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We establish two fixed point theorems for nonlinear operators on Banach spaces partially ordered
by a cone. The first fixed point theorem is concerned with a class of mixed monotone operators.
In the second fixed point theorem, the nonlinear operators are neither monotone nor mixed
monotone. We also provide an illustrative example for our second result.

1. Introduction

Fixed point theorems for nonlinear operators on partially ordered Banach spaces have many
applications in nonlinear equations and many other subjects (cf., e.g., [1–7] and references
therein); in particular, various kinds of fixed point theorems for mixed monotone operators
are proved and applied (see, e.g., [1, 3, 5, 7] and references therein).

Stimulated by [7, 8], we investigate further, in this paper, the existence of fixed points
of nonlinear operators with and without monotonicity in partially ordered Banach spaces.

In Section 2, a fixed point theorem for a class of mixed monotone operators is
established. In Section 3, without any monotonicity assumption for a class of nonlinear
operators, we obtain a fixed point theorem by using Hilbert’s projection metric.

Let us recall some basic notations about cone (for more details, we refer the reader to
[2]). Let X be a real Banach space. A closed convex set P in X is called a convex cone if the
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following conditions are satisfied:

(i) if x ∈ P , then λx ∈ P for any λ ≥ 0,
(ii) if x ∈ P and −x ∈ P , then x = 0.

A cone P induces a partial ordering ≤ in X by

x ≤ y iff y − x ∈ P. (1.1)

For any given u, v ∈ P ,

[u, v] := {x ∈ X | u ≤ x ≤ v}. (1.2)

A cone P is called normal if there exists a constant k > 0 such that

0 ≤ x ≤ y implies that ‖x‖ ≤ k
∥
∥y

∥
∥, (1.3)

where ‖ · ‖ is the norm on X.
Throughout this paper, we denote by N the set of nonnegative integers, R the set of

real numbers, X a real Banach space, P a convex cone in X, e an element in P \ {θ} (θ is the
zero element of X), and Pe the following set:

Pe =
{

x ∈ P : ∃α, β > 0 such that αe ≤ x ≤ βe
}

. (1.4)

2. Monotonic Operators

Theorem 2.1. Suppose that the operator A : Pe × Pe × Pe → Pe satisfies the following.

(S1) A(·, y, z) is increasing, A(x, ·, z) is decreasing, and A(x, y, ·) is decreasing.
(S2) There exist a constant t0 ∈ [0, 1) and a function φ : (0, 1) × Pe × Pe → (0,+∞) such that

for each x, y, z ∈ Pe and t ∈ (t0, 1), φ(t, x, y) > t and

A
(

tx, t−1y, z
)

≥ φ
(

t, x, y
)

A
(

x, y, z
)

. (2.1)

(S3) There exist x0, y0 ∈ Pe such that x0 ≤ y0, x0 ≤ A(x0, y0, x0), A(y0, x0, y0) ≤ y0 and

inf
x,y∈[x0,y0]

φ
(

t, x, y
)

> t, ∀t ∈ (t0, 1). (2.2)

(S4) There exists a constant L > 0 such that, for all x, y, z1, z2 ∈ Pe with z1 ≥ z2,

A
(

x, y, z1
) −A

(

x, y, z2
) ≥ −L · (z1 − z2). (2.3)

Then A has a unique fixed point x∗ in [x0, y0], that is, A(x∗, x∗, x∗) = x∗.
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Proof. The proof is divided into 4 steps.

Step 1. Let t1 ∈ (t0, 1) and

ψ
(

t, x, y
)

=
φ
(

t1, x, y
)

t1
t, t ∈ (0, 1), x, y ∈ Pe. (2.4)

For each t ∈ (0, 1), there exists a nonnegative integer k such that tk+11 ≤ t < tk1 , that is, t1 ≤
t/tk1 < 1. Now, by (S2), we deduce, for all x, y, z ∈ Pe,

A
(

tx, t−1y, z
)

= A

(

t

tk1
· tk1x,

tk1
t
· t−k1 y, z

)

≥ φ

(

t

tk1
, tk1x, t

−k
1 y

)

A
(

tk1x, t
−k
1 y, z

)

≥ t

tk1
A
(

tk1x, t
−k
1 y, z

)

≥ t

t1
A
(

t1x, t
−1
1 y, z

)

≥ t

t1
φ
(

t1, x, y
)

A
(

x, y, z
)

= ψ
(

t, x, y
)

A
(

x, y, z
)

.

