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Using the fixed point method, we prove the generalized Hyers-Ulam stability of the following
additive-quadratic-cubic-quartic functional equation f(x+2y)+f(x−2y) = 4f(x+y)+4f(x−y)−
6f(x) + f(2y) + f(−2y) − 4f(y) − 4f(−y) in Banach spaces.

1. Introduction and Preliminaries

The stability problem of functional equations is originated from a question of Ulam [1]
concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial
answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[3] for additive mappings and by Th. M. Rassias [4] for linear mappings by considering an
unbounded Cauchy difference. The paper of Th. M. Rassias [4] has provided a lot of influence
in the development of what we call generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias
stability of functional equations. A generalization of the Th. M. Rassias theorem was obtained
by Găvruţa [5] by replacing the unbounded Cauchy difference by a general control function
in the spirit of Th. M. Rassias’ approach.

The functional equation

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)

(1.1)
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is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [6] for mappings f : X → Y , where X is
a normed space and Y is a Banach space. Cholewa [7] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. Czerwik [8] proved the
generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems
of several functional equations have been extensively investigated by a number of authors,
and there are many interesting results concerning this problem (see [9–19]).

In [20], Jun and Kim considered the following cubic functional equation

f
(
2x + y

)
+ f

(
2x − y

)
= 2f

(
x + y

)
+ 2f

(
x − y

)
+ 12f(x), (1.2)

which is called a cubic functional equation, and every solution of the cubic functional equation
is said to be a cubic mapping.

In [21], Lee et al. considered the following quartic functional equation

f
(
2x + y

)
+ f

(
2x − y

)
= 4f

(
x + y

)
+ 4f

(
x − y

)
+ 24f(x) − 6f

(
y
)
, (1.3)

which is called a quartic functional equation and every solution of the quartic functional
equation is said to be a quartic mapping. Quartic functional equations have been investigated
in [22, 23].

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 1.1 (see [24, 25]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.4)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In 1996, Isac and Th. M. Rassias [26] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [27–32]).
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This paper is organized as follows. In Section 2, we prove the generalized Hyers-Ulam
stability of the additive-quadratic-cubic-quartic functional equation

f
(
x + 2y

)
+ f

(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

) − 6f(x) + f
(
2y

)
+ f

(−2y) − 4f
(
y
) − 4f

(−y)
(1.5)

in Banach spaces for an odd case. In Section 3, we prove the generalized Hyers-Ulam stability
of the additive-quadratic-cubic-quartic functional equation (1.5) in Banach spaces for an even
case.

Throughout this paper, assume that X is a vector space and that Y is a Banach space.

2. Generalized Hyers-Ulam Stability of the Functional Equation (1.5):
An Odd Case

For a given mapping f : X → Y , we define

Df
(
x, y

)
:= f

(
x + 2y

)
+ f

(
x − 2y

) − 4f
(
x + y

) − 4f
(
x − y

)
+ 6f(x)

− f
(
2y

) − f
(−2y) + 4f

(
y
)
+ 4f

(−y)
(2.1)

for all x, y ∈ X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the

functional equation Df(x, y) = 0 in Banach spaces: an odd case.
Note that the fundamental ideas in the proofs of the main results in Sections 2 and 3

are contained in [24, 27, 28].

Theorem 2.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ L

8
ϕ
(
2x, 2y

)
(2.2)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying

∥∥Df
(
x, y

)∥∥ ≤ ϕ
(
x, y

)
(2.3)

for all x, y ∈ X. Then there is a unique cubic mapping C : X → Y such that

∥∥f(2x) − 2f(x) − C(x)
∥∥ ≤ L

8 − 8L
(
4ϕ(x, x) + ϕ(2x, x)

)
(2.4)

for all x ∈ X.

