. Then {xn}n∈N is a Cauchy sequence if and only if

lim
m,n→∞

d(xm, xn) = 0. (1.4)

Lemma 1.9. Let (X, d) be a cone metric space and {xn}n∈N a sequence inX. If {xn}n∈N is convergent,
then it is a Cauchy sequence.

Lemma 1.10. Let (X, d) be a cone metric space and P be a normal cone with normal constant K. Let
{xn} and {yn} be two sequences in X and xn → x, yn → y (n → ∞). Then

d
(
xn, yn

) −→ d
(
x, y

)
(n −→ ∞). (1.5)

The following example is a cone metric space.

Example 1.11. Let E = R
2, P = {(x, y) ∈ Ex, y ≥ 0}, and X = R. Suppose that d : X ×X → E is

defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric
space.

Theorem 1.12. Let (X, d) be a complete cone metric space and P a normal cone with normal constant
K. Suppose the mapping f : X → X satisfies the contractive condition

d
(
fx, fy

) ≤ βd
(
x, y

)
(1.6)

for all x, y ∈ X, where β ∈ (0, 1) is a constant. Then f has a unique fixed point x0 ∈ X. Also, for all
x ∈ X, the sequence {fn(x)}∞n=1 converges to x0.

2. Certain Integral Type Contraction Mapping in Cone Metric Space

In 2002, Branciari in [6] introduced a general contractive condition of integral type as follows.

Theorem 2.1. Let (X, d) be a complete metric space, α ∈ (0, 1), and f : X → X is a mapping such
that for all x, y ∈ X,

∫d(f(x),f(y))

0
φ(t)dt ≤ α

∫d(x,y)

0
φ(t)dt, (2.1)
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where φ : [0,+∞) → [0,+∞) is nonnegative and Lebesgue-integrable mapping which is summable
(i.e., with finite integral) on each compact subset of [0,+∞) such that for each ε > 0,

∫ε
0φ(t)dt > 0,

then f has a unique fixed point a ∈ X, such that for each x ∈ X, limn→∞fnx = a.

In this section we define a new concept of integral with respect to a cone and introduce
the Branciari’s result in cone metric spaces.

Definition 2.2. Suppose that P is a normal cone in E. Let a, b ∈ E and a < b. We define

[a, b] := {x ∈ E : x = tb + (1 − t)a, for some t ∈ [0, 1]},
[a, b) := {x ∈ E : x = tb + (1 − t)a, for some t ∈ [0, 1)}.

(2.2)

Definition 2.3. The set {a = x0, x1, . . . , xn = b} is called a partition for [a, b] if and only if the
sets {[xi−1, xi)}ni=1 are pairwise disjoint and [a, b] = {⋃n

i=1[xi−1, xi)} ∪ {b}.

Definition 2.4. For each partition Q of [a, b] and each increasing function φ : [a, b] → P, we
define cone lower summation and cone upper summation as

LCon
n

(
φ,Q

)
=

n−1∑

i=0

φ(xi)‖xi − xi+1‖,

UCon
n

(
φ,Q

)
=

n−1∑

i=0
φ(xi+1)‖xi − xi+1‖,

(2.3)

respectively.

Definition 2.5. Suppose that P is a normal cone in E. φ : [a, b] → P is called an integrable
function on [a, b]with respect to cone P or to simplicity, Cone integrable function, if and only
if for all partition Q of [a, b]

lim
n→∞

LCon
n

(
φ,Q

)
= SCon = lim

n→∞
UCon

n

(
φ,Q

)
, (2.4)

where SCon must be unique.
We show the common value SCon by

∫b

a

φ(x)dP (x) or to simplicity
∫b

a

φdp. (2.5)

We denote the set of all cone integrable function φ : [a, b] → P by L1([a, b], P).

Lemma 2.6. (1) If [a, b] ⊆ [a, c], then
∫b
afdp ≤ ∫c

afdp, for f ∈ L1(X, P).(2)
∫b
a(αf + βg)dp =

α
∫b
afdp + β

∫b
agdp, for f, g ∈ L1(X, P) and α, β ∈ R.