(2.5)

Moreover, by (S3), we get

inf
x,y∈[x0,y0]

ψ
(

t, x, y
)

=
infx,y∈[x0,y0] φ

(

t1, x, y
)

t1
· t > t, ∀t ∈ (0, 1). (2.6)

Hence, in the following proof, one can assume that t0 = 0 in (S2) and (S3) without loss.

Step 2. Fix x, y ∈ Pe. Then, there exists α ∈ (0, 1] such that x, y ∈ [αx0, α
−1y0]. Let

Ψxy(z) =
A
(

x, y, z
)

+ Lz

1 + L
, z ∈ Pe. (2.7)

Then Ψxy is an operator from Pe to Pe, and by (S4), Ψxy is increasing in Pe. Combining (S1)–
(S3), we have

A
(

x, y, αx0
) ≥ A

(

αx0, α
−1y0, x0

)

≥ φ
(

α, x0, y0
)

A
(

x0, y0, x0
) ≥ αx0, (2.8)
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provided that α ∈ (0, 1). Moreover, it is easy to see that (2.8) holds when α = 1. Similarly, one
can show that

A
(

x, y, α−1y0

)

≤ α−1y0. (2.9)

Then, it follows that

Ψxy(αx0) ≥ αx0, Ψxy

(

α−1y0

)

≤ α−1y0. (2.10)

Let

xn
xy = Ψxy

(

xn−1
xy

)

, yn
xy = Ψxy

(

yn−1
xy

)

, n = 1, 2, . . . ,

x0
xy = αx0, y

0
xy = α−1y0.

(2.11)

Then, using arguments similar to those in the proof of [7, Theorem 2.1], one can show that
Ψxy has a unique fixed point x∗

xy in [αx0, α
−1y0], and

xn
xy −→ x∗

xy, yn
xy −→ x∗

xy (n −→ ∞). (2.12)

We claim that x∗
xy is the unique fixed point of Ψxy in Pe. In fact, let y∗

xy be a fixed point of Ψxy

in Pe, and β ∈ (0, α) such that y∗
xy ∈ [βx0, β

−1y0]. By the above proof, Ψxy has a unique fixed
point in [βx0, β

−1y0], which means that x∗
xy = y∗

xy. In addition, it follows from

x∗
xy = Ψxy

(

x∗
xy

)

=
A
(

x, y, x∗
xy

)

+ Lx∗
xy

1 + L
(2.13)

that x∗
xy = A(x, y, x∗

xy).

Step 3. By Step 2, we can define an operator Φ : Pe × Pe → Pe by

Φ
(

x, y
)

= x∗
xy = Ψxy

(

x∗
xy

)

= A
(

x, y, x∗
xy

)

. (2.14)

Let x, x′ ∈ [x0, y0] with x ≤ x′ and α ∈ (0, 1] with x, x′, y ∈ [αx0, α
−1y0]. Denote by

{xn
xy}, {xn

x′y} the corresponding sequences in the proof of Step 2. Then

x1
xy = Ψxy

(

x0
xy

)

= Ψxy(αx0) =
A
(

x, y, αx0
)

+ Lαx0

1 + L

≤ A
(

x′, y, αx0
)

+ Lαx0

1 + L
= Ψx′y(αx0) = x1

x′y.

