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We prove a strong convergence theorem by using a hybrid method for finding a common element
of the set of solutions for generalized mixed equilibrium problems, the set of fixed points of a
family of quasi-φ-asymptotically nonexpansive mappings in strictly convex reflexive Banach space
with the Kadec-Klee property and, a Fréchet differentiable norm under weaker conditions. The
method of the proof is different from, S. Takahashi and W. Takahashi that by (2008) and that by
Takahashi and Zembayashi (2008) and see references. It also shows that the type of projection used
in the iterative method is independent of the properties of the mappings. The results presented in
the paper improve and extend some recent results.

1. Introduction

Let E be a Banach space and let C be a closed convex subsets of E. Let F be an equilibrium
bifunction from C × C into R, let ψ : C → R be a real-valued function, and let A : C → E∗

be a nonlinear mapping. The “so-called” generalized mixed equilibrium problem is to find
z ∈ C such that

F
(
z, y

)
+
〈
Az, y − z

〉
+ ψ

(
y
) − ψ(z) ≥ 0, ∀y ∈ C, s (1.1)

The set of solutions of (1.1) is denoted by GMEP, that is,

GMEP =
{
z ∈ C : F

(
z, y

)
+
〈
Az, y − z

〉
+ ψ

(
y
) − ψ(z) ≥ 0, ∀y ∈ C

}
. (1.2)



2 Fixed Point Theory and Applications

Sepecial Examples

(i) If A = 0, then the problem (1.1) is equivalent to find z ∈ C such that

F
(
z, y

)
+ ψ

(
y
) − ψ(z) ≥ 0, ∀y ∈ C. (1.3)

which is called the mixed equilibrium problem; see [1]. The set of solutions of (1.3)
is denoted by MEP.

(ii) If F = 0, then the problem (1.1) is equivalent to find z ∈ C such that

〈
Az, y − z

〉
+ ψ

(
y
) − ψ(z) ≥ 0, ∀y ∈ C, (1.4)

which is called the mixed variational inequality of Browder type. The set of
solutions of (1.4) is denoted by V I(C,A, ψ).

(iii) If ψ = 0, then the problem (1.1) is equivalent to find z ∈ C such that

F
(
z, y

)
+
〈
Az, y − z

〉 ≥ 0, ∀y ∈ C. (1.5)

which is called the generalized equilibrium problem; see [2]. The set of solutions of
(1.5) is denoted by EP.

(iv) If A = 0, ψ = 0, then the problem (1.1) is equivalent to find z ∈ C such that

F
(
z, y

) ≥ 0, ∀y ∈ C, (1.6)

which is called the equilibrium problem. The set of solutions of (1.6) is denoted by
EP(F).

Recently, Tada and Takahashi [3] and S. Takahashi and W. Takahashi [4] considered
iterative methods for finding an element of EP(F) ∩ F(S) in Hilbert space. Very recently,
S.Takahashi and W.Takahashi [2] introduced an iterative method for finding an element
of EP ∩ F(S), where A : C → H is an inverse-strongly monotone mapping and S is
nonexpansive mapping and then proved a strong convergence theorem in Hilbert space.
On the other hand, Takahashi and Zembayashi [5] prove a strong convergence theorem for
finding a common element of the set of solutions of an equilibrium problem and the set of
fixed points of a relatively nonexpansive mapping in a Banach space by using the shrinking
Projection method. Very recently, Kimura and Takahashi [6] prove a strong convergence
theorem for a family of relatively nonexpansive mapping in a Banach space by using a hybrid
method.

In this paper, motivated by Kimura and Takahashi [6], we prove a strong convergence
theorem for finding an element of GMEP ∩ ⋂

λ∈Λ F(Tλ) in Banach space by using a hybrid
method, whereA : C → E∗ is a continuous and monotone operator and Tλ(λ ∈ Λ) is a family
of quasi-φ-asymptotically nonexpansive mapping. Moreover, the method of proof adopted
in the paper is different from that of [2, 5].
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2. Preliminaries

Throughout this paper, we assume that all the Banach spaces are real. We denote by N and R

the sets of positive integers and real numbers, respectively. Let E be a Banach space and let
E∗ be the topological dual of E. For all x ∈ E and x∗ ∈ E∗, we denote the value of x∗ at x by
〈x, x∗〉. The duality mapping J : E → 2E

∗
is defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, x ∈ E. (2.1)

By Hahn-Banach theorem, J(x) is nonempty; see [7] for more details. We denote the weak
convergence and the strong convergence of a sequence {xn} to x in E by xn ⇀ x and xn → x,
respectively. A Banach space E is said to be strictly convex if ‖x + y‖/2 < 1 for x, y ∈ S(E) =
{z ∈ E : ‖z‖ = 1} and x /=y. It is also said to be uniformly convex if for each ε ∈ (0, 2] there
exists δ > 0 such that ‖x + y‖/2 < 1 − δ for x, y ∈ S(E) and ‖x − y‖ ≥ ε. E is said to have the
Kadec-Klee property, that is, for any sequence {xn} ⊂ E, if xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, then
xn → x.

