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We present new fixed point theorems for ws-compact operators. Our fixed point results
are obtained under Sadovskii, Leray-Schauder, Rothe, Altman, Petryshyn, and Furi-Pera type
conditions. An example is given to show the usefulness and the applicability of our results.

1. Introduction

Let X be a Banach space, and let M be a subset of X. Following [1], a map A : M → X is
said to be ws-compact if it is continuous and for any weakly convergent sequence (xn)n∈N in
M the sequence (Axn)n∈N has a strongly convergent subsequence in X. This concept arises
naturally in the study of both integral and partial differential equations (see [1–5]). In this
paper, we continue the study of ws-compact mappings, investigate the boundary conditions,
and establish new fixed point theorems. Specifically, we prove several fixed point theorems
for ws-compact mappings under Sadovskii, Leray-Schauder, Rothe, Altman, Petryshyn and
Furi-Pera type conditions. Finally, we note that ws-compact mappings are not necessarily
sequentially weakly continuous (see Example 2.14). This explains the usefulness of our fixed
point results in many practical situations. For the remainder of this section, we gather some
notations and preliminary facts. Let X be a Banach space, let B(X) denote the collection of
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all nonempty bounded subsets of X and W(X) the subset of B(X) consisting of all weakly
compact subsets of X. Also, let Br denote the closed ball centered at 0 with radius r.

In our considerations, the following definition will play an important role.

Definition 1.1 (see [6]). A function ψ : B(X) → R+ is said to be a measure of weak
noncompactness if it satisfies the following conditions.

(1) The family ker(ψ) = {M ∈ B(X) : ψ(M) = 0} is nonempty and ker(ψ) is contained
in the set of relatively weakly compact sets of X.

(2) M1 ⊆ M2 ⇒ ψ(M1) ≤ ψ(M2).

(3) ψ(co(M)) = ψ(M), where co(M) is the closed convex hull ofM.

(4) ψ(λM1 + (1 − λ)M2) ≤ λψ(M1) + (1 − λ)ψ(M2) for λ ∈ [0, 1].

(5) If (Mn)n≥1 is a sequence of nonempty weakly closed subsets ofX withM1 bounded
and M1 ⊇ M2 ⊇ · · · ⊇ Mn ⊇ · · · such that limn→∞ψ(Mn) = 0, then M∞ :=

⋂∞
n=1 Mn

is nonempty.

The family kerψ described in (1) is said to be the kernel of the measure of weak
noncompactness ψ. Note that the intersection set M∞ from (5) belongs to kerψ since
ψ(M∞) ≤ ψ(Mn) for every n and limn→∞ψ(Mn) = 0. Also, it can be easily verified that
the measure ψ satisfies

ψ
(
Mw

)
= ψ(M), (1.1)

where Mw is the weak closure of M.
A measure of weak noncompactness ψ is said to be regular if

ψ(M) = 0 if and only if M is relatively weakly compact, (1.2)

subadditive if

ψ(M1 +M2) ≤ ψ(M1) + ψ(M2), (1.3)

homogeneous if

ψ(λM) = |λ|ψ(M), λ ∈ R, (1.4)

set additive (or have the maximum property) if

ψ(M1 ∪M2) = max
(
ψ(M1), ψ(M2)

)
. (1.5)
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The first important example of a measure of weak noncompactness has been defined
by De Blasi [7] as follows:

w(M) = inf{r > 0 : there exists W ∈ W(X) with M ⊆ W + Br}, (1.6)

for each M ∈ B(X).
Notice that w(·) is regular, homogeneous, subadditive, and set additive (see [7]).
In what follows, let X be a Banach space, C a nonempty closed convex subset of X,

F : C → C a mapping and x0 ∈ C. For any M ⊆ C, we set

F(1,x0)(M) = F(M),

F(n,x0)(M) = F
(
co
(
F(n−1,x0)(M) ∪ {x0}

))
,

(1.7)

for n = 2, 3, . . .