Proof. (1) Suppose that P and R are partitions for [a, b] and [b, c], respectively. That is,

R = {xn, xn+1, . . . , xm−1, xm = c}, P = {a = x0, x1, . . . , xn−1, xn = b}, . (2.6)
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Let Q = P ∪ R. Q is a partition for [a, c]. Therefore one can write

LCon
n

(
f, P

)
=

n−1∑

i=0

f(xi)‖xi − xi+1‖ ≤
n−1∑

i=0

f(xi)‖xi − xi+1‖ +
m−1∑

i=n

f(xi)‖xi − xi+1‖

= LCon
n

(
f, P

)
+ LCon

n

(
f, R

)
= LCon

n

(
f,Q

)
.

(2.7)

So

∫b

a

fdp ≤
∫ c

a

fdp. (2.8)

(2) Suppose P is an partition for [a, b], that is

P = {a = x0, x1, . . . , xn−1, xn = b}. (2.9)

Then

LCon
n

(
f, P

)
=

n−1∑

i=0

(
αf(xi) + βg(xi)

)‖xi − xi+1‖

= α
n−1∑

i=0

f(xi)‖xi − xi+1‖ + β
n−1∑

i=0

g(xi)‖xi − xi+1‖ = αLCon
n

(
f, P

)
+ βLCon

n

(
g, P

)
.

(2.10)

Thus

∫b

a

(
αf + βg

)
dp = α

∫b

a

fdp + β

∫b

a

gdp. (2.11)

Definition 2.7. The function φ : P → E is called subadditive cone integrable function if and
only if for all a, b ∈ P

∫a+b

0
φdP ≤

∫a

0
φdP +

∫b

0
φdP . (2.12)

Example 2.8. Let E = X = R, d(x, y) = |x − y|, P = [0,+∞), and φ(t) = 1/(t + 1) for all t > 0.
Then for all a, b ∈ P,

∫a+b

0

dt

t + 1
= ln(a + b + 1),

∫a

0

dt

t + 1
= ln(a + 1),

∫b

0

dt

t + 1
= ln(b + 1). (2.13)
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Since ab ≥ 0, then a + b + 1 ≤ a + b + 1 + ab = (a + 1)(b + 1). Therefore

ln(a + b + 1) ≤ ln((a + 1)(b + 1)) = ln(a + 1) + ln(b + 1). (2.14)

This shows that φ is an example of subadditive cone integrable function.

Theorem 2.9. Let (X, d) be a complete cone metric space and P a normal cone. Suppose that φ :
P → P is a nonvanishing map and a subadditive cone integrable on each [a, b] ⊂ P such that for each
ε � 0,

∫ε
0φdp � 0. If f : X → X is a map such that, for all x, y ∈ X

∫d(f(x),f(y))

0
φdp ≤ α

∫d(x,y)

0
φdp, (2.15)

for some α ∈ (0, 1), then f has a unique fixed point in X.

Proof. Let x1 ∈ P. Choose xn+1 = f(xn).We have

∫d(xn+1,xn)

0
φdp =

∫d(f(xn),f(xn−1))

0
φdp

≤ α

∫d(xn,xn−1)

0
φdp

...

≤ αn−1
∫d(x2,x1)

0
φdp.

(2.16)

Since α ∈ (0, 1) thus

lim
n→∞

∫d(xn+1,xn)

0
φdp = 0. (2.17)

If limn→∞d(xn+1, xn)/= 0 then limn→∞
∫d(xn+1,xn)
0 φdp /= 0 and this is a contradiction, so

lim
n→∞

d(xn+1, xn) = 0. (2.18)

We now show that (xn) is a Cauchy sequence. Due to this, we show that

lim
m,n→∞

d
(
f(xm), f(xn)

)
= 0. (2.19)

By triangle inequality

∫d(f(xm),f(xn))

0
φdp ≤

∫d(f(xn),f(xn+1))+d(f(xn+1),f(xn+2))+···+d(f(xm−1),f(xm))

0
φdp (2.20)
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and by sub-additivity of φ we get

∫d(f(xm),f(xn))

0
φdp ≤

∫d(f(xn),f(xn+1))

0
φ dp + · · · +

∫d(f(xm−1),f(xm))

0
φdp

≤
(
αn + αn−1 + · · · + αm−1

)∫d(x2,x1)

0
φ dp ≤ αn

1 − α

∫d(x2,x1)

0
φ dp −→ 0.