Define f : S(E) × S(E) × R \ {0} → R by

f
(
x, y, t

)
=

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

for x, y ∈ S(E) and t ∈ R \ {0}. A norm of E is said to be Gâteaux differentiable if
limt→ 0f(x, y, t) has a limit for each x, y ∈ S(E). In this case, E is said to be smooth. A norm of
E is said to be Fréchet differentiable if limt→ 0 f(x, y, t) is attained uniformly for y ∈ S(E) for
each x ∈ S(E). It is known that E∗ has a Fréchet differentiable norm if and only if E is strictly
convex and reflexive, and has the Kadec-Klee property. We know that if E is smooth, strictly
convex, and reflexive, then the duality mapping J is single valued, one to one, and onto. In
this case, the inverse mapping J−1 coincides with the duality mapping J∗ on E∗. See [8] for
more details.

Remark 2.1. If E is a reflexive and strictly convex Banach space, then J−1 is hemicontinuous,
that is, J−1 is norm-weak continuous.

Let E be a smooth, strictly convex and reflexive Banach space and let C be a closed
convex subset of E. Throughout this paper, we denote by φ the function defined by

φ
(
y, x

)
=
∥∥y

∥∥2 − 2
〈
y, Jx

〉
+ ‖x‖2, ∀x, y ∈ E. (2.3)

Let {Cn} be a sequence of nonempty closed convex subset of a reflexive Banach space E.
We define two subsets s − LinCn and w − LsnCn as follows: x ∈ s − LinCn if and only if
there exists {xn} ⊂ E such that {xn} converges strongly to x and that xn ∈ Cn for all n ∈ N.
Similarly, y ∈ w−LsnCn if and only if there exists a subsequence {Cni} of {Cn} and a sequence
{yi} ⊂ E such that {yi} converges weakly to y and yi ∈ Cni for all i ∈ N. We define the Mosco
convergence [9] of {Cn} as follows: if C0 satisfies that C0 = s − LinCn = w − LsnCn, then it is
said that {Cn} converges to C0 in the sense of Mosco and we write C0 = M − limn→∞ Cn. For
more details, see [10].
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Let C be a nonempty closed convex subset of a smooth, strictly convex and reflexive
Banach space E. Then, for arbitrarily fixed x ∈ E, a function C 
 y �→ ‖x − y‖2 ∈ R has a
unique minimizer yx ∈ C. Using such a point, we define the metric projection PC by PCx =
yx = argminy∈C‖x − y‖2 for every x ∈ E. In a similar fashion, we can see that a function
C 
 y �→ φ(x, y) ∈ R has a unique minimizer zx ∈ C. The generalized projectionΠC of E onto
C is defined by ΠC = zx = argminy∈C φ(x, y) for every x ∈ E; see [11].

The generalized projection ΠC from E onto C is well defined and single valued and
satisfies

(‖x‖ − ∥
∥y

∥
∥)2 ≤ φ

(
y, x

) ≤ (‖x‖ + ∥
∥y

∥
∥)2, ∀x, y ∈ E. (2.4)

If E is a Hilbert space, then φ(y, x) = ‖y − x‖2 andΠC is the metric projection PC of E onto C.
It is well-known that the following conclusions hold.

Lemma 2.2 (see[11, 12]). Let C be a nonempty closed convex subsets of a smooth, strictly convex
and reflexive Banach spaces. Then

φ
(
x,ΠCy

)
+ φ

(
ΠCy, y

) ≤ φ
(
x, y

)
, ∀x ∈ C, y ∈ E. (2.5)

Lemma 2.3. Let C be a nonempty closed convex subsets of a smooth, strictly convex and reflexive
Banach spaces E, let x ∈ E and let z ∈ C. Then the following conclusions hold:

(a) z = ΠCx ⇔ 〈y − z, Jx − Jz〉 ≤ 0, for all y ∈ C.

(b) For x, y ∈ E, φ(x, y) = 0 if and only if x = y.

The following theorem proved by Tsukada [13] plays an important role in our results.

Theorem 2.4. Let E be a smooth, reflexive, and strictly convex Banach space having the Kadec-Klee
property. Let {Kn} be a sequence of nonempty closed convex subset of E. If K0 = M − limn→∞ Kn

exists and is nonempty, then {PKnx} converges strongly to PK0x for each x ∈ C.

Theorem 2.4 is still valid if we replace the metric projections with the generalized
projections as follows:

Theorem 2.5. Let E be a smooth, reflexive, and strictly convex Banach spaces having the Kadec-Klee
property. Let {Kn} be a sequence of nonempty closed convex subsets of E. If K0 = M − limn→∞ Kn

exists and is nonempty, then {ΠKnx} converges strongly toΠK0x for each x ∈ C.

Let C be a nonempty closed convex subsets of E, and let T be a mapping from C
into itself. We denoted by F(T) the set of fixed points of T . T is said to be φ-asymptotically
nonexpansive, if there exists some real sequence {kn} with kn ≥ 1 and kn → 1 such that
φ(Tnx, Tny) ≤ knφ(x, y) for all n ≥ 1 and x, y ∈ C. T is said to be quasi-φ-asymptotically
nonexpansive [14], if there exists some real sequence {kn} with kn ≥ 1 and kn → 1 and
F(T)/= ∅ such that φ(p, Tnx) ≤ knφ(p, x) for all n ≥ 1, x ∈ C, and p ∈ F(T). T is said to be
uniformly Lipschitzian continuous if there exists some L > 0 such that ‖Tnx−Tny‖ ≤ L‖x−y‖
for all n ≥ 1 and x, y ∈ C. A point p ∈ C is said to be an asymptotic fixed point of T [15, 16]
if there exists {xn} in C which converges weakly to p and limn→∞‖xn − Txn‖ = 0. We denote
the set of all asymptotic fixed point of T by F̂(T). Following Matsushita and Takahashi [17],
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a mapping T : C → C is said to be relatively nonexpansive if the following conditions are
satisfied:

(1) F(T) is nonempty,

(2) φ(u, Tx) ≤ φ(u, x), for all u ∈ F(T), x ∈ C,

(3) F̂(T) = F(T).

