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We glance at recent advances to the general theory of maximal (set-valued) monotone mappings
and their role demonstrated to examine the convex programming and closely related field of
nonlinear variational inequalities. We focus mostly on applications of the super-relaxed (7)-
proximal point algorithm to the context of solving a class of nonlinear variational inclusion
problems, based on the notion of maximal (17)-monotonicity. Investigations highlighted in this
communication are greatly influenced by the celebrated work of Rockafellar (1976), while
others have played a significant part as well in generalizing the proximal point algorithm
considered by Rockafellar (1976) to the case of the relaxed proximal point algorithm by
Eckstein and Bertsekas (1992). Even for the linear convergence analysis for the overrelaxed
(or super-relaxed) (17)-proximal point algorithm, the fundamental model for Rockafellar’s case
does the job. Furthermore, we attempt to explore possibilities of generalizing the Yosida
regularization/approximation in light of maximal (77)-monotonicity, and then applying to first-
order evolution equations/inclusions.
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1. Introduction and Preliminaries

We begin with a real Hilbert space X with the norm | - || and the inner product (-,-). We
consider the general variational inclusion problem of the following form. Find a solution to

0e M(x), (1.1)

where M : X — 2% is a set-valued mapping on X.
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In the first part, Rockafellar [1] introduced the proximal point algorithm, and
examined the general convergence and rate of convergence analysis, while solving (1.1) by
showing when M is maximal monotone, that the sequence {x*} generated for an initial point
x¥ by

xF 1 = P <xk> (1.2)

converges weakly to a solution of (1.1), provided that the approximation is made sufficiently
accurate as the iteration proceeds, where Py = (I +cxM)™" for a sequence {ck} of positive real
numbers that is bounded away from zero, and in second part using the first part and further
amending the proximal point algorithm succeeded in achieving the linear convergence. It
follows from (1.2) that x**! is an approximate solution to inclusion problem

0e M(x) +c,;1<x—xk>. (1.3)

As a matter of fact, Rockafellar did demonstrate the weak convergence and strong
convergence separately in two theorems, but for the strong convergence a further imposition
of the Lipschitz continuity of M at 0 plays the crucial part. Let us recall these results.

Theorem 1.1 (see [1]). Let X be a real Hilbert space. Let M : X — 2% be maximal monotone, and
let x* be a zero of M. Let the sequence {x*} be generated by the iterative procedure

xkH = JM <xk> (1.4)
such that

o - () < 13

where ]g\f = (I+ ckM)_l, S0 €k < oo, and {c} is bounded away from zero. Suppose that the
sequence {x*} is bounded in the sense that there exists at least one solution to 0 € M(x).
Then the sequence {x*} converges weakly to x* for 0 € M(x*) with

nm”Q4}§”=0 for Qu=1-JM. (1.6)

k— oo

Remark 1.2. Note that Rockafellar [1] in Theorem 1.1, pointed out by a counterexample that
the condition

Der <o (1.7)
k=0

is crucial; otherwise we may end up getting a nonconvergent sequence even with having just
€x — 0and X one dimensional. Consider any maximal monotone mapping M such that the
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set T71(0) = {x : 0 € M(x)}, that is known always to be convex and contains more than one
element. Then it turns out that T~!(x) contains a nonconvergent sequence {x*} such that

”xk+1 - xk” — 0, (1.8)
while
i”xm _ xk” - . (1.9)
k=0

The situation changes when M = 0Of if the convex function f attains its minimum non-
uniquely.

Next we look, unlike Theorem 1.1, at [1, Theorem 2] in which Rockafellar achieved
a linear convergence of the sequence by considering the Lipschitz continuity of M™! at 0
instead.

Theorem 1.3 (see [1]). Let X be a real Hilbert space. Let M : X — 2% be maximal monotone, and
let x* be a zero of M. Let the sequence {x*} be generated by the iterative procedure

s M(xk) (1.10)

such that

xk+1_ M xk S(S xk+1_xk , 1.11
[ =gt ) < ol = a1

Ck

where JM = (I + M), 3% 6k < oo, and {cx) is bounded away from zero. Suppose that the
sequence {x¥} is bounded in the sense that there exists at least one solution to 0 € M(x). In addition,
let M1 be Lipschitz continuous at 0 with modulus a, and