Proof. Letting x = y in (2.3), we get

∥∥f
(
3y

) − 4f
(
2y

)
+ 5f

(
y
)∥∥ ≤ ϕ

(
y, y

)
(2.5)

for all y ∈ X.
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Replacing x by 2y in (2.3), we get

∥
∥f

(
4y

) − 4f
(
3y

)
+ 6f

(
2y

) − 4f
(
y
)∥∥ ≤ ϕ

(
2y, y

)
(2.6)

for all y ∈ X.
By (2.5) and (2.6),

∥
∥f

(
4y

) − 10f
(
2y

)
+ 16f

(
y
)∥∥

≤ ∥
∥4

(
f
(
3y

) − 4f
(
2y

)
+ 5f

(
y
))∥∥

+
∥
∥f

(
4y

) − 4f
(
3y

)
+ 6f

(
2y

) − 4f
(
y
)∥∥

≤ 4ϕ
(
y, y

)
+ ϕ

(
2y, y

)

(2.7)

for all y ∈ X. Letting y := x/2 and g(x) := f(2x) − 2f(x) for all x ∈ X, we get

∥∥∥g(x) − 8g
(x
2

)∥∥∥ ≤ 4ϕ
(x
2
,
x

2

)
+ ϕ

(
x,

x

2

)
(2.8)

for all x ∈ X.
Consider the set

S :=
{
g : X −→ Y

}
, (2.9)

and introduce the generalized metric on S:

d
(
g, h

)
= inf

{
μ ∈ R+ :

∥∥g(x) − h(x)
∥∥ ≤ μ

(
4ϕ(x, x) + ϕ(2x, x)

)
, ∀x ∈ X

}
, (2.10)

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete (see the proof of Lemma
2.1 of [33]).

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x
2

)
(2.11)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

∥∥g(x) − h(x)
∥∥ ≤ 4ϕ(x, x) + ϕ(2x, x) (2.12)

for all x ∈ X. Hence

∥∥Jg(x) − Jh(x)
∥∥ =

∥∥∥8g
(x
2

)
− 8h

(x
2

)∥∥∥ ≤ L
(
4ϕ(x, x) + ϕ(2x, x)

)
(2.13)
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for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld
(
g, h

)
(2.14)

for all g, h ∈ S.
It follows from (2.8) that

∥
∥
∥g(x) − 8g

(x
2

)∥∥
∥ ≤ L

8
(
4ϕ(x, x) + ϕ(2x, x)

)
(2.15)

for all x ∈ X. So d(g, Jg) ≤ L/8.
By Theorem 1.1, there exists a mapping C : X → Y satisfying the following.
(1) C is a fixed point of J , that is,

C
(x
2

)
=

1
8
C(x) (2.16)

for all x ∈ X. Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping C is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
< ∞}

. (2.17)

This implies that C is a unique mapping satisfying (2.16) such that there exists a μ ∈ (0,∞)
satisfying

∥∥g(x) − C(x)
∥∥ ≤ μ

(
4ϕ(x, x) + ϕ(2x, x)

)
(2.18)

for all x ∈ X.
(2) d(Jng, C) → 0 as n → ∞. This implies the equality

lim
n→∞

8ng
( x

2n
)
= C(x) (2.19)

for all x ∈ X.
(3) d(g,C) ≤ (1/(1 − L))d(g, Jg), which implies the inequality

d
(
g,C

) ≤ L

8 − 8L
. (2.20)

This implies that the inequality (2.4) holds.
By (2.3),

∥∥∥8nDg
( x

2n
,
y

2n
)∥∥∥ ≤ 8n

(
ϕ

(
2x
2n

,
2y
2n

)
+ 2ϕ

( x

2n
,
y

2n
))

(2.21)
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for all x, y ∈ X and all n ∈ N. So

∥
∥
∥8nDg

( x

2n
,
y

2n
)∥∥
∥ ≤ Ln(ϕ

(
2x, 2y

)
+ 2ϕ

(
x, y

))
(2.22)

for all x, y ∈ X and all n ∈ N. So

∥
∥DC

(
x, y

)∥∥ = 0 (2.23)

for all x, y ∈ X. Thus the mapping C : X → Y is cubic, as desired.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

∥
∥Df

(
x, y

)∥∥ ≤ θ
(‖x‖p + ∥

∥y
∥
∥p) (2.24)

for all x, y ∈ X. Then there is a unique cubic mapping C : X → Y such that

∥∥f(2x) − 2f(x) − C(x)
∥∥ ≤ 2p + 9

2p − 8
θ‖x‖p (2.25)

for all x ∈ X.