A mapping T : C → C is said to be quasi-φ-nonexpansive, if φ(p, Tx) ≤
φ(p, x), for all x ∈ C, for all p ∈ F(T).

We remark that a quasi-φ-nonexpansive mapping with a nonempty fixed point set
F(T) is a quasi-φ-asymptotically nonexpansive mapping, but the converse may be not true.

A mapping T : C → C is said to be closed, if for any sequence {xn} ⊂ C with xn → x
and Txn → y, Tx = y.

Lemma 2.6. Let E be a strictly convex reflexive Banach space having the Kadec-Klee property and
a Fréchet differentiable norm, C be a nonempty closed convex subset of E, and let T be a uniformly
Lipschitzian continuous and quasi-φ-asymptotically nonexpansive mapping from C into itself. Then
F(T) is closed and convex.

Proof. We first show that F(T) is closed. To see this, let {pn} be a sequence in F(T) with
pn → p as n → ∞; we shall prove that p ∈ F(T). In fact, from the definition of T , we have
φ(pn, Tp) ≤ k1φ(pn, p) → 0(n → ∞). Therefore we have

lim
n→∞

φ
(
pn, Tp

)
= lim

n→∞

(∥∥pn
∥∥2 − 2

〈
pn, JTp

〉
+
∥∥Tp

∥∥2
)

=
∥∥p

∥∥2 − 2
〈
p, JTp

〉
+
∥∥Tp

∥∥2 = φ
(
p, Tp

)
= 0,

(2.6)

that is, p = Tp. We next show that F(T) is convex. To end this, for arbitrary p, q ∈ F(T), t ∈
(0, 1), by setting w = tp + (1 − t)q, it is sufficient to show that Tw = w. Indeed, by using (2.3)
we have

φ(w, Tnw) = ‖w‖2 − 2〈w, JTnw〉 + ‖Tnw‖2

= ‖w‖2 − 2t
〈
p, JTnw

〉 − 2(1 − t)
〈
q, JTnw

〉
+ ‖Tnw‖2

= ‖w‖2 + tφ
(
p, Tnw

〉
+ (1 − t)φ

(
q, Tnw

〉 − t
∥∥p

∥∥2 − (1 − t)
∥∥q

∥∥2

≤ ‖w‖2 + kntφ
(
p,w

)
+ kn(1 − t)φ

(
q,w

) − t
∥∥p

∥∥2 − (1 − t)
∥∥q

∥∥2

= (kn − 1)
(
t
∥∥p

∥∥2 + (1 − t)
∥∥q

∥∥2 − ‖w‖2
)
,

(2.7)

which implies that φ(w, Tnw) → 0 as n → ∞. From (2.4) we have ‖Tnw‖ → ‖w‖.
Consequently ‖JTnw‖ → ‖Jw‖. This implies that {JTnw} is bounded in E∗. Since E is
reflexive, so is E∗, we can assume that

JTnw ⇀ f0 ∈ E∗. (2.8)
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In view of the reflexive of E, we see that J(E) = E∗. Hence there exists p ∈ E such that Jp = f0.
By virtue of the weak lower semicontinuity of norm ‖ · ‖, we have

0 = lim inf
n→∞

φ(w, Tnw) = lim inf
n→∞

(
‖w‖2 − 2〈w, J(Tnw)〉 + ‖Tnw‖2

)

= lim inf
n→∞

(
‖w‖2 − 2〈w, J(Tnw)〉 + ‖J(Tnw)‖2

)

≥ ‖w‖2 − 2
〈
w, f0

〉
+
∥
∥f0

∥
∥2

= ‖w‖2 − 2
〈
w, Jp

〉
+
∥
∥Jp

∥
∥2

= ‖w‖2 − 2
〈
w, Jp

〉
+
∥
∥p

∥
∥2 = φ

(
w, p

)
,

(2.9)

that is, w = p. This implies that f0 = Jw. Thus from (2.8) we have JTnw ⇀ Jw ∈ E∗. Since
‖JTnw‖ → ‖Jw‖ and E∗ has the Kadec-Klee property, we have JTnw → Jw. Note that
J−1 : E∗ → E is hemicontinuous, it yields that Tnw ⇀ w. Again since ‖Tnw‖ → ‖w‖, by
using the Kadec-Klee property of E, we have Tnw → w. Hence TTnw = Tn+1w → w as
n → ∞. Since T is uniformly Lipschitzian continuous, we have w = Tw. This completes the
proof.

For solving the equilibrium problem for bifunction F : C × C → R, let us assume that
F satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C,

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C,

(A3) for each x, y, z ∈ C,

lim sup
t↓0

F
(
tz + (1 − t)x, y

) ≤ F
(
x, y

)
, (2.10)

(A4) for each x ∈ C, y �→ F(x, y) is a convex and lower semicontinuous.

If an equilibrium bifunction F : C × C → R satisfies conditions (A1)–(A4), then we
have the following two important results.