(2.21)

Thus

lim
m,n→∞

d
(
f(xn), f(xm)

)
= 0. (2.22)

This means that {xn}n∈N is a Cauchy sequence and since X is a complete cone metric space,
thus {xn}n∈N is convergent to x0 ∈ X. Finally, since

∫d(xn+1,f(x0))

0
φ dp =

∫d(f(xn),f(x0))

0
φdp ≤ α

∫d(xn,x0)

0
φ dp, (2.23)

thus limn→∞d(xn+1, f(x0)) = 0. This means that f(x0) = x0. If x0, y0 are two distinct fixed
points of f, then

∫d(x0,y0)

0
φdp =

∫d(f(x0),f(y0))

0
φdp ≤ α

∫d(x0,y0)

0
φdp (2.24)

which is a contradiction. Thus f has a unique fixed point x0 ∈ X.

Lemma 2.10. Let E = R
2, P = {(x, y) ∈ Ex, y ≥ 0}, and X = R. Suppose that d : X × X → E is

defined by d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Suppose that φ : [(0, 0), (a, b)] →
P is defined by φ(x, y) = (φ1(x), φ2(y)), where φ1, φ2 : [0,+∞) → [0,+∞) are two Riemann-
integrable functions. Then

∫ (a,b)

(0,0)
φdP =

√
a2 + b2

(
1
a

∫a

0
φ1(t)dt,

1
b

∫b

0
φ2(t)dt

)

. (2.25)
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Proof. Let Q = {(xi, yi)}ni=0 be a partition of set [(0, 0), (a, b)] such that xi = (a/n)i and yi =
(b/n)i, then (by Definitions 2.4 and 2.5)

∫ (a,b)

(0,0)
φdP = lim

n→∞
LCon
n

(
φ,Q

)
= lim

n→∞

n−1∑

i=0

φ
(
xi, yi

)∥∥(xi+1, yi+1
) − (

xi, yi

)∥∥

= lim
n→∞

n−1∑

i=0

(
φ1

(
a

n
i

)
, φ2

(
b

n
i

))∥
∥
∥
∥

(
a

n
,
b

n

)∥
∥
∥
∥

=
√
a2 + b2 lim

n→∞

n−1∑

i=0

1
n

(
φ1

(
a

n
i

)
, φ2

(
b

n
i

))

=
√
a2 + b2

(

lim
n→∞

1
n

n−1∑

i=0

φ1

(
a

n
i

)
, lim
n→∞

1
n

n−1∑

i=0

φ2

(
b

n
i

))

=
√
a2 + b2

(
1
a
lim
n→∞

a

n

n−1∑

i=0

φ1

(
a

n
i

)
,
1
b
lim
n→∞

b

n

n−1∑

i=0

φ2

(
b

n
i

))

=
√
a2 + b2

(
1
a

∫a

0
φ1(t)dt,

1
b

∫b

0
φ2(t)dt

)

.

(2.26)

Thus

∫ (a,b)

(0,0)
φdP =

√
a2 + b2

(
1
a

∫a

0
φ1(t)dt,

1
b

∫b

0
φ2(t)dt

)

. (2.27)

Example 2.11. Let X = {1/n : n ∈ N} ∪ {0}, E = R
2 and P = {(x, y) ∈ E : x ≥ 0, y ≥ 0}. Suppose

d(x, y) = (|x − y|, α|x − y|), for some constant α > 0. Firstly, (X, d) is a complete cone metric
space. Secondly, if f : X → X and φ : P → E are defined by

f(x) =

⎧
⎨

⎩

1
n + 1

if x =
1
n
, n ∈ N,

0 if x = 0,

φ(t, s) =

⎧
⎨

⎩

(
t1/(t−2)(1 − ln(t)), s1/(s−2)(1 − ln(s))

)
, (t, s) ∈ P \ {(0, 0)},

(0, 0), (t, s) = (0, 0),

(2.28)

respectively, then

∫d(fx,fy)

0
φdP ≤ 1

2

∫d(x,y)

0
φdP . (2.29)
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In order to obtain inequality (2.29), set x = 1/n and y = 1/m, where m > n.Hence

d
(
fx, fy

)
=
(

m − n

(m + 1)(n + 1)
,

α(m − n)
(m + 1)(n + 1)

)
,

d
(
x, y

)
=
(
m − n

mn
,
α(m − n)

mn

)
.