Proof. The proof follows from Theorem 2.1 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥∥y
∥∥p) (2.26)

for all x, y ∈ X. Then we can choose L = 23−p and we get the desired result.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ 8Lϕ
(x
2
,
y

2

)
(2.27)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.3). Then there is a unique cubic
mapping C : X → Y such that

∥∥f(2x) − 2f(x) − C(x)
∥∥ ≤ 1

8 − 8L
(
4ϕ(x, x) + ϕ(2x, x)

)
(2.28)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
8
g(2x) (2.29)

for all x ∈ X.
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It follows from (2.8) that

∥
∥∥
∥g(x) −

1
8
g(2x)

∥
∥∥
∥ ≤ 1

8
(
4ϕ(x, x) + ϕ(2x, x)

)
(2.30)

for all x ∈ X. So d(g, Jg) ≤ 1/8.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.24). Then there is a unique cubic
mapping C : X → Y such that

∥
∥f(2x) − 2f(x) − C(x)

∥
∥ ≤ 9 + 2p

8 − 2p
θ‖x‖p (2.31)

for all x ∈ X.

Proof. The proof follows from Theorem 2.3 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥∥y
∥∥p) (2.32)

for all x, y ∈ X. Then we can choose L = 2p−3 and we get the desired result.

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ L

2
ϕ
(
2x, 2y

)
(2.33)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.3). Then there is a unique additive
mapping A : X → Y such that

∥∥f(2x) − 8f(x) −A(x)
∥∥ ≤ L

2 − 2L
(
4ϕ(x, x) + ϕ(2x, x)

)
(2.34)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Letting y := x/2 and h(x) := f(2x) − 8f(x) for all x ∈ X in (2.7), we get

∥∥∥h(x) − 2h
(x
2

)∥∥∥ ≤ 4ϕ
(x
2
,
x

2

)
+ ϕ

(
x,

x

2

)
(2.35)

for all x ∈ X.
Now we consider the linear mapping J : S → S such that

Jh(x) := 2h
(x
2

)
(2.36)

for all x ∈ X.
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It follows from (2.35) that

∥
∥
∥h(x) − 2h

(x
2

)∥∥
∥ ≤ 2Lϕ(x, x) +

L

2
ϕ(2x, x) (2.37)

for all x ∈ X. So d(h, Jh) ≤ L/2.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 2.6. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.24). Then there is a unique additive
mapping A : X → Y such that

∥
∥f(2x) − 8f(x) −A(x)

∥
∥ ≤ 2p + 9

2p − 2
θ‖x‖p (2.38)

for all x ∈ X.

Theorem 2.7. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ 2Lϕ
(x
2
,
y

2

)
(2.39)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.3). Then there is a unique additive
mapping A : X → Y such that

∥∥f(2x) − 8f(x) −A(x)
∥∥ ≤ 1

2 − 2L
(
4ϕ(x, x) + ϕ(2x, x)

)
(2.40)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jh(x) :=
1
2
h(2x) (2.41)

for all x ∈ X.
It follows from (2.35) that

∥∥∥∥h(x) −
1
2
h(2x)

∥∥∥∥ ≤ 2ϕ(x, x) +
1
2
ϕ(2x, x) (2.42)

for all x ∈ X. So d(h, Jh) ≤ 1/2.
The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 2.8. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.24). Then there is a unique additive
mapping A : X → Y such that

∥
∥f(2x) − 8f(x) −A(x)

∥
∥ ≤ 9 + 2p

2 − 2p
θ‖x‖p (2.43)

for all x ∈ X.

3. Generalized Hyers-Ulam Stability of the Functional Equation (1.5):
An Even Case

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the
functional equation Df(x, y) = 0 in Banach spaces: an even case.

Theorem 3.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ L

16
ϕ
(
2x, 2y

)
(3.1)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.3). Then there is a
unique quartic mapping Q : X → Y such that

∥∥f(2x) − 4f(x) −Q(x)
∥∥ ≤ L

16 − 16L
(
4ϕ(x, x) + ϕ(2x, x)

)
(3.2)

for all x ∈ X.