Lemma 2.7 (see[18]). Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, let F be an equilibrium bifunction from C × C to R satisfying conditions
(A1)–(A4), let r > 0, and let x ∈ E. Then, there exists z ∈ C such that

F
(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C. (2.11)

Lemma 2.8 (see[5]). Let C be a nonempty closed convex subset of a uniformly smooth, strictly
convex and reflexive Banach space E, and let F : C × C → R be an equilibrium bifunction satisfying
conditions (A1)–(A4). For r > 0 and x ∈ E, define a mapping Tr : E → C as follows:

Tr(x) =
{
z ∈ C : F

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
, (2.12)
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for all x ∈ E. Then, the following hold:

(1) Tr is single-valued,

(2) Tr is a firmly nonexpansive-type mapping, that is, for any x, y ∈ E,

〈
Trx − Try, JTrx − JTry

〉 ≤ 〈
Trx − Try, Jx − Jy

〉
, (2.13)

(3) F(Tr) = F̂(Tr) = EP(F),

(4) EP(F) is a closed and convex set.

Lemma 2.9 (see[5]). Let C be a nonempty closed convex subset of a smooth, strictly convex and
reflexive Banach space E, and let F : C × C → R be an equilibrium bifunction satisfying conditions
(A1)–(A4). For r > 0, x ∈ E and q ∈ F(Tr),

φ
(
q, Trx

)
+ φ(Trx, x) ≤ φ

(
q, x

)
. (2.14)

3. The Main Results

Lemma 3.1. Let E be a strictly convex reflexive Banach space having a Fréchet differentiable norm,
C a nonempty closed convex subset of E, and {Sn} a sequence of mappings of C into itself. Let {xn}
be a strongly convergent sequence in C with a limit x0 and {yn} a sequence in C defined by yn =
J∗(αnJxn + (1−αn)JSnxn) for each n ∈ N, where {αn} is a convergent sequence in [0, 1] with a limit
α0 ∈ [0, 1). Suppose that φ(x0, yn) ≤ φ(x0, xn) + ξn for all n ∈ N and that {Jyn} converges weakly
to y∗

0 ∈ E∗, where limn→∞ ξn = 0. Then {Jxn − JSnxn} converges strongly to 0. Moreover, if E has
the Kadec-Klee property, then {Snxn} converges strongly to x0.

Proof. Since φ(x0, yn) ≤ φ(x0, xn) + ξn for n ∈ N, we have that

0 ≤ lim
n→∞

φ
(
x0, yn

) ≤ lim
n→∞

φ(x0, xn) + ξn = 0. (3.1)

and hence limn→∞ φ(x0, yn) = 0. Since

(‖x0‖ −
∥∥yn

∥∥)2 = ‖x0‖2 − 2‖x0‖
∥∥yn

∥∥ +
∥∥yn

∥∥2 ≤ φ
(
x0, yn

)
(3.2)

for n ∈ N, we have that limn→∞‖yn‖ = ‖x0‖ and that

lim
n→∞

〈
x0, Jyn

〉
= lim

n→∞
1
2

(
‖x0‖2 +

∥∥yn

∥∥2 − φ
(
x0, yn

))
= ‖x0‖2. (3.3)

Using weak lower semicontinuity of the norm, we have that

‖x0‖2 = lim
n→∞

〈
x0, Jyn

〉
=
〈
x0, y

∗
0
〉 ≤ ‖x0‖

∥∥y∗
0

∥∥ ≤ ‖x0‖lim inf
n→∞

∥∥Jyn

∥∥

= ‖x0‖ lim
n→∞

∥∥Jyn

∥∥ = ‖x0‖2.
(3.4)
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Therefore, we have that ‖y∗
0‖2 = 〈x0, y

∗
0〉 = ‖x0‖2, and hence y∗

0 = Jx0. Thus we have
that {Jyn} converges weakly to Jx0. It also holds that

lim
n→∞

∥
∥Jyn

∥
∥ = lim

n→∞
∥
∥yn

∥
∥ = ‖x0‖ = ‖Jx0‖. (3.5)

Since E has a Fréchet differentiable norm, it follows that E∗ has the Kadec-Klee property, and
thus we have that {Jyn} converges strongly to Jx0. Then, we have that

∥∥Jx0 − Jyn

∥∥ = ‖Jx0 − (αnJxn + (1 − αn)JSnxn)‖
≥ ‖Jx0 − αnJx0 − (1 − αn)JSnxn‖ − αn‖Jxn − Jx0‖
= (1 − αn)‖Jx0 − JSnxn‖ − αn‖Jxn − Jx0‖

(3.6)

for n ∈ N. Using norm-to-norm continuity of J , we get that

lim
n→∞

(1 − αn)‖Jx0 − JSnxn‖ = (1 − α0) lim
n→∞

‖Jx0 − JSnxn‖ = 0, (3.7)

and since α0 < 1, we have that

lim
n→∞

‖Jx0 − JSnxn‖ = 0. (3.8)

We also have that {JSnxn} converges strongly to Jx0, and hence we obtain that {Jxn − JSnxn}
converges strongly to 0. Further, let us suppose that E has the Kadec-Klee property. Then, the
norm of E∗ is Fréchet differentiable and, therefore, J∗ is norm-to-norm continuous. Hence we
have that

lim
n→∞

‖x0 − Snxn‖ = lim
n→∞

‖J∗Jx0 − J∗JSnxn‖ = 0, (3.9)

which is the desired result.