(2.30)

Suppose φ1(t) = φ2(t) = t1/(t−2)(1 − ln(t)) for all t > 0 and φ1(0) = φ2(0) = 0. Thus φ(t, s) =
(φ1(t), φ2(s)). By Lemma 2.10

∫d(fx,fy)

0
φdP =

∫ ((m−n)/(m+1)(n+1),α(m−n)/(m+1)(n+1))

(0,0)

(
φ1, φ2

)
dP

=
(

m − n

(m + 1)(n + 1)

√
1 + α2

)

(
(m + 1)(n + 1)

m − n

∫ (m−n)/(m+1)(n+1)

0
φ1(t)dt,

(m + 1)(n + 1)
α(m − n)

∫α(m−n)/(m+1)(n+1)

0
φ2(t)dt

)

=
(√

1 + α2
)(∫ (m−n)/(m+1)(n+1)

0
φ1(t)dt,

1
α

∫α(m−n)/(m+1)(n+1)

0
φ2(t)dt

)

.

(2.31)

Since
∫τ
0t

1/(t−2)(1 − ln(t))dt = τ1/τ , thus

∫ (m−n)/(m+1)(n+1)

0
φ1(t)dt =

[
m − n

(m + 1)(n + 1)

](m+1)(n+1)/(m−n)
,

∫α(m−n)/(m+1)(n+1)

0
φ2(t)dt =

[
α(m − n)

(m + 1)(n + 1)

](m+1)(n+1)/α(m−n)
.

(2.32)

It means that

∫d(fx,fy)

0
φdP =

√
1+α2

([
m−n

(m+1)(n+1)

](m+1)(n+1)/(m−n)
,
1
α

[
α(m−n)

(m+1)(n+1)

](m+1)(n+1)/α(m−n))

.

(2.33)

On the other side, Branciari in [6] shows that

[
m − n

(n + 1)(m + 1)

](n+1)(m+1)/(m−n)
≤ 1

2

[
m − n

nm

]nm/(m−n)
, (2.34)
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for all m,n ∈ N. Therefore

([
m − n

(m + 1)(n + 1)

](m+1)(n+1)/(m−n)
,
1
α

[
α(m − n)

(m + 1)(n + 1)

](m+1)(n+1)/α(m−n))

≤ 1
2

([
m − n

mn

]mn/(m−n)
,
1
α

[
α(m − n)

mn

]mn/α(m−n))

.

(2.35)

Thus inequalities (2.33) and (2.35) imply that

∫d(fx,fy)

0
φdP ≤ 1

2

√
1 + α2

([
m − n

mn

]mn/(m−n)
,
1
α

[
α(m − n)

mn

]mn/α(m−n))

=
1
2

∫d(x,y)

0
φdP , (2.36)

or in other words

∫d(fx,fy)

0
φdP ≤ 1

2

∫d(x,y)

0
φdP . (2.37)

Thus by Theorem 2.9, f has a fixed point. But, on the other hand,

d
(
fx, fy

)
< d

(
x, y

)
, (2.38)

and this means that f does not satisfy in Theorem 1.12.

3. Extension of Meir-Keeler Contraction in Cone Metric Space

In 2006, Suzuki in [7] proved that the integral type contraction (see [6]) is a special case
of Meir-Keeler contraction (see [8]). Haghi and Rezapour in [5] extended Meir-Keeler
contraction in cone metric space as follows.

Theorem 3.1 (see[5]). Let (X, d) be a complete regular cone metric space and f has the property
(KMC) on X; that is, for all 0/= ε ∈ P , there exists δ � 0 such that

d
(
x, y

)
< ε + δ implies d

(
fx, fy

)
< ε (3.1)

for all x, y ∈ X. Then f has a unique fixed point.

An extension of Theorem 3.1 is as follows.

Theorem 3.2. Let (X, d) be a complete regular cone metric space and f a mapping on X. Suppose
that there exists a function θ from P into itself satisfying the following:

(B1) θ(0) = 0 and θ(t) � 0 for all t � 0,

(B2) θ is nondecreasing and continuous function. Moreover, its inverse is continuous,
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(B3) for all 0/= ε ∈ P, there exists δ � 0 such that for all x, y ∈ X

θ
(
d
(
x, y

))
< ε + δ implies θ

(
d
(
fx, fy

))
< ε (3.2)

(B4) for all x, y ∈ X

θ
(
x + y

) ≤ θ(x) + θ
(
y
)
. (3.3)

Then f has a unique fixed point.