(2.15)
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Next, by induction and Ψxy being increasing, one can show that xn
xy ≤ xn

x′y for all n ∈ N. So

x∗
xy = lim

n→∞
xn
xy ≤ lim

n→∞
xn
x′y = x∗

x′y, (2.16)

that is, Φ(x, y) ≤ Φ(x′, y). Thus, Φ(·, y) is increasing. By a similar method, one can prove that
Φ(x, ·) is decreasing. On the other hand, by (S3), for x, y ∈ Pe and t ∈ (0, 1),

Φ
(

tx, t−1y
)

= A
(

tx, t−1y,Φ
(

tx, t−1y
))

≥ A
(

tx, t−1y,Φ
(

x, y
))

≥ φ
(

t, x, y
)

A
(

x, y,Φ
(

x, y
))

= φ
(

t, x, y
)

Φ
(

x, y
)

.

(2.17)

Let u0 = x0, v0 = y0, and

un = Φ(un−1, vn−1), vn = Φ(vn−1, un−1), for n = 1, 2, . . . . (2.18)

By choosing α = 1 in Step 1, we get x∗
x0y0

∈ [x0, y0]. Then

u1 = Φ
(

x0, y0
)

= x∗
x0y0

≥ x0 = u0, v1 = Φ
(

y0, x0
)

= x∗
y0x0

≤ y0 = v0. (2.19)

As Φ(·, y) is increasing and Φ(x, ·) is decreasing, it follows immediately that

u0 ≤ u1 ≤ · · · ≤ un ≤ · · · ≤ vn ≤ · · · ≤ v0. (2.20)

Next, by making some needed modifications in the proof of [3, Theorem 2.11], one can show
thatΦ has a fixed point x∗ ∈ [x0, y0]. Suppose that y∗ ∈ [x0, y0] is a fixed point ofΦ. It follows
from the definition of un and vn that un ≤ y∗ ≤ vn for all n ∈ N. Then, by the normality of Φ,
we get y∗ = x∗. So x∗ is the unique fixed point of Φ in [x0, y0].

Step 4. By Steps 2 and 3, we get

x∗ = Φ(x∗, x∗) = A(x∗, x∗,Φ(x∗, x∗)) = A(x∗, x∗, x∗). (2.21)

Let x ∈ [x0, y0] such that x = A(x, x, x). Then it follows from Step 2 that Φ(x, x) = x, that is,
x is a fixed point of Φ in [x0, y0]. Thus, by Step 3, x = x∗, which means that x∗ is the unique
fixed point of A in [x0, y0].

Remark 2.2. Compared with [7, Remark 2.4], the nonlinear operatorA in Theorem 2.1 is more
general, and so Theorem 2.1 may have a wider range of applications.
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3. Nonmonotonic Case

First, let us recall some definitions and basic results about Hilbert’s projection metric (for
more details, see [6]).

Definition 3.1. Elements x and y belonging to P (not both zero) are said to be linked if there
exist λ, μ > 0 such that

λx ≤ y ≤ μx. (3.1)

This defines an equivalence relation on P and divides P into disjoint subsets which we call
constituents of P .

Let x and y be linked. Define

M
(

x, y
)

= inf
{

μ > 0 : y ≤ μx
}

,

d
(

x, y
)

= ln
[

max
{

M
(

x, y
)

,M
(

y, x
)}]

.
(3.2)

Then, the following holds.

Theorem 3.2. d(·, ·) defines a complete metric on each constituent of P .

Proof. See [6].

We will also need the following result.

Theorem 3.3. [9] Let M be a complete metric space and suppose that f : M → M satisfies

d
(

f(x), f
(

y
)) ≤ Ψ

(

d
(

x, y
))

, ∀x, y ∈ M, (3.3)

where Ψ : [0,+∞) → [0,+∞) is upper semicontinuous from the right and satisfies Ψ(t) < t for all
t > 0. Then f has a unique fixed point in M.

Theorem 3.3 is a generalization of the classical Banach’s contraction mapping
principle. There are many generalizations of the classical Banach’s contraction mapping
principle (see, e.g., [10, 11] and references therein), and these generalizations play an
important role in research work about fixed points of nonlinear operators in partially ordered
Banach spaces; see, for example, [1] and the proof of the following theorem.