= e
Then the sequence {x*} converges linearly to x* for 0 € M(x*) with
||xk+1 ~ x| < Gk”xk x| vk>k, (1.13)
where
<o =0 g (1.14)




4 Fixed Point Theory and Applications

Later on Rockafellar [1] applied Theorem 1.1 to a minimization problem regarding
function f : X — (—oo, +o0], where f is lower semicontinuous convex and proper by taking
M = 0f. It is well known that in this situation 0 f is maximal monotone, and further

wedf(x) = f(x') > f(x) +(x' —x,w) Vx' (1.15)
or
& x €argmin f - (-, w). (1.16)
As a specialization, we have
0€df(x) & x cargmin f. (1.17)

That means, the proximal point algorithm for M = 0f is a minimizing method for f.

There is an abundance of literature on proximal point algorithms with applications
mostly followed by the work of Rockafellar [1], but we focus greatly on the work of Eckstein
and Bertsekas [2], where they have relaxed the proximal point algorithm in the following
form and applied to the Douglas-Rachford splitting method. Now let us have a look at the
relaxed proximal point algorithm introduced and studied in [2].

Algorithm 1.4. Let M : X — 2% be a set-valued maximal monotone mapping on X with
0 € range(M), and let the sequence {x*} be generated by the iterative procedure

2 = (1 - ag) 2 + aw® Yk >0, (1.18)

where w* is such that

||wk -(I+ ckM)_1 (xk> ” <er Vk>0, (115)

{ex}, {ax}{cx} C [0, 00)

are scalar sequences.

As a matter of fact, Eckstein and Bertsekas [2] applied Algorithm 1.4 to approximate
a weak solution to (1.1). In other words, they established Theorem 1.1 using the relaxed
proximal point algorithm instead.

Theorem 1.5 (see [2, Theorem 3]). Let M : X — 2% be a set-valued maximal monotone mapping
on X with 0 € range(M), and let the sequence {x*} be generated by Algorithm 1.4. If the scalar
sequences {€x}, {ax}, and {ci} satisfy

E; =37k <o, Arp=infap>0, Ay=supax<2, c=infcx>0, (1.20)
k)

then the sequence {x*} converges weakly to a zero of M.
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Convergence analysis for Algorithm 1.4 is achieved using the notion of the firm
nonexpansiveness of the resolvent operator (I + c¢yM)™'. Somehow, they have not
considered applying Algorithm 1.4 to Theorem 1.3 to the case of the linear convergence.
The nonexpansiveness of the resolvent operator (I + cy M)~ poses the prime difficulty to
algorithmic convergence, and may be, this could have been the real steering for Rockafellar
to the Lipschitz continuity of M~! instead. That is why the Yosida approximation turned out
to be more effective in this scenario, because the Yosida approximation

M, =c;! [I I+ ckM)_l] (1.21)

takes care of the Lipschitz continuity issue.

As we look back into the literature, general maximal monotonicity has played a greater
role to studying convex programming as well as variational inequalities /inclusions. Later it
turned out that one of the most fundamental algorithms applied to solve these problems was
the proximal point algorithm. In [2], Eckstein and Bertsekas have shown that much of the
theory of the relaxed proximal point algorithm and related algorithms can be passed along
to the Douglas-Rachford splitting method and its specializations, for instance, the alternating
direction method of multipliers.

Just recently, Verma [3] generalized the relaxed proximal point algorithm and applied
to the approximation solvability of variational inclusion problems of the form (1.1). Recently,
a great deal of research on the solvability of inclusion problems is carried out using resolvent
operator techniques, that have applications to other problems such as equilibria problems
in economics, optimization and control theory, operations research, and mathematical
programming.

In this survey, we first discuss in detail the history of proximal point algorithms
with their applications to general nonlinear variational inclusion problems, and then we
recall some significant developments, especially the relaxation of proximal point algorithms
with applications to the Douglas-Rachford splitting method. At the second stage, we turn
our attention to over-relaxed proximal point algorithms and their contribution to the
linear convergence. We start with some introductory materials to the over-relaxed (7)-
proximal point algorithm based on the notion of maximal (7)-monotonicity, and recall
some investigations on approximation solvability of a general class of nonlinear inclusion
problems involving maximal (77)-monotone mappings in a Hilbert space setting. As a matter
fact, we examine the convergence analysis of the over-relaxed (77)-proximal point algorithm
for solving a class of nonlinear inclusions. Also, several results on the generalized firm
nonexpansiveness and generalized resolvent mapping are given. Furthermore, we explore
the real impact of recently obtained results on the celebrated work of Rockafellar, most
importantly in the case of over-relaxed (or super-relaxed) proximal point algorithms. For
more details, we refer the reader [1-55].