Definition 1.2. Let X be a Banach space, C a nonempty closed convex subset of X, and ψ a
measure of weak noncompactness on X. Let F : C → C be a bounded mapping (that is
it takes bounded sets into bounded ones) and x0 ∈ C. We say that F is a ψ-convex-power
condensing operator about x0 and n0 if for any bounded set M ⊆ C with ψ(M) > 0, we have

ψ
(
F(n0,x0)(M)

)
< ψ(M). (1.8)

Obviously, F : C → C is ψ-condensing if and only if it is ψ-convex-power condensing
operator about x0 and 1.

Remark 1.3. The concept of convex-power condensing maps was introduced in [8] using the
Kuratowski measure of noncompactness.

2. Fixed Point Theorems

Theorem 2.1. Let X be a Banach space, and let ψ be a regular and set additive measure of weak
noncompactness onX. Let C be a nonempty closed convex subset ofX, x0 ∈ C, and let n0 be a positive
integer. Suppose that F : C → C is ψ-convex-power condensing about x0 and n0. If F is ws-compact
and F(C) is bounded, then F has a fixed point in C.

Proof. Let

F = {A ⊆ C, co(A) = A, x0 ∈ A and F(A) ⊆ A}. (2.1)

The set F is nonempty since C ∈ F. Set M =
⋂

A∈F A. Now, we show that for any positive
integer n we have

M = co
(
F(n,x0)(M) ∪ {x0}

)
. (P(n))
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To see this, we proceed by induction. Clearly M is a closed convex subset of C and F(M) ⊆
M. Thus, M ∈ F. This implies co(F(M) ∪ {x0}) ⊆ M. Hence, F(co(F(M) ∪ {x0})) ⊆ F(M) ⊆
co(F(M) ∪ {x0}). Consequently, co(F(M) ∪ {x0}) ∈ F. Hence, M ⊆ co(F(M) ∪ {x0}). As a
result co(F(M) ∪ {x0}) = M. This shows that (P(1)) holds. Let n be fixed, and suppose that
(P(n)) holds. This implies F(n+1,x0)(M) = F(co(F(n,x0)(M) ∪ {x0}) = F(M). Consequently,

co
(
F(n+1,x0)(M) ∪ {x0}

)
= co(F(M) ∪ {x0}) = M. (2.2)

As a result

co
(
F(n0,x0)(M) ∪ {x0}

)
= M. (2.3)

Notice F(C) is bounded implies that M is bounded. Using the properties of the measure of
weak noncompactness, we get

ψ(M) = ψ
(
co
(
F(n0,x0)(M) ∪ {x0}

))
= ψ

(
F(n0,x0)(M)

)
, (2.4)

which yields that M is weakly compact. Now, we show that F(M) is relatively compact. To
see this, consider a sequence (yn)n∈N in F(M). For each n ∈ N, there exists xn ∈ M with
yn = Fxn. Now, the Eberlein-S̃mulian theorem [9, page 549] guarantees that there exists a
subsequence S of N so that (xn)n∈S is a weakly convergent sequence. Since F is ws-compact,
then (Fxn)n∈S has a strongly convergent subsequence. Thus, F(M) is relatively compact.
Keeping in mind that F(M) ⊆ M, the result follows from Schauder’s fixed point theorem.

As an easy consequence of Theorem 2.1, we recapture [10, Theorem 3.1].

Corollary 2.2. Let X be a Banach space, and let ψ be a regular and set additive measure of weak
noncompactness on X. Let C be a nonempty closed convex subset of X. Assume that F : C → C is
ws-compact and F(C) is bounded. If F is ψ-condensing, that is, ψ(F(M)) < ψ(M), whenever M is
a bounded nonweakly compact subset of C, then F has a fixed point.

Theorem 2.3. LetX be a Banach space, and let ψ a measure of weak noncompactness onX. Let C be a
closed, convex subset ofX,U an open subset ofC, and p ∈ U. Assume that F : X → X is ws-compact
and ψ-convex-power condensing about p and n0. If F(U) ⊆ C and F(U) is bounded, then either

(i) F has a fixed point inU, or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u) + (1 − λ)p.