Proof. Letting x = y in (2.3), we get

∥∥f
(
3y

) − 6f
(
2y

)
+ 15f

(
y
)∥∥ ≤ ϕ

(
y, y

)
(3.3)

for all y ∈ X.
Replacing x by 2y in (2.3), we get

∥∥f
(
4y

) − 4f
(
3y

)
+ 4f

(
2y

)
+ 4f

(
y
)∥∥ ≤ ϕ

(
2y, y

)
(3.4)

for all y ∈ X.
By (3.4) and (3.5),

∥∥f(4x) − 20f(2x) + 64f(x)
∥∥

≤ ∥∥4
(
f(3x) − 6f(2x) + 15f(x)

)∥∥ +
∥∥f(4x) − 4f(3x) + 4f(2x) + 4f(x)

∥∥

≤ 4ϕ(x, x) + ϕ(2x, x)

(3.5)
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for all x ∈ X. Letting g(x) := f(2x) − 4f(x) for all x ∈ X, we get

∥
∥
∥g(x) − 16g

(x
2

)∥∥
∥ ≤ 4ϕ

(x
2
,
x

2

)
+ ϕ

(
x,

x

2

)
(3.6)

for all x ∈ X.
Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
It follows from (3.16) that

∥
∥
∥g(x) − 16g

(x
2

)∥∥
∥ ≤ L

16
(
4ϕ(x, x) + ϕ(2x, x)

)
(3.7)

for all x ∈ X. So d(g, Jg) ≤ L/16.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 4. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.24). Then there is unique
quartic mapping Q : X → Y such that

∥∥f(2x) − 4f(x) −Q(x)
∥∥ ≤ 2p + 9

2p − 16
θ‖x‖p (3.8)

for all x ∈ X.

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ 16Lϕ
(x
2
,
y

2

)
(3.9)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.3). Then there is a
unique quartic mapping Q : X → Y such that

∥∥f(2x) − 4f(x) −Q(x)
∥∥ ≤ 1

16 − 16L
(
4ϕ(x, x) + ϕ(2x, x)

)
(3.10)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
16

g(2x) (3.11)

for all x ∈ X.
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It follows from (3.16) that

∥
∥
∥
∥g(x) −

1
16

g(2x)
∥
∥
∥
∥ ≤ 1

16
(
4ϕ(x, x) + ϕ(2x, x)

)
(3.12)

for all x ∈ X. So d(g, Jg) ≤ 1/16.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 4. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.24). Then there is a
unique quartic mapping Q : X → Y such that

∥
∥f(2x) − 4f(x) −Q(x)

∥
∥ ≤ 9 + 2p

16 − 2p
θ‖x‖p (3.13)

for all x ∈ X.

Theorem 3.5. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ L

4
ϕ
(
2x, 2y

)
(3.14)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.3). Then there is a
unique quadratic mapping T : X → Y such that

∥∥f(2x) − 16f(x) − T(x)
∥∥ ≤ L

4 − 4L
(
4ϕ(x, x) + ϕ(2x, x)

)
(3.15)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Letting h(x) := f(2x) − 16f(x) for all x ∈ X in (3.6), we get

∥∥∥h(x) − 4h
(x
2

)∥∥∥ ≤ 4ϕ
(x
2
,
x

2

)
+ ϕ

(
x,

x

2

)
(3.16)

for all x ∈ X.
Now we consider the linear mapping J : S → S such that

Jh(x) := 4h
(x
2

)
(3.17)

for all x ∈ X.
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It follows from (3.16)that

∥
∥
∥h(x) − 4h

(x
2

)∥∥
∥ ≤ Lϕ(x, x) +

L

4
ϕ(2x, x) (3.18)

for all x ∈ X. So d(h, Jh) ≤ L/4.
The rest of the proof is similar to the proof of Theorem 2.1.