Theorem 3.2. Let E be a strictly convex reflexive Banach space having the Kadec-Klee property and
a Fréchet differentiable norm, C a nonempty closed convex subset of E,A : C → E∗ a continuous
and monotone mapping, ψ : C → R a lower semicontinuous and convex function F a bifunction
from C × C to R which satisfies the conditions (A1)–(A4), and {Tλ}(λ ∈ Λ) : C → C a family
of uniformly Lipschitzian continuous and quasi-φ-asymptotically nonexpansive mappings such that
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F =
⋂

λ∈Λ F(Tλ)
⋂
GMEP/= ∅. Assume that R = sup{‖u‖ : u ∈ F} < ∞. Let {xn} be the sequence

generated by x1 = x ∈ C, C1 = C, and

yn(λ) = J∗
(
αnJxn + (1 − αn)JTn

λ xn

) ∀λ ∈ Λ,

un(λ) ∈ C such that

F
(
un(λ), y

)
+
〈
Aun(λ), y − un(λ)

〉
+ ψ

(
y
) − ψ(un(λ)) +

1
rnλ

〈
y − un(λ), Jun(λ) − Jyn(λ)

〉 ≥ 0,

∀y ∈ C, λ ∈ Λ

Cn+1 =

{

z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ φ(z, xn) + ξn

}

,

xn+1 = PCn+1x, ∀n ≥ 0,
(3.10)

where J is the duality mapping on E and ξn = (1−αn)(supλ∈Λ kn(λ)−1)supu∈F φ(u, xn) for all xn ∈
C, where limn→∞ supλ∈Λ kn(λ) = 1. Let {αn} be a sequence in [0, 1] such that lim infn→∞ αn < 1
and {rnλ} ⊂ [a,∞) for some a > 0, then {xn} converge strongly to PFx, where PF is the metric
projection of E onto F.

Proof. We define a bifunction G : C × C → R by

G
(
z, y

)
= F

(
z, y

)
+
〈
Az, y − z

〉
+ ψ

(
y
) − ψ(z), ∀z, y ∈ C. (3.11)

Next, we prove that the bifunction G satisfies conditions (A1)–(A4)as follows

(A1) G(x, x) = 0 for all x ∈ C,

since G(x, x) = F(x, x) + 〈Ax, 0〉 + ψ(x) − ψ(x) = F(x, x) = 0, for all x ∈ C.

(A2) G is monotone, that is, G(z, y) +G(y, z) ≤ 0 for all y, z ∈ C.

Since A is a continuous and monotone operator, hence from the definition of G we
have

G
(
z, y

)
+G

(
y, z

)
= F

(
z, y

)
+
〈
Az, y − z

〉
+ ψ

(
y
) − ψ(z) + F

(
y, z

)

+
〈
Ay, z − y

〉
+ ψ(z) − ψ

(
y
)

= F
(
z, y

)
+ F

(
y, z

)
+
〈
Az, y − z

〉 − 〈
Ay, y − z

〉

≤ 0 +
〈
Az −Ay, y − z

〉

= −〈Ay −Az, y − z
〉

≤ 0.

(3.12)
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(A3) for each x, y, z ∈ C,

lim sup
t↓0

G
(
tz + (1 − t)x, y

) ≤ G
(
x, y

)
. (3.13)

Since A is continuous and ψ is lower semicontinuous, we have

lim sup
t↓0

G
(
tz + (1 − t)x, y

)

= lim sup
t↓0

F
(
tz + (1 − t)x, y

)
+ lim sup

t↓0

〈
A(tz + (1 − t)x), y − (tz + (1 − t)x)

〉

+ lim sup
t↓0

[
ψ
(
y
) − ψ(tz + (1 − t)x)

]

≤ F
(
x, y

)
+
〈
Ax, y − x

〉
+ ψ

(
y
) − ψ(x) = G

(
x, y

)
.

(3.14)

(A4) For each x ∈ C, y �→ G(x, y) is a convex and lower semicontinuous.

For each x ∈ C, for all t ∈ (0, 1) and for all y, z ∈ C, since F satisfies (A4) and ψ is convex,
we have

G
(
x, ty + (1 − t)z

)
= F

(
x, ty + (1 − t)z

)
+
〈
Ax, ty + (1 − t)z − x

〉
+ ψ

(
ty + (1 − t)z

) − ψ(x)

≤ t
[
F
(
x, y

)
+
〈
Ax, y − x

〉
+ ψ

(
y
) − ψ(x)

]
+ (1 − t)

[
F(x, z) + 〈Ax, z − x〉 + ψ(z) − ψ(x)

]

= tG
(
x, y

)
+ (1 − t)G(x, z).

(3.15)

So, y �→ G(x, y) is convex.
Similarly, we can prove that y �→ G(x, y) is lower semi-continuous.
Therefore, the generalized mixed equilibrium problem (1.1) is equivalent to the

following equilibrium problem: find z ∈ C such that

G
(
z, y

) ≥ 0, ∀y ∈ C, (3.16)

then, GMEP = EP(G). We have F = GMEP ∩⋂
λ∈Λ F(Tλ) = EP(G) ∩⋂

λ∈Λ F(Tλ). So, (3.10) can
be written as

yn(λ) = J∗
(
αnJxn + (1 − αn)JTn

λ xn

) ∀λ ∈ Λ,

un(λ) ∈ C such that G
(
un(λ), y

)
+

1
rnλ

〈
y − un(λ), Jun(λ) − Jyn(λ)