Proof. Suppose that (ii) does not hold and F has no fixed points on ∂U (otherwise, we are
finished). Then, u/=λF(u) + (1 − λ)p for u ∈ ∂U and λ ∈ [0, 1]. Consider

A :=
{
x ∈ U : x = tF(x) + (1 − t)p for some t ∈ [0, 1]

}
. (2.5)

Now, A/= ∅ since p ∈ U. In addition, the continuity of F implies that A is closed. Notice that

A ∩ ∂U = ∅, (2.6)
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therefore, by Urysohn’s lemma, there exists a continuous μ : U → [0, 1] with μ(A) = 1 and
μ(∂U) = 0. Let

N(x) =

⎧
⎨

⎩

μ(x)F(x) +
(
1 − μ(x)

)
p, x ∈ U,

p, C \U.
(2.7)

It is immediate thatN : C → C is continuous. Nowwe show thatN is ws-compact. To
see this, let (xn)n∈N be a sequence in C which converges weakly to some x ∈ C. Without loss
of generality, we may take (xn)n∈N in U. Notice that (μ(xn))n∈N is a sequence in [0, 1]. Hence,
by extracting a subsequence if necessary, we may assume that (μ(xn))n∈N converges to some
λ ∈ [0, 1]. On the other hand, since F is ws-compact, then there exists a subsequence S of N
so that (Fxn)n∈S converges strongly to some y ∈ C. Consequently, the sequence (Nxn)n∈S
converges strongly to λy + (1 − λ)p. This proves that N is ws-compact. Our next task is to
show that N is ψ-convex-power condensing about p and n0. To see this, let S be a bounded
subset of C. Clearly

N(S) ⊆ co
(
F(S) ∪ {

p
})
. (2.8)

By induction, note for all positive integer n, we have

N(n,p)(S) ⊆ co
(
F(n,p)(S) ∪ {

p
})

. (2.9)

Indeed, fix an integer n ≥ 1 and suppose that (2.9) holds. Then,

N(n+1,p)(S) = N
(
co
(
N(n,p)(S) ∪ {

p
}))

⊆ N
(
co
(
F(n,p)(S) ∪ {

p
}))

⊆ co
(
F
(
co
(
F(n,p)(S) ∪ {

p
})) ∪ {

p
})

= co
(
F(n+1,p)(S) ∪ {

p
})

.

(2.10)

In particular, we have

N(n0,p)(S) ⊆ co
(
F(n0,p)(S) ∪ {

p
})

. (2.11)

Thus,

ψ
(
N(n0,p)(S)

)
≤ ψ

(
co
(
F(n0,p)(S) ∪ {

p
}))

= ψ
((

F(n0,p)(S)
)
< ψ(S). (2.12)

This proves that N is ψ-convex-power condensing about p and n0. Theorem 2.1 guarantees
the existence of x ∈ C with x = N(x). Notice that x ∈ U since p ∈ U. Thus, x = μ(x)F(x) +
(1 − μ(x))p. As a result, x ∈ A, and therefore μ(x) = 1. This implies that x = F(x).
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Remark 2.4. Theorem 2.3 is a sharpening of [10, Theorem 4.1].

Lemma 2.5 (see [11]). Let Q be a closed convex subset of a Banach space X with 0 ∈ int(Q). Let μ
be the Minkowski functional defined by

μ(x) = inf{λ > 0 : x ∈ λQ}, (2.13)

for all x ∈ X. Then,

(i) μ is nonnegative and continuous on X.

(ii) For all λ ≥ 0 we have μ(λx) = λμ(x).

(iii) μ(x) = 1 if and only if x ∈ ∂Q.

(iv) 0 ≤ μ(x) < 1 if and only if x ∈ int(Q).

(v) μ(x) > 1 if and only if x /∈Q.

Lemma 2.6. Let X be a Banach space, ψ a set additive measure of weak noncompactness on X, andQ
a closed convex subset ofX with 0 ∈ int(Q). Let μ be the Minkowski functional defined in Lemma 2.5,
and, r be the map defined on X by

r(x) =
x

max
{
1, μ(x)

} for x ∈ X. (2.14)

Then,

(i) r is continuous, r(X) ⊆ Q and r(x) = x for all x ∈ Q.

(ii) For any subset A of X we have r(A) ⊆ co(A ∪ {0}).
(iii) For any bounded subset A of X we have ψ(r(A)) ≤ ψ(A).