Proof. First, note that θ(d(f(x), f(y))) < θ(d(x, y)) for all x, y ∈ X with x /=y. Since θ−1 exists,
thus d(f(x), f(y)) < d(x, y) for all x, y ∈ X with x /=y. Now Let x0 ∈ X. Set xn = f(xn−1) for
all n ∈ N. If, there is a natural m ∈ N such that d(xm+1, xm) = 0, then f(xm) = xm and so f
has a fixed point. If d(xn+1, xn)/= 0 for all n ∈ N, then θ(d(xn+1, xn)) < θ(d(xn, xn−1). Hence,
according to regularity of P, there exists α ∈ P such that θ(d(xn+1, xn)) ↓ α. We claim α = 0. If
α/= 0, then according to (B3), there is 0 � d such that θ(d(f(x), f(y)) < α for all x, y ∈ X with
θ(d(x, y)) < α + d. Choose r > 0 such that (d/2) +Nr(0) ⊆ P and take the natural number N
such that ‖θ(d(xn+1, xn)) − α‖ < r, for all n ≥ N.We obtain

∥∥∥∥
d

2
− (θ(d(xn+1 − xn)) − α) − d

2

∥∥∥∥ < r. (3.4)

Thus

d

2
− (θ(d(xn+1 − xn)) − α) ∈ d

2
+Nr(0) ⊆ P. (3.5)

So, θ(d(xn+1, xn)) − α � d. Since f has the property (B3), θ(d(xn+2, xn+1)) < α for all n ≥ N.
This is a contradiction because α < θ(d(xi+1, xi)) for all i ≥ 1. Thus

lim
n→∞

θ(d(xn+1, xn)) = 0. (3.6)

Now, we show that {xn}∞n=1 is a Cauchy sequence. If this is not, then there is a 0 � c such
that for all natural number k, there are mk, nk > k so that the relation d(xmk , xnk) � c does
not hold. Since θ has continuous inverse thus there exists 0 � c such that for all natural
number k, there are mk, nk > k so that the relation θ(d(xmk , xnk)) � c does not hold. For
each 0 � e � c, there exists 0 � d such that θ(d(f(x), f(y))) < e, for all x, y ∈ X with
θ(d(x, y)) < e + d. Choose a natural number M such that θ(d(xi+1, xi)) � d/2 for all i ≥ M.
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Also, take mM ≥ nM > M so that the relation θ(d(xmM, xnM)) � c does not hold. Then (B4)
yields

θ(d(xnM−1, xnM+1)) ≤ θ(d(xnM−1, xnM)) + θ(d(xnM, xnM+1))

� d

2
+
d

2

� d + e.

(3.7)

Hence, θ(d(xnM, xnM+2)) � e. Similarly, θ(d(xnM, xnM+3)) � e. Thus

θ(d(xnM, xmM)) � e � c (3.8)

which is a contradiction. Therefore {xn}∞n=1 is a Cauchy sequence. Since (X, d) is a complete
cone metric space, there is u ∈ X such that xn → u. Since d(fx, fy) < d(x, y), for all x, y ∈ X
with x /=y, thus for each ε � 0, there is a natural number N > 0 such that for all n > N,
d(xn, x) � ε. Since d(fxn, fu) < d(xn, u) thus d(fxn, fu) � ε for all n > N. It means that
fxn → fu. In the other side, f(xn) = xn+1 → u and the limit point is unique in cone metric
spaces. Thus f has at least one fixed point. Now, if u, v are two distinct fixed points for f, then

d(u, v) = d
(
fu, fv

)
< d(u, v) (3.9)

which is a contradiction. Therefore f has a unique fixed point.

Remark 3.3. (1) Set θ(x) = x, then Theorem 3.1 is a direct result of Theorem 3.2.
(2) Let φ : P → P be a nonvanishing map and a subadditive cone integrable on each

[a, b] ⊂ P such that for each ε � 0,
∫ε
0 φdp � 0. If θ(x) =

∫x
0 φdP , then θ satisfies all conditions

of Theorem 3.2. In other words, Theorem 2.9 is a direct result of Theorem 3.2.
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