〉 ≥ 0, ∀y ∈ C, λ ∈ Λ,

Cn+1 =

{

z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ φ(z, xn) + ξn

}

,

xn+1 = PCn+1x, ∀n ≥ 0.
(3.17)
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Since the bifunction G satisfies conditions (A1)–(A4), from Lemma 2.8, for given r > 0
and x ∈ E, we can define a mapping Wr : E → 2C as follows:

Wr(x) =
{
z ∈ C : G

(
z, y

)
+
1
r

〈
y − z, Jz − Jx

〉 ≥ 0, ∀y ∈ C

}
. (3.18)

Moreover, Wr satisfies the conclusions in Lemma 2.8.
Putting un(λ) = Wrnλ

yn(λ) for all n ∈ N, we have from Lemma 2.8 and Lemma 2.9 that
Wrnλ

is relatively nonexpansive.
We divide the proof of Theorem 3.2 into five steps.

Step 1. We first show that Cn is closed and convex for every n ∈ N. From the definition of φ,
we may show that

Cn+1 =

{

z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ φ(z, xn) + ξn

}

=
⋂

λ∈Λ

{
z ∈ Cn : φ(z, un(λ)) ≤ φ(z, xn) + ξn

}

=
⋂

λ∈Λ

{
z ∈ C : 2〈z, Jxn − Jun(λ)〉 + ‖un(λ)‖2 − ‖xn‖2 − ξn ≤ 0

}
∩ Cn,

(3.19)

and thus Cn is closed and convex for every n ∈ N.

Step 2. Next we show that F ⊂ Cn for each n ∈ N and λ ∈ Λ.
for any u ∈ F, since Wrnλ

is relatively nonexpansive and {Tλ}, λ ∈ Λ is quasi-φ-
asymptotically nonexpansive, we have

φ(u, un(λ)) = φ
(
u,Wrnλ

yn(λ)
)

≤ φ
(
u, yn(λ)

)

= φ
(
u, J∗

(
αnJxn + (1 − αn)JTn

λ xn

))

= ‖u‖2 − 2
〈
u, αnJxn + (1 − αn)JTn

λ xn

〉
+
∥∥αnJxn + (1 − αn)JTn

λ xn

∥∥2

≤ ‖u‖2 − 2αn〈u, Jxn〉 − 2(1 − αn)
〈
u, JTn

λ xn

〉
+ αn‖Jxn‖2 + (1 − αn)

∥∥JTn
λ xn

∥∥2

= αnφ(u, xn) + (1 − αn)φ
(
u, Tn

λ xn

)

≤ αnφ(u, xn) + (1 − αn)kn(λ)φ(u, xn)

= φ(u, xn) + (1 − αn)(kn(λ) − 1)φ(u, xn)

≤ φ(u, xn) + ξn.

(3.20)
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Hence, we have supλ∈Λ φ(u, un(λ)) ≤ φ(u, xn) + ξn, that is, u ∈ Cn. This implies that

F ⊂ Cn, ∀n ∈ N. (3.21)

Step 3. Now we prove that the limit limn→∞ xn exists.Since F is nonempty, Cn is a nonempty
closed convex subset of E, and, thus, PCn exists for every n ∈ N, hence {xn} is well defined.
Also, since {Cn} is a decreasing sequence of closed convex subsets of E such thatC0 =

⋂∞
n=1 Cn

is nonempty, it follows that

M − lim
n→∞

Cn = C0 =
∞⋂

n=1

Cn /= ∅. (3.22)

By Theorem 2.4, {xn} = {PCnx} converges strongly to x0 = PC0x. Therefore, we have

‖xn+1 − xn‖ −→ 0. (3.23)

Step 4. Next we prove that x0 ∈ F.
(a) First, we prove that x0 ∈

⋂
λ∈Λ F(Tλ).

Since x0 ∈ Cn for every n ∈ N, it follows that supλ∈Λ φ(x0, un(λ)) ≤ φ(x0, xn) + ξn for
every n ∈ N. Fix λ ∈ Λ arbitrarily. From the assumption that lim infn→∞ αn < 1, we may take
subsequences {αni} of {αn} and {yni(λ)} of {yn(λ)} such that limi→∞ αni = α0 with 0 ≤ α0 < 1
and {Jyni(λ)} converges weakly to a point y∗

0 ∈ E∗. Then, by Lemma 3.1, we have that

lim
i→∞

∥∥xni − Tni

λ xni

∥∥ = lim
i→∞

∥∥x0 − Tni

λ xni

∥∥ = 0. (3.24)

From (3.23) and (3.24), we have

∥∥∥Tni+1
λ

xni − Tni

λ
xni

∥∥∥ ≤
∥∥∥Tni+1

λ
xni − Tni+1

λ
xni+1

∥∥∥ +
∥∥∥Tni+1

λ
xni+1 − xni+1

∥∥∥

+ ‖xni+1 − xni‖ +
∥
∥xni − Tni

λ
xni

∥∥

≤ (Lλ + 1)‖xni+1 − xni‖ +
∥∥∥Tni+1

λ xni+1 − xni+1

∥∥∥ +
∥∥xni − Tni

λ xni

∥∥

−→ 0.