Proof. (i) The continuity of r follows immediately from Lemma 2.5(i). Now, let x ∈ X. Using
Lemma 2.5(ii), we get

μ(r(x)) =
μ(x)

max
{
1, μ(x)

} ≤ 1. (2.15)

This implies that r(x) ∈ Q. The last statement follows easily from Lemma 2.5(v). Now, we
prove (ii). To this end, let A be a subset of X, and let x ∈ A. Then,

r(x) =
x

max
{
1, μ(x)

} =
1

max
{
1, μ(x)

}x +

(

1 − 1
max

{
1, μ(x)

}

)

0

∈ co(A ∪ {0}).
(2.16)

Thus, r(A) ⊆ co(A∪{0}). Using the properties of a measure of weak noncompactness, we get

ψ(r(A)) ≤ ψ(co(A ∪ {0})) = ψ(A ∪ {0}) = ψ(A). (2.17)

This proves (iii).



Fixed Point Theory and Applications 7

Theorem 2.7. Let X be a Banach space, and let ψ a regular set additive measure of weak
noncompactness on X. Let Q be a closed convex subset of X with 0 ∈ Q, and let n0 a positive integer.
Assume that F : X → X is ws-compact and ψ-convex-power condensing about 0 and n0 and F(Q)
is bounded and

if
{(

xj , λj
)}

is a sequence in ∂Q × [0, 1] converging to (x, λ) with

x = λF(x) and 0 < λ < 1, then λjF
(
xj

) ∈ Q for j sufficiently large
(2.18)

holding. Also, suppose the following condition holds:

there exists a continuous retraction r : X −→ Q with r(z) ∈ ∂Q for z ∈ X \Q
and r(D) ⊆ co(D ∪ {0}) for any bounded subset D of X.

(2.19)

Then, F has a fixed point.

Proof. Let r : X → Q be as described in (2.19). Consider

B = {x ∈ X : x = Fr(x)}. (2.20)

We first show that B /= ∅. To see this, consider rF : Q → Q. First, notice that rF(Q)
is bounded since F(Q) is bounded and r(F(Q)) ⊆ co(F(Q) ∪ {0}). Clearly, rF is continuous,
since F and r are continuous. Now, we show that rF is ws-compact. To see this, let (xn)n∈N be
a sequence in Q which converges weakly to some x ∈ Q. Since F is ws-compact, then there
exists a subsequence S ofN so that (Fxn)n∈S converges strongly to some y ∈ X. The continuity
of r guarantees that the sequence (rFxn)n∈S converges strongly to ry. This proves that rF is
ws-compact. Our next task is to show that rF is ψ-convex-power condensing about 0 and n0.
To do so, let A be a subset of Q. In view of (2.19), we have

(rF)(1,0)(A) = rF(A) = rF(1,0)(A) ⊆ co
(
F(1,0)(A) ∪ {0}

)
. (2.21)

Hence,

(rF)(2,0)(A) = rF
(
co
(
(rF)(1,0)(A) ∪ {0}

))

= rF
(
co
(
rF(1,0)(A) ∪ {0}

))

⊆ rF
(
co
(
F(1,0)(A) ∪ {0}

))

= rF(2,0)(A),

(2.22)
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and by induction

(rF)(n0,0)(A) = rF
(
co
(
(rF)(n0−1,0)(A) ∪ {0}

))

⊆ rF
(
co
(
rF(n0−1,0)(A) ∪ {0}

))

⊆ rF
(
co
(
F(n0−1,0)(A) ∪ {0}

))

= rF(n0,0)(A).

(2.23)

Taking into account the fact that F is ψ-convex-power condensing about 0 and n0 and using
(2.19), we get

ψ
(
(rF)(n0,0)(A)

)
≤ ψ

(
rF(n0,0)(A)

)
≤ ψ

(
co
(
F(n0,0)(A) ∪ {0}

))

≤ ψ
(
F(n0,0)(A)

)
< ψ(A),

(2.24)

whenever ψ(A) > 0. Invoking Theorem 2.1, we infer that there exists y ∈ Q with rF(y) = y.
Let z = F(y), so Fr(z) = Fr(F(y)) = F(y) = z. Thus, z ∈ B and B /= ∅. In addition, B is closed,
since Fr is continuous. Moreover, we claim that B is compact. To see this, first notice