Now, we are ready to present our fixed point theorem, in which no monotone
condition is assumed on the nonlinear operator.

Theorem 3.4. Let T be an operator from Pe to Pe. Assume that there exist a constant ε ∈ (0, 1) and a
function φ : [ε, 1) → (0,+∞) such that φ(λ) > λ for all λ ∈ [ε, 1), and

Ty ≥ φ(λ)Tx, (3.4)

for all x, y ∈ Pe and λ ∈ [ε, 1) satisfying λx ≤ y ≤ λ−1x. Then T has a unique fixed point in Pe.
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Proof. We divided the proof into 2 steps.

Step 1. Let λ ∈ (0, 1), x, y ∈ Pe, and λx ≤ y ≤ λ−1x. Then, there exists k ∈ N such that

ε ≤ λ

εk
< 1. (3.5)

In view of

λ

εk
·
(

εkx
)

= λx ≤ y ≤ λ−1x ≤ ε2kλ−1x =
(

λ

εk

)−1
·
(

εkx
)

, (3.6)

by the assumptions, we have

Ty ≥ φ

(
λ

εk

)

· T
(

εkx
)

≥ λ

εk
· T

(

εkx
)

. (3.7)

Similar to the above proof, since ε · εk−1x = εkx ≤ ε−1 · εk−1x, one can deduce

Ty ≥ λ

εk
· T

(

εkx
)

≥ λ

εk
· φ(ε) · T

(

εk−1x
)

≥ λ

εk−1
· T

(

εk−1x
)

. (3.8)

Continuing by this way, one can get

Ty ≥ λ

ε
· T(εx) ≥ φ(ε)

ε
λ · Tx. (3.9)

Let

ψ(λ) =
φ(ε)
ε

λ, λ ∈ (0, 1). (3.10)

Then ψ is continuous, ψ(λ) > λ for all λ ∈ (0, 1), and

Ty ≥ ψ(λ)Tx, (3.11)

for all x, y ∈ Pe and λ ∈ (0, 1) satisfying λx ≤ y ≤ λ−1x.

Step 2. Next, let x, y ∈ Pe with x /=y and

λ =
1

max
{

M
(

x, y
)

,M
(

y, x
)} . (3.12)

Then λ ∈ (0, 1), λx ≤ y ≤ λ−1x, and d(x, y) = ln(λ−1). Moreover, by Step 1, we have

Ty ≥ ψ(λ)Tx. (3.13)
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On the other hand, since λy ≤ x ≤ λ−1y, we also have

Tx ≥ ψ(λ)Ty. (3.14)

Thus, we get

ψ(λ)Tx ≤ Ty ≤ Tx

ψ(λ)
. (3.15)

Now, by the definition of d(·, ·), we have

d
(

Tx, Ty
) ≤ ln

(
1

ψ(λ)

)

. (3.16)

Let

Ψ(t) =

⎧

⎨

⎩

− ln
[

ψ
(

e−t
)]

, t ∈ (0,+∞),

0, t = 0.
(3.17)

Then, Ψ is a continuous function from [0,+∞) to [0,+∞), and

d
(

Tx, Ty
) ≤ Ψ

(

d
(

x, y
))

. (3.18)

Moreover, since ψ(λ) > λ for all λ ∈ (0, 1), we get

Ψ(t) = ln
1

ψ(e−t)
< ln

1
e−t

= t, t > 0. (3.19)

On the other hand, Pe is obviously a constituent of P , and thus (Pe, d) is complete by
Theorem 3.2. Now, Theorem 3.3 yields that T has a unique fixed point in Pe.

Corollary 3.5. Assume that A : Pe × Pe → Pe is a mixed monotone operator, that is, A(·, y) is
increasing and A(x, ·) is decreasing. Moreover, there exist a constant ε ∈ (0, 1) and a function φ :
[ε, 1) → (0,+∞) such that φ(λ) > λ for all λ ∈ [ε, 1), and

A
(

λx, λ−1y
)

≥ φ(λ)A
(

x, y
)

, (3.20)

for all x, y ∈ Pe and λ ∈ [ε, 1). Then A has a unique fixed point in Pe.