We note that the solution set for (1.1) turns out to be the same as of the Yosida inclusion

0€M,, (1.22)

where M, = M(I + pM)~" is the Yosida regularization of M, while there is an equivalent
form p~'(I - (I + pM)™"), that is characterized as the Yosida approximation of M with
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parameter p > 0. It seems in certain ways that it is easier to solve the Yosida inclusion than
(1.1). In other words, M, provides better solvability conditions under right choice for p than
M itself. To prove this assertion, let us recall the following existence theorem.

Theorem 1.6. Let M : X — 2% be a set-valued maximal monotone mapping on X. Then the
following statements are equivalent.

(i) An element u € X is a solution to 0 € M, (u).
(i) u = (I + pM) ™" ().

Assume that u is a solution to 0 € M, (u) = M(I + pM)_l. Then we have

0e M(I+pM)~ (u)

— 0epM(I+pM)~" (u)
(1.23)
= (I+pM) ™" () € (I+pM)(I+pM) " (u)

—u=(1+pM) " (u).

On the other hand, M, has also been applied to first-order evolution equa-
tions/inclusions in Hilbert space as well as in Banach space settings. As in our present
situation, resolvent operator (I + pM)™" is empowered by (77)-maximal monotonicity, the
Yosida approximation can be generalized in the context of solving first-order evolution
equations/inclusions. In Zeidler [52, Lemma 31.7], it is shown that the Yosida approximation
M, is (2p™")-Lipschitz continuous, that is,

2
My~ My ()] < 2l =yl ¥y € DOM) (1.24)

where this inequality is based on the nonexpansiveness of the resolvent operator Ri,VI =+

pM)!, though the result does not seem to be much application oriented, while if we apply
the firm nonexpansiveness of the resolvent operator Rf,\’f = (I + pM)™", we can achieve, as
applied in [5], more application-oriented results as follows:

(x =y, My(x) = My (y)) > p|| My (x) - M, () |1,
. (1.25)
IM,(0 = M)l < Sl -l vy € D),

where the Lipschitz constant is 1/p.
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Proof. For any x,y € D(M), we have
x =y =p(Mp(x) - Mp(y)) + R (x) - R (). (1.26)
Based on this equality and the firm nonexpansiveness of R, we derive
(x =y, Mp(x) = M,(y))
= (p(M,(x) = My (1)) + RN (x) = RY (), M, (x) = My (y) )

= plIMp(x) - My)|I* + (RY (x) = RY (), Mo (x) = M, (3) )

) 1 (1.27)
=pl|M, () - M) ||” + ;<R£4(x) - R (y),x -y - (RY'(x) - R} () )
> p||M M) - 2R @) - RM @) + 2| RM ) - RM ||
> plIM, ) = My |- S[R30 = R )|+ Ry 0 - Ry
2
= pl| M, (x) = M, ()™
Thus, we have
(x =y, Mp(x) = My (1)) 2 p[[ M, () = My (1.28)
This completes the proof. O
We note that from applications’ point of view, it seems that the result
(x =y, My(x) - My (y)) 2P||Mﬂ(x)_Mp(3/)”2/ (1.29)

that is, M, is (p)-cocoercive, is relatively more useful than that of the nonexpansive form
1
My~ M, < Sl =yl ¥y € D) (130)

It is well known when M is maximal monotone, the resolvent operator R‘f,w =
(I + pM)™" is single valued and Lipschitz continuous globally with the best constant p~'.
Furthermore, the inverse resolvent identity is satisfied
-1

[-(I+pM)™ = (1+(pM)™) (1.31)

Indeed, the Yosida approximation M, = p™(I - (I + pM)™') and its equivalent form M(I +
pM) ™" are related to this identity. Let us consider
o (1.32)

(I —(I+ pM)_1> - <I + (pM)‘1>
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Suppose thatu € (I - (I + pM)fl)(w), then we have

we (I-(I+pM)™")(w)
—ucw-I+pM) " (w)
—w-uecI+pM) " (w)
S wew-u+pM(w —u)
= ucpM(w-u)
= w-ue(pM)” 1)

—Swe <I+ (pM)_1>(u)

&ue <I + (pM)_l>_1(w).