Corollary 3.6. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.24). Then there is a unique
quadratic mapping T : X → Y such that

∥
∥f(2x) − 16f(x) − T(x)

∥
∥ ≤ 2p + 9

2p − 4
θ‖x‖p (3.19)

for all x ∈ X.

Theorem 3.7. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ 4Lϕ
(x
2
,
y

2

)
(3.20)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.3). Then there is a
unique quadratic mapping T : X → Y such that

∥∥f(2x) − 16f(x) − T(x)
∥∥ ≤ 1

4 − 4L
(
4ϕ(x, x) + ϕ(2x, x)

)
(3.21)

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jh(x) :=
1
4
h(2x) (3.22)

for all x ∈ X.
It follows from (3.16) that

∥∥∥∥h(x) −
1
4
h(2x)

∥∥∥∥ ≤ ϕ(x, x) +
1
4
ϕ(2x, x) (3.23)

for all x ∈ X. So d(h, Jh) ≤ 1/4.
The rest of the proof is similar to the proof of Theorem 2.1.
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Corollary 3.8. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.24). Then there is a
unique quadratic mapping T : X → Y such that

∥
∥f(2x) − 16f(x) − T(x)

∥
∥ ≤ 9 + 2p

4 − 2p
θ‖x‖p (3.24)

for all x ∈ X.

4. Generalized Hyers-Ulam Stability of the Functional Equation (1.5)

One can easily show that an odd mapping f : X → Y satisfies (1.5) if and only if the odd
mapping f : X → Y is an additive-cubic mapping, that is,

f
(
x + 2y

)
+ f

(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

) − 6f(x). (4.1)

It was shown in of [34, Lemma 2.2] that g(x) := f(2x) − 2f(x) and h(x) := f(2x) − 8f(x) are
cubic and additive, respectively, and that f(x) = (1/6)g(x) − (1/6)h(x).

One can easily show that an even mapping f : X → Y satisfies (1.5) if and only if the
even mapping f : X → Y is a quadratic-quartic mapping, that is,

f
(
x + 2y

)
+ f

(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

) − 6f(x) + 2f
(
2y

) − 8f
(
y
)
. (4.2)

It was shown in of [35, Lemma 2.1] that g(x) := f(2x) − 4f(x) and h(x) := f(2x) − 16f(x)
are quartic and quadratic, respectively, and that f(x) = (1/12)g(x) − (1/12)h(x). Functional
equations of mixed type have been investigated in [36, 37].

Let fo(x) := (f(x) − f(−x))/2 and fe(x) := (f(x) + f(−x))/2. Then fo is odd and
fe is even. fo and fe satisfy the functional equation (1.5). Let go(x) := fo(2x) − 2fo(x) and
ho(x) := fo(2x) − 8fo(x). Then fo(x) = (1/6)go(x) − (1/6)ho(x). Let ge(x) := fe(2x) − 4fe(x)
and he(x) := fe(2x) − 16fe(x). Then fe(x) = (1/12)ge(x) − (1/12)he(x). Thus

f(x) =
1
6
go(x) − 1

6
ho(x) +

1
12

ge(x) − 1
12

he(x). (4.3)

So we obtain the following results.

Theorem 4.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ L

16
ϕ
(
2x, 2y

)
(4.4)
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for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.3). Then there exist an
additive mapping A : X → Y , a quadratic mapping T : X → Y , a cubic mapping C : X → Y and a
quartic mapping Q : X → Y such that

∥
∥
∥
∥f(x) −

1
6
A(x) − 1

12
T(x) − 1

6
C(x) − 1

12
Q(x)

∥
∥
∥
∥

≤
(

L

12 − 12L
+

L

48 − 48L
+

L

48 − 48L
+

L

192 − 192L

)
(
4ϕ(x, x) + ϕ(2x, x)

)
(4.5)

for all x ∈ X.

Proof. Since ϕ(x, y) ≤ (L/16)ϕ(2x, 2y), ϕ(x, y) ≤ (L/8)ϕ(2x, 2y), ϕ(x, y) ≤ (L/4)ϕ(2x, 2y)
and ϕ(x, y) ≤ (L/2)ϕ(2x, 2y). The result follows from Theorems 2.1, 2.5, 3.1, and 3.5.