Proof. Let Tz = A(z, z), z ∈ Pe. Then, since A is a mixed monotone operator, we have

Ty = A
(

y, y
) ≥ A

(

λx, λ−1x
)

≥ φ(λ)A(x, x) = φ(λ)Tx, (3.21)
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for all x, y ∈ Pe and λ ∈ [ε, 1) satisfying λx ≤ y ≤ λ−1x. Then, Theorem 3.4 yields the
conclusion.

Remark 3.6. Corollary 3.5 is an improvement of [1, Corollary 3.2] in the sense that there φ is
lower semicontinuous on (0, 1), and the corresponding conditions need to hold on the whole
interval (0, 1).

4. An Example

In this section, we give an example to illustrate Theorem 3.4. Let us consider the following
nonlinear delay integral equation:

x(t) =
∫ t

t−τ
f(s, x(s))ds, (4.1)

which is a classical model for the spread of some infectious disease (cf. [12]). In fact, (4.1) has
been of great interest for many authors (see, e.g., [3, 8] and references therein).

In the rest of this paper, let τ = 1 and

f(t, x) =

⎧

⎪⎪⎨

⎪⎪
⎩

(

1 + sin2t + sin2πt
)√

x, t ∈ (−∞,+∞), 0 ≤ x ≤ 1,

1 + sin2t + sin2πt√
x

, t ∈ (−∞,+∞), x ≥ 1.
(4.2)

Next, let us investigate the existence of positive almost periodic solution to (4.1). For the
reader’s convenience, we recall some definitions and basic results about almost periodic
functions (for more details, see [13]).

Definition 4.1. A continuous function f : R → R is called almost periodic if for each ε > 0
there exists l(ε) > 0 such that every interval I of length l(ε) contains a number τ with the
property that

∥
∥f(t + τ) − f(t)

∥
∥ < ε ∀ t ∈ R. (4.3)

Denote by AP(R) the set of all such functions.

Lemma 4.2. Assume that f , g ∈ AP(R). Then the following hold.

(a) The range Rf = {f(t) : t ∈ R} is precompact in R, and so f is bounded.

(b) F(f) ∈ AP(R) provided that F is continuous on Rf .

(c) f + g, f · g ∈ AP(R). Moreover, f/g ∈ AP(R) provided that inft∈R|g(t)| > 0.

(d) Equipped with the sup norm

∥
∥f

∥
∥ = sup

t∈R

∣
∣f(t)

∣
∣, (4.4)

AP(R) turns out to be a Banach space.
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Now, let P = {x ∈ AP(R) : x(t) ≥ 0, ∀t ∈ R}, and e ∈ P is defined by e(t) ≡ 1. It is not
difficult to verify that P is a normal cone in AP(R), and

Pe = {x ∈ AP(R) : ∃ ε > 0 such that x(t) > ε, ∀t ∈ R}. (4.5)

Define a nonlinear operator T on Pe by

(Tx)(t) =
∫ t

t−1
f(s, x(s))ds, x ∈ Pe, t ∈ R. (4.6)

By Lemma 4.2 and [3, Corollary 3.3], it is not difficult to verify that T is an operator from Pe

to Pe. In addition, in view of (4.2), one can verify that

(

Ty
)

(t) =
∫ t

t−1
f
(

s, y(s)
)

ds ≥
√

λ

∫ t

t−1
f(s, x(s))ds =

√

λ(Tx)(t), t ∈ R, (4.7)

that is, Ty ≥
√
λTx for all x, y ∈ Pe and λ ∈ (0, 1) with λx ≤ y ≤ λ−1x. Then, by Theorem 3.4,

T has a unique fixed point in Pe, that is, (4.1) has a unique almost periodic solution with
positive infimum.
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