On the other hand, we have the inverse resolvent identity that lays the foundation of

the Yosida approximation.

Lemma 1.7 (see [26, Lemma 12.14]). All mappings M : X — 2% satisfy

<pI + M‘1>_1 =p! [I— (I +pM)_1] for p > 0.

Proof. We include the proof, though its similar to that of the above identity. Assume that

uep ' (I-(I+pM)")(w), then we have

pue (I-(I+pM)") (@)
= pucw-I+pM) " (w)
—w-pue (I+pM) " (w)
= wew-pu+pM(w-pu)
&= ue M(w-pu)
= w-puec M (u)

S we (pI + M‘1>(u)

—uc (pI + M‘1>_1(w),

which is the required assertion.
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Note that when M : X — 2X is maximal monotone, mappings

(1-@+pm)™),  (1+ (pM)J)il (1.36)

are single valued, in fact maximal monotone and nonexpansive.

The contents for the paper are organized as follows. Section 1 deals with a general
historical development of the relaxed proximal point algorithm and its variants in
conjunction with maximal (77)-monotonicity, and with the approximation solvability of a
class of nonlinear inclusion problems using the convergence analysis for the proximal
point algorithm as well as for the relaxed proximal point algorithm. Section 2 introduces
and derives some results on unifying maximal (7)-monotonicity and generalized firm
nonexpansiveness of the generalized resolvent operator. In Section 3, the role of the over-
relaxed (1)-proximal point algorithm is examined in detail in terms of its applications to
approximating the solution of the inclusion problem (1.1). Finally, Section 4 deals with
some important specializations that connect the results on general maximal monotonicity,
especially to several aspects of the linear convergence.

2. General Maximal 7-Monotonicity

In this section we discus some results based on basic properties of maximal 7-monotonicity,
and then we derive some results involving 7-monotonicity and the generalized firm
nonexpansiveness. Let X denote a real Hilbert space with the norm || - || and inner product
(). Let M : X — 2% be a multivalued mapping on X. We will denote both the
map M and its graph by M, that is, the set {(x,y) : ¥ € M(x)}. This is equivalent
to stating that a mapping is any subset M of X x X, and M(x) = {y : (x,y) €
M]}. If M is single valued, we will still use M(x) to represent the unique y such that
(x,y) € M rather than the singleton set {y}. This interpretation will much depend on
the context. The domain of a map M is defined (as its projection onto the first argument)

by
dom(M) ={xeX:TyeX:(x,y) e M} ={xeX: M(x)#0)}. (2.1)
dom(T) = X will denote the full domain of M, and the range of M is defined by
range(M) = {y e X:Ix e X : (x,y) € M}. (2.2)

The inverse M~! of M is {(y,x) : (x,y) € M}. For a real number p and a mapping M, let
pM = {(x,py) : (x,y) € M}.If L and M are any mappings, we define

L+M={(x,y+z):(x,y) €L, (x,z) € M}. (2.3)
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Definition 2.1. Let M : X — 2% be a multivalued mapping on X. The map M is said to be

(i) monotone if
(W —=v",u-v)>0 Y(uu"),(v,v") € graph (M),
(ii) (r)-strongly monotone if there exists a positive constant » such that
(W -v"u-v) 2rlu-ol" V(uu), (0,0 € graph (M),
(iii) strongly monotone if
(u* —v*, u—-v) > lu-ol> Yu,u*),(v,0") e graph (M),
(iv) (r)-strongly pseudomonotone if
(v, u-v)>0
implies
(W u-v)y>rllu-ol> Yu,u*),(v,0") e graph (M),
(v) pseudomonotone if
(v, u-v)>0
implies
(' u-v) >0 Y(uu'),(0,0%) € graph (M),
(vi) (m)-relaxed monotone if there exists a positive constant m such that
(u' = v, u-v) > (-m)|u-v|* Y(uu"),(v,v") € graph (M),
(vii) cocoercive if
(' —v*,u-v) > |u -o*|* Y(uu*),(v,v") € graph (M),

(viii) (c)-cocoercive if there is a positive constant ¢ such that

(u* —v*, u—v) > cllu* - o> V(u,u*),(v,0) e graph (M).