B ⊆ Fr(B) ⊆ F
(
B′) = F(1,0)(B′), (2.25)

where B′ = co(B ∪ {0}). Thus,

B ⊆ Fr(B) ⊆ Fr
(
F
(
B′))

⊆ F
(
co
(
F
(
B′) ∪ {0}))

= F(2,0)(B′),

(2.26)

and by induction

B ⊆ Fr(B) ⊆ Fr
(
F(n0−1,0)(B′)

)

⊆ F
(
co
(
F(n0−1,0)(B′) ∪ {0}

))

= F(n0,0)
(
B′),

(2.27)

Now, if ψ(B)/= 0, then

ψ(B) ≤ ψ
(
F(n0,0)

(
B′)

)
< ψ

(
B′) = ψ(B), (2.28)

which is a contradiction. Thus, ψ(B) = 0 and so B is relatively weakly compact. Now, (2.19)
guarantees that r(B) is relatively weakly compact. Now, we show that Fr(B) is relatively
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compact. To see this, let (yn)n∈N be a sequence in Fr(B). For each n ∈ N, there exists
xn ∈ r(B) with yn = Fxn. Since r(B) is relatively weakly compact, then, by extracting a
subsequence if necessary, we may assume that (xn)n∈N is a weakly convergent sequence.
Now, F is ws-compact implies that (yn)n∈N has a strongly convergent subsequence. This
proves that Fr(B) is relatively compact. From (2.25), it readily follows that B is relatively
compact. Consequently, B = B is compact. We now show that B ∩Q/= ∅. To do this, we argue
by contradiction. Suppose that B ∩ Q = ∅. Then, since B is compact and Q is closed, there
exists δ > 0 with dist(B,Q) > δ. Choose N ∈ {1, 2, . . .} such that Nδ > 1. Define

Ui =
{

x ∈ X : d(x,Q) <
1
i

}

for i ∈ {N,N + 1, . . .}, (2.29)

here d(x,Q) = inf{‖x − y‖ : y ∈ Q}. Fix i ∈ {N,N + 1, . . .}. Since dist(B,Q) > δ, then
B∩Ui = ∅. Now, we show that Fr : Ui → X is ws-compact. To see this, let (xn)n∈N be a weakly
convergent sequence inUi. Then, the set S := {xn : n ∈ N} is relatively weakly compact and so
ψ(S) = 0. In view of (2.19), we infer that ψ(r(S)) = 0 and so r(S) is relatively weakly compact.
By extracting a subsequence if necessary, we may assume that (rxn)n∈N is weakly convergent.
Now, F is ws-compact implies that (Frxn)n∈N has a strongly convergent subsequence. This
proves that Fr is ws-compact. Our next task is to show that Fr is ψ-convex-power condensing
about 0 and n0. To see this, let A be a bounded subset of Ui and set A′ = co(A ∪ {0}). Then,
keeping in mind (2.19), we obtain

(Fr)(1,0)(A) ⊆ F
(
A′),

(Fr)(2,0)(A) = Fr
(
co
(
(Fr)(1,0)(A) ∪ {0}

))

⊆ Fr(co(F(A′) ∪ {0}))
⊆ F(co(F(A′) ∪ {0}))
= F(2,0)(A′),

(2.30)

and by induction,

(Fr)(n0,0)(A) = Fr
(
co
(
(Fr)(n0−1,0)(A) ∪ {0}

))

⊆ Fr
(
co
(
F(n0−1,0)(A′) ∪ {0}

))

⊆ F
(
co
(
F(n0−1,0)(A′) ∪ {0}

))

= F(n0,0)
(
A′).

(2.31)

Thus,

ψ
(
(Fr)(n0,0)(A)

)
≤ ψ

(
F(n0,0)

(
A′)

)
< ψ

(
A′) = ψ(A), (2.32)
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whenever ψ(A)/= 0. Applying Theorem 2.3 to Fr : Ui → X, we may deduce that there exists
(yi, λi) ∈ ∂Ui × (0, 1) with yi = λiFr(yi). Notice in particular since yi ∈ ∂Ui × (0, 1) that

λiFr
(
yi

)
/∈Q for i ∈ {N,N + 1, . . .}. (2.33)

We now consider

D = {x ∈ X : x = λFr(x), for some λ ∈ [0, 1]}. (2.34)