(3.25)

Observe that

∥∥∥Tni+1
λ

xni − x0

∥∥∥ ≤
∥∥∥Tni+1

λ
xni − Tni

λ
xni

∥∥∥ +
∥∥Tni

λ
xni − x0

∥∥. (3.26)

By using (3.24),(3.25), and (3.26), we have

∥∥∥Tni+1
λ xni − x0

∥∥∥ −→ 0, as n −→ ∞. (3.27)
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Since Tλ is uniformly Lipschitzian continuous, from (3.24) and (3.27), we have x0 = Tλx0, that
is, x0 ∈ ∩λ∈ΛF(Tλ).

(b) Next we prove that x0 ∈ EP(G).
(1) In fact, since xn → x0, we have

φ(xn+1, xn) −→ 0. (3.28)

In view of xn+1 ∈ Cn+1, from the definition of Cn+1, we have

sup
λ∈Λ

φ(xn+1, un(λ)) ≤ φ(xn+1, xn) + ξn (3.29)

From (3.28) and ξn → 0, we have

sup
λ∈Λ

φ(xn+1, un(λ)) −→ 0, ∀λ ∈ Λ. (3.30)

From (2.4), it yields supλ∈Λ(‖xn+1‖ − ‖un(λ)‖)2 → 0. Since ‖xn+1‖ → ‖x0‖, we have

‖un(λ)‖ −→ ‖x0‖(n −→ ∞), ∀λ ∈ Λ. (3.31)

Hence we have

‖Jun(λ)‖ −→ ‖Jx0‖(n −→ ∞), ∀λ ∈ Λ. (3.32)

This implies that {Jun(λ)} is bounded in E∗. Since E is reflexive, and so is E∗, we can assume
that Jun(λ) ⇀ f0 ∈ E∗. In view of the reflexive of E, we see that J(E) = E∗. Hence there exists
p ∈ E such that Jp = f0. Since

φ(xn+1, un(λ)) = ‖xn+1‖2 − 2〈xn+1, Jun(λ)〉 + ‖un(λ)‖2

= ‖xn+1‖2 − 2〈xn+1, Jun(λ)〉 + ‖Jun(λ)‖2,
(3.33)

taking lim infn→∞ on the both sides of equality above and in view of the weak lower semi-
continuity of norm ‖ · ‖, it yields that

0 ≥ ‖x0‖2 − 2
〈
x0, f0

〉
+
∥∥f0

∥∥2 = ‖x0‖2 − 2
〈
x0, Jp

〉
+
∥∥Jp

∥∥2

= ‖x0‖2 − 2
〈
x0, Jp

〉
+
∥∥p

∥∥2 = φ
(
x0, p

)
,

(3.34)

that is, x0 = p. This implies that f0 = Jx0, and so Jun(λ) ⇀ Jx0, for all λ ∈ Λ. It follows from
(3.32) and the Kadec-Klee property of E∗ that Jun(λ) → Jx0(n → ∞). Note that J−1 : E∗ →
E is hemicontinuous, it yields that un(λ) ⇀ x0. It follows from (3.31) and the Kadec-Klee
property of E that

lim
n→∞

un(λ) = x0. (3.35)
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From (3.35), we have

lim
n→∞

‖xn − un(λ)‖ = 0, ∀λ ∈ Λ. (3.36)

Since J is norm-to-norm continuous, hence we have that

‖Jxn − Jun(λ)‖ −→ 0, ∀λ ∈ Λ. (3.37)

(2) Next we prove that

φ(u, xn) − φ(u, un(λ)) −→ 0, ∀u ∈ F. (3.38)

From (3.36) and (3.37), we have

φ(u, xn) − φ(u, un(λ)) = ‖xn‖2 − ‖un(λ)‖2 − 2〈u, Jxn − Jun(λ)〉

≤
∣∣∣‖xn‖2 − ‖un(λ)‖2

∣∣∣ + 2|〈u, Jxn − Jun(λ)〉|

≤ |‖xn‖ − ‖un(λ)‖|(‖xn‖ + ‖un(λ)‖) + 2‖u‖ · ‖Jxn − Jun(λ)‖
≤ ‖xn − un(λ)‖(‖xn‖ + ‖un(λ)‖) + 2‖u‖ · ‖Jxn − Jun(λ)‖.
−→ 0.

(3.39)

Since

φ
(
un(λ), yn(λ)

)
= φ

(
Wrnλ

yn(λ), yn(λ)
)

≤ φ
(
u, yn(λ)

) − φ
(
u,Wrnλ

yn(λ)
)

≤ φ(u, xn) + ξn − φ
(
u,Wrnλ

yn(λ)
)

= φ(u, xn) + ξn − φ(u, un(λ)),

(3.40)

hence it follows from (3.38) and (3.40) that

lim
n→∞

φ
(
un(λ), yn(λ)

)
= 0. (3.41)

From (2.3) and (3.41) it yields (‖un(λ)‖ − ‖yn(λ)‖)2 → 0. Since ‖un(λ)‖ → ‖x0‖, we have

∥∥yn(λ)
∥∥ −→ ‖x0‖(n −→ ∞). (3.42)

Hence we have

∥∥Jyn(λ)
∥∥ −→ ‖Jx0‖(n −→ ∞). (3.43)
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This implies that {Jyn(λ)} is bounded in E∗. Since E is reflexive, and so is E∗, we can assume
that Jyn(λ) ⇀ g0 ∈ E∗. In view of the reflexive of E, we see that J(E) = E∗. Hence there exists
y ∈ E such that Jy = g0. Since

φ
(
un(λ), yn(λ)

)
= ‖un(λ)‖2 − 2

〈
un(λ), Jyn(λ)

〉
+
∥
∥yn(λ)