Corollary 4.2. Let θ ≥ 0 and let p be a real number with p > 4. Let f : X → Y be a mapping
satisfying f(0) = 0 and (2.24). Then there exist an additive mapping A : X → Y , a quadratic
mapping T : X → Y , a cubic mapping C : X → Y and a quartic mapping Q : X → Y such that

∥∥∥∥f(x) −
1
6
A(x) − 1

12
T(x) − 1

6
C(x) − 1

12
Q(x)

∥∥∥∥

≤
(

2p + 9
6(2p − 2)

+
2p + 9

12(2p − 4)
+

2p + 9
6(2p − 8)

+
2p + 9

12(2p − 16)

)
θ‖x‖p

(4.6)

for all x ∈ X.

Theorem 4.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ 2Lϕ
(x
2
,
y

2

)
(4.7)

for all x, y ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.3). Then there exist an
additive mapping A : X → Y , a quadratic mapping T : X → Y , a cubic mapping C : X → Y , and
a quartic mapping Q : X → Y such that

∥∥∥∥f(x) −
1
6
A(x) − 1

12
T(x) − 1

6
C(x) − 1

12
Q(x)

∥∥∥∥

≤
(

1
12 − 12L

+
1

48 − 48L
+

1
48 − 48L

+
1

192 − 192L

)
(
4ϕ(x, x) + ϕ(2x, x)

)
(4.8)

for all x ∈ X.

Proof. Since ϕ(x, y) ≤ 2Lϕ(x/2, y/2), ϕ(x, y) ≤ 4Lϕ(x/2, y/2), ϕ(x, y) ≤ 8Lϕ(x/2, y/2) and
ϕ(x, y) ≤ 16Lϕ(x/2, y/2). The result follows from Theorems 2.3, 2.7, 3.3, and 3.7.
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Corollary 4.4. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let f : X → Y be a mapping
satisfying f(0) = 0 and (2.24). Then there exist an additive mapping A : X → Y , a quadratic
mapping T : X → Y , a cubic mapping C : X → Y, and a quartic mapping Q : X → Y such that

∥
∥
∥
∥f(x) −

1
6
A(x) − 1

12
T(x) − 1

6
C(x) − 1

12
Q(x)

∥
∥
∥
∥

≤
(

2p + 9
6(2 − 2p)

+
2p + 9

12(4 − 2p)
+

2p + 9
6(8 − 2p)

+
2p + 9

12(16 − 2p)

)
θ‖x‖p

(4.9)

for all x ∈ X.
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[33] D.Miheţ and V. Radu, “On the stability of the additive Cauchy functional equation in random normed
spaces,” Journal of Mathematical Analysis and Applications, vol. 343, no. 1, pp. 567–572, 2008.

[34] M. Eshaghi-Gordji, S. Kaboli-Gharetapeh, C. Park, and S. Zolfaghri, “Stability of an additive-cubic-
quartic functional equation,” Advances in Difference Euqations, vol. 2009, Article ID 395693, 20 pages,
2009.

[35] M. Eshaghi-Gordji, S. Abbaszadeh, and C. Park, “On the stability of a generalized quadratic and
quartic type functional equation in quasi-Banach spaces,” Journal of Inequalities and Applications, vol.
2009, Article ID 153084, 26 pages, 2009.

[36] M. Eshaghi-Gordji, S. Kaboli Gharetapeh, J. M. Rassias, and S. Zolfaghari, “Solution and stability of a
mixed type additive, quadratic, and cubic functional equation,” Advances in Difference Equations, vol.
2009, Article ID 826130, 17 pages, 2009.

[37] M. Eshaghi-Gordji, “Stability of a functional equation deriving from quartic and additive functions,”
preprint.


	1. Introduction and Preliminaries
	2. Generalized Hyers-Ulam Stability of the Functional Equation (1.5): An Odd Case
	3. Generalized Hyers-Ulam Stability of the Functional Equation (1.5): An Even Case
	4. Generalized Hyers-Ulam Stability of the Functional Equation (1.5)
	Acknowledgments
	References