Clearly,D is closed since F and r are continuous. Now, we claim thatD is compact. To
see this, first notice

D ⊆ Fr(D) ∪ {0}. (2.35)

Thus,

D ⊆ Fr(D) ∪ {0} ⊆ Fr(co(Fr(D) ∪ {0})) ∪ {0} = (Fr)(2,0) ∪ {0}, (2.36)

and by induction

D ⊆ Fr(D) ∪ {0} ⊆ Fr
(
co
(
(Fr)(n0−1,0)(D) ∪ {0}

))
∪ {0} = (Fr)(n0,0) ∪ {0}, (2.37)

consequently

ψ(D) ≤ ψ
(
(Fr)(n0,0) ∪ {0}

)
≤ ψ

(
(Fr)(n0,0)

)
. (2.38)

Since Fr is ψ-convex-power condensing about 0 and n0, then ψ(D) = 0, and soD is relatively
weakly compact. Now, (2.19) guarantees that r(D) is relatively weakly compact. Now, we
show that Fr(D) is relatively compact. To see this, let (yn)n∈N be a sequence in F(D). For each
n ∈ N, there exists xn ∈ r(D) with yn = Fxn. Since r(D) is relatively weakly compact then,
by extracting a subsequence if necessary, we may assume that (xn)n∈N is a weakly convergent
sequence. Now, F is ws-compact implies that (yn)n∈N has a strongly convergent subsequence.
This proves that Fr(D) is relatively compact. From (2.35), it readily follows thatD is relatively
compact. Consequently, D = D is compact. Then, up to a subsequence, we may assume that
λi → λ∗ ∈ [0, 1] and yi → y∗ ∈ ∂Ui. Hence, λiFr(yi) → λ∗Fr(y∗), and therefore y∗ =
λ∗Fr(y∗). Notice λ∗Fr(y∗)/∈Q since y∗ ∈ ∂Ui. Thus, λ∗ /= 1 since B ∩Q = ∅. From assumption
(2.18), it follows that λiFr(yi) ∈ Q for j sufficiently large, which is a contradiction. Thus,
B ∩Q/= ∅, so there exists x ∈ Q with x = Fr(x), that is, x = Fx.

Remark 2.8. If 0 ∈ int(Q) then we can choose r : X → Q in the statement of Theorem 2.7 as in
Lemma 2.6. Clearly r(z) ∈ ∂Q for z ∈ X \Q and r(D) ⊆ co(D ∪ {0}) for any bounded subset
D of X.
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Corollary 2.9. Let X be a Banach space, ψ a regular set additive measure of weak noncompactness
on X, and Q a closed convex subset of X with 0 ∈ Q. Assume that F : X → X is ws-compact and
ψ-convex-power condensing about 0 and n0, and assume that (2.19) holds. If F(Q) is bounded and
F(∂Q) ⊆ Q (the condition of Rothe type), then F has a fixed point in Q.

In the light of Remark 2.8, we have the following result.

Corollary 2.10. Let X be a Banach space, ψ a regular set additive measure of weak noncompactness
on X and Q a closed convex subset of X with 0 ∈ int(Q). Assume F : X → X is ws-compact and
ψ-convex-power condensing about 0 and n0. If F(Q) is bounded and F(∂Q) ⊆ Q, then F has a fixed
point in Q.

Theorem 2.11. Let Q be a closed convex set in a Banach space X, 0 ∈ int(Q). Assume F : X → X
is ws-compact and ψ-convex-power condensing about 0 and n0. If F(Q) is bounded and

‖Fx − x‖2 ≥ ‖Fx‖2 − ‖x‖2, ∀x ∈ ∂Q, (2.39)

(the condition of Altman type), then F has a fixed point in Q.

Proof. Let r : X → Q be as described in Lemma 2.6. As in the proof of Theorem 2.7, there
exists z ∈ Q such that z = rF(z). If Fz ∈ Q, then z = rFz = Fz, and we are done. If Fz/∈Q,
by Lemma 2.5, we have μ(Fz) > 1. Thus, z = rFz = (1/μ(Fz))Fz. Letting λ = μ(Fz), then
Fz = λz. Consequently,

‖Fz − z‖2 = (λ − 1)2‖z‖2 ≥ ‖Fz‖2 − ‖z‖2 =
(
λ2 − 1

)
‖z‖2. (2.40)

As a result (λ − 1)2 ≥ (λ2 − 1). This contradicts the fact that λ > 1. Therefore, F has a
fixed point.