∥
∥2

= ‖un(λ)‖2 − 2
〈
un(λ), Jyn(λ)

〉
+
∥
∥Jyn(λ)

∥
∥2
,

(3.44)

Taking lim infn→∞ on the both sides of equality above and in view of the weak lower semi-
continuity of norm ‖ · ‖, it yields that

0 ≥ ‖x0‖2 − 2
〈
x0, g0

〉
+
∥
∥g0

∥
∥2 = ‖x0‖2 − 2

〈
x0, Jy

〉
+
∥
∥Jy

∥
∥2

= ‖x0‖2 − 2
〈
x0, Jy

〉
+
∥
∥y

∥
∥2 = φ

(
x0, y

)
,

(3.45)

that is, x0 = y. This implies that g0 = Jx0, and so Jyn(λ) ⇀ Jx0. It follows from (3.43)
and the Kadec-Klee property of E∗ that Jyn(λ) → Jx0(n → ∞). Note that J−1 : E∗ → E is
hemicontinuous; it yields that yn(λ) ⇀ x0. It follows from (3.42) and the Kadec-Klee property
of E that

lim
n→∞

yn(λ) = x0. (3.46)

Since un(λ) → x0, from (3.46), we have

lim
n→∞

∥∥un(λ) − yn(λ)
∥∥ = 0. (3.47)

Since J is uniformly norm-to-norm continuous on bounded sets, from (3.47), we have

lim
n→∞

∥∥Jun(λ) − Jyn(λ)
∥∥ = 0. (3.48)

From rnλ ≥ a, we have

lim
n→∞

∥∥Jun(λ) − Jyn(λ)
∥∥

rnλ

= 0. (3.49)

By un(λ) = Wrnλ
yn(λ), we have

G
(
un(λ), y

)
+

1
rnλ

〈
y − un(λ), Jun(λ) − Jyn(λ)

〉 ≥ 0, ∀y ∈ C. (3.50)

From (A2), we have

1
rnλ

〈
y − un(λ), Jun(λ) − Jyn(λ)

〉 ≥ −G(
un(λ), y

) ≥ G
(
y, un(λ)

)
, ∀y ∈ C. (3.51)
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SinceG(x, ·) is convex and lower semicontinuous, it is also weakly lower semicontinuous. So,
letting n → ∞, we have from (3.51) and (A4) that

G
(
y, x0

) ≤ 0, ∀y ∈ C. (3.52)

For any twith 0 < t ≤ 1 and y ∈ C, let yt = ty + (1− t)x0. Since y ∈ C and, hence, G(yt, x0) ≤ 0,
from conditions (A1) and (A4), we have

0 = G
(
yt, yt

) ≤ tG
(
yt, y

)
+ (1 − t)G

(
yt, x0

) ≤ tG
(
yt, y

)
, (3.53)

This implies that G(yt, y) ≥ 0. Hence from condition (A3), we have G(x0, y) ≥ 0 for all y ∈ C,
and hence x0 ∈ EP(G).

Step 5. Finally we prove that xn → PFx.
Since x0 = PC0x ∈ F and F is a nonempty closed convex subset of C0 =

⋂∞
n=1 Cn, we

conclude that

x0 = PFx. (3.54)

This completes the proof of Theorem 3.2.

The proof of Theorem 3.2 shows that the properties of projections used in the iterative
scheme do not interact with the properties ofmappings {Tλ}. Therefore, wemay prove similar
results as follows by replacing Theorem 2.4 with Theorem 2.5 in the proof.

Theorem 3.3. Let E be a strictly convex reflexive Banach space having the Kadec-Klee property and
a Fréchet differentiable norm, C a nonempty closed convex subset of E, A : C → E∗ a continuous
and monotone mapping, ψ : C → R a lower semicontinuous and convex function, F a bifunction
from C × C to R which satisfies the conditions (A1)–(A4) and let {Tλ}(λ ∈ Λ) : C → C a family
of uniformly Lipschitzian continuous and quasi-φ- asymptotically nonexpansive mappings such that
F =

⋂
λ∈Λ F(Tλ)

⋂
GMEP/= ∅. Assume that R = sup{‖u‖ : u ∈ F} < ∞. Let {xn} be the sequence

generated by x1 = x ∈ C,C1 = C, and

yn(λ) = J∗
(
αnJxn + (1 − αn)JTn

λ xn

) ∀λ ∈ Λ,

un(λ) ∈ C such that

F
(
un(λ), y

)
+
〈
Aun(λ), y − un(λ)

〉
+ ψ

(
y
) − ψ(un(λ)) +

1
rnλ

〈
y − un(λ), Jun(λ) − Jyn(λ)

〉 ≥ 0,

∀y ∈ C, λ ∈ Λ

Cn+1 =

{

z ∈ Cn : sup
λ∈Λ

φ(z, un(λ)) ≤ φ(z, xn) + ξn

}

,

xn+1 = ΠCn+1x, ∀n ≥ 0.
(3.55)
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where J is the duality mapping on E and ξn = (1−αn)(supλ∈Λ kn(λ)−1)supu∈F φ(u, xn) for all xn ∈
C, where limn→∞ supλ∈Λ kn(λ) = 1. Let {αn} be a sequence in [0, 1] such that lim infn→∞ αn < 1
and {rnλ} ⊂ [a,∞) for some a > 0, then {xn} converge strongly to ΠFx, where ΠF is the generalized
projection of E onto F.
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