Corollary 2.12. LetQ be a closed convex set in a Banach spaceX, 0 ∈ int(Q). Assume that F : X →
X is ws-compact and ψ-convex-power condensing about 0 and n0. If F(Q) is bounded and one of the
following conditions are satisfied:

(i) ‖Fx‖ ≤ ‖x‖, for all x ∈ ∂Q (the condition of Rothe type),

(ii) ‖x − Fx‖ ≥ ‖Fx‖, for all x ∈ ∂Q (the condition of Petryshyn type).

Then, F has a fixed point in Q.

Remark 2.13. In Theorem 2.7 we need F : X → Xψ-convex-power condens-ing about 0 and
n0: However, In Theorem 2.7 the condition F : X → Xws-compact can be replaced by F :
Q → X ws-compact. This comment also applies to Corollaries 2.9, 2.10, Theorem 2.11, and
Corollary 2.12.

In the following example, we give a broad class of ws-compact mappings which are
not sequentially weakly continuous.
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Example 2.14. Let g : (0, 1) × R → R be a function satisfying Carathéodory conditions, that
is, g is Lebesgue measurable in x for each y ∈ R and continuous in y for each x ∈ (0, 1).
Additionally, we assume that

∣
∣g
(
x, y

)∣
∣ ≤ a(x) + b

∣
∣y

∣
∣, (2.41)

for all (x, y) ∈ (0, 1) × R, where a(x) is a nonnegative function Lebesgue integrable on the
interval (0, 1) and b ≥ 0. Let us consider the so-called superposition operator Ng , generated
by the function g, which to every function u defined on the interval (0, 1) assigns the function
Ngu given by the formula

(
Ngu

)
(x) = g(x, u(x)), x ∈ (0, 1). (2.42)

Let L1 = L1(0, 1) denote the space of functions u : (0, 1) → R which are Lebesgue
integrable, equipped with the standard norm. It was shown [12] that under the above-quoted
assumptions the superposition operatorNg maps continuously the space L1 into itself. Define
the functional

φ(u) =
∫1

0
Ngu(x)dx =

∫1

0
g(x, u(x))dx, (2.43)

for u ∈ L1. Notice that φ = KNg , where K is the linear functional defined on L1 by

K(u) =
∫1

0
u(x)dx, u ∈ L1. (2.44)

Clearly, K is continuous with norm ‖K‖ ≤ 1. Thus, φ is continuous. Now, we show that φ
is ws-compact. To see this, let (un) be a weakly convergent sequence of L1. Using (2.41), we
have for any for any subset D of (0, 1) that

∫

D

∣
∣Ngun(x)

∣
∣dx ≤

∫

D

a(x)dt + b

∫

D

|un(x)|dx. (2.45)

Taking into account the fact the sequence (un) is weakly convergent and that any set
consisting of one element is weakly compact and using Corollary 11 in [13, page 294], we get

lim
|D|→ 0

∫

D

a(x)dx = 0,

lim
|D|→ 0

∫

D

|un(x)|dx = 0,

(2.46)

uniformly in n, where |D| is the Lebesgue measure of D. Combining (2.45) and(2.46), we
arrive at

lim
|D|→ 0

∫

D

∣
∣Ngun(x)

∣
∣dx = 0, (2.47)
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uniformly in n. Applying Corollary 11 in [13, page 294] once again, we infer thatNg(un) has
a weakly convergent subsequence, sayNg(unk). Let u be the weak limit of (Ng(unk)). Hence,

∫1

0
Ng(unk)(x)v(x)dx −→

∫1

0
u(x)v(x)dx, (2.48)

for all v ∈ L∞(0, 1). In particular, we have

∫1

0
g(x, unk(x))dx −→

∫1

0
u(x)dx. (2.49)

Consequently, the sequence (φunk) is convergent. This proves that φ is ws-compact. However,
φ is not weakly sequentially continuous unless φ is linear with respect to the second variable
(see [14, 15]).
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