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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Definition 2.2. Let M : X — 2% be a mapping on X. The map M is said to be

(i) nonexpansive if

[u* 0| < lu—ol V(u,u*),(v,0") € graph (M), (2.14)

(ii) firmly nonexpansive if

|| = v"‘||2 <(u*-v,u-v) Y(u,u"),(v,v") € graph (M), (2.15)

(iii) (c¢)-firmly nonexpansive if there exists a constant ¢ > 0 such that

| = v*||2 <c(u* -v,u-v) VYu,u),(v,v") € graph (M). (2.16)

In light of Definitions 2.1(vii) and 2.2(ii), notions of cocoerciveness and firm nonex-
pansiveness coincide, but differ in applications much depending on the context.

Definition 2.3. Amap 7 : X x X — X is said to be

(i) monotone if

(x-y,n(xy))>0 V(xy)eX, (2.17)

(ii) (t)-strongly monotone if there exists a positive constant ¢ such that

(x-y,n(x,y)) >t|x —y||2 V(x,y) €X, (2.18)

(iii) strongly monotone if

(x-ynxy) > |x-y|* Y(xy)eX, (2.19)

(iv) (7)-Lipschitz continuous if there exists a positive constant 7 such that

7, )| < 7llx -yl (2.20)
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Definition 2.4. Let M : X — 2% be a multivalued mapping on X, and let 77 : X x X — X be

another mapping. The map M is said to be

(i) (77)-monotone if

(u* —v*,n(u,v)) >0 VY(u,u*),(v,v*) € graph (M),

(ii) (r,n)-strongly monotone if there exists a positive constant r such that

(u* = 0", n(u,0)) 2 rllu-o|* V(u,u*),(v,0%) € graph (M),

(iii) (77)-strongly monotone if

(u* = 0", n(u,0)) 2 [u-o|> Y(u,u"),(v,0%) € graph (M),
(iv) (r,n)-strongly pseudomonotone if
(v, n(u,0)) 20
implies
(u*,n(u,v)) >r|u- v|*> Y(u,u*),(v,v*) € graph (M),
(v) (17)-pseudomonotone if
(0%, n(u,0)) 20
implies
(u',n(u,v)) >0 VY(u,u*),(v,0*) € graph (M),

(vi) (m,n)-relaxed monotone if there exists a positive constant m such that

(u* —v*, q(w,v)) > (-m)|lu-o|* Y(uu*),(v,0*) € graph (M),

(vii) (c,n)-cocoercive if there is a positive constant ¢ such that

(u* —v*,n(u,v)) > cllu* —o*|* Y(u,u),(v,v*) € graph (M).

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)
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Definition 2.5. Amap M : X — 2% is said to be maximal (77)-monotone if

(1) M is (7)-monotone,
(2) RI+cM) =X forc > 0.

Proposition 2.6. Let n7: X x X — X be a (t)-strongly monotone mapping, and let M : X — 2% be
a maximal (1)-monotone mapping. Then (I + ¢ M) is maximal (17)-monotone for ¢ > 0, where I is the
identity mapping.

Proof. The proof follows on applying Definition 2.5. O

Proposition 2.7 (see [4]). Let 7: X x X — X be (t)-strongly monotone, and let M : X — 2X be
maximal (17)-monotone. Then generalized resolvent operator (I + cM) s single valued, where I is
the identity mapping.

Proof. For a given u € X, consider x,y € (I + cM) ™ (u) for ¢ > 0. Since M is maximal (n)-
monotone, we have

%[—x +u] € M(x),

(2.30)
Ly rul e M(y).
Now using the (77)-monotonicity of M, it follows that
(—x+u—-(—y+u),n(xy))=y-xn(xy)) >0. (2.31)
Since 77 is (t)-strongly monotone, it implies x = y. Thus, (I + cM) ™" is single valued. O

Definition 2.8. Letn : X x X — X be (t)-strongly monotone, and let M : X — 2% be maximal
(17)-monotone. Then the generalized resolvent operator ]CM 1. X — X is defined by

Ty = (1 +cM)™ () for ¢ > 0. (2.32)

Proposition 2.9 (see [4]). Let X be a real Hilbert space, let M : X — 2% be maximal (17)-monotone,
and let 17 : X x X — X be (t)-strongly monotone. Then the resolvent operator associated with M and
defined by

I ) = (I+pM) () VueX (2.33)

satisfies the following:

(u=o, (72" w0, 2"@) ) 2 1| 1200 - 1 @) || (2.34)
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Proof. For any u, v € X, it follows from the definition of the resolvent operator | ;VI " that

7o) e M7 ),
(2.35)
%[v—]y’"(v)] € M<];VLU(U)>-
Since M is (17)-monotone, we have
%(u —o— 1" - 1" @] (" @, 15" @) ) > 0. (2.36)
In light of (2.36), we have
(=, (13"w), ;")) )
> (1" w) - 1" @), (1" ), ;" @) ) (2.37)
> 112w - @)
O

Proposition 2.10 (see [4]). Let X be a real Hilbert space, let M : X — 2% be maximal (1)-
monotone, and let 17 : X x X — X be (t)-strongly monotone.
If, in addition, (for y > 0)

M,

<u— v,];,w’"(u) -Jp (v)> > Y<” - v,q(];,\/l’"(u),];,\/l’"(v)>> Yu,v € X, (2.38)

then, for Je=1- ];\4"7, one has (for t > 1)

yt
2yt -1

yt-1

2yt -1 175w - Ji @)%, (2.39)

2
[ = of|” +

(u-o,Ji(u) - Ji(v)) >

where

Ty = (I+pM) () VYueX, (2.40)
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Proof. We include the proof for the sake of the completeness. To prove (2.39), we apply (2.38)
to Proposition 2.9, and we get

(u=0, 3" - 1" @) ) 2 vt 12w - @) (241)

It further follows that
(u-—v,u-v-(Jiw) - Ji(v)))

, (2.42)
>yt ;@) = Ji @) + I = ol = 2Ji () - Ji (0), u = 0)]

When y =1 and t > 1 in Proposition 2.10, we have the following.

Proposition 2.11. Let X be a real Hilbert space, let M : X — 2% be maximal (17)-monotone, and let
1: X x X — X be (t)-strongly monotone.
If, in addition, one supposes that

M

<u—v,];,w’"(u) -Jp (v)> > <u—v,11<]:,w'"(u),];,\/l’"(v)>> Yu,veX, (2.43)

then, for Ji=1- ];,VI’”, one has (for t > 1)

* * t- 1 t * "
(u=o,Jiw) = (@) 2 gl =2l + Z— I - T @), (2.44)
where
I ) = (1+pM) ™ (u) VueX. (2.45)

Fort=1and y > 1 in Proposition 2.10, we find a result of interest as follows.

Proposition 2.12. Let X be a real Hilbert space, let M : X — 2X be maximal (17)-monotone, and let
1 : X x X — X be strongly monotone.
If, in addition, one supposes (for y > 1) that

<u— U,]:,w’"(u) - ];VI’"(U)> > y<u —v,q(]ﬁ,\/l"l(u),]é\/l’”(v))> Yu,v € X, (2.46)

then, for Ji =1 - ]éw’", one has

-1
(u-v,Jiw) - Ji(v) 2 ZYY —llu-ol*+ ZYL—l i) - ;@)% (2.47)

where
Iy = (I+pM) ™ () VueX. (2.48)

For y =t =1 in Proposition 2.10, we have the following result.
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Proposition 2.13. Let X be a real Hilbert space, let M : X — 2% be maximal (17)-monotone, and let
1 : X x X — X be strongly monotone.
If, in addition, one assumes that

<u -0, ];w’"(u) - ]F],VI’"(U)> > <u - v,q(]y’"(u),]y’n(v)>> Yu,veX, (2.49)

then, for Ji=1- ];,VI’”, one has

(u—v, Ji(w) - JE@) 2 |Jiw) - Ji @], (2.50)

where

T ) = (T+pM) ™ () VueX. 2.51)

3. The Over-Relaxed (77)-Proximal Point Algorithm

This section deals with the over-relaxed (77)-proximal point algorithm and its application
to approximation solvability of the inclusion problem (1.1) based on the maximal (7)-
monotonicity. Furthermore, some results connecting the (77)-monotonicity and corresponding
resolvent operator are established, that generalize the results on the firm nonexpansiveness
[2], while the auxiliary results on maximal (7)-monotonicity and general maximal mono-
tonicity are obtained.

Theorem 3.1. Let X be a real Hilbert space, and let M : X — 2X be maximal (1)-monotone. Then
the following statements are mutually equivalent.

(i) An element u € X is a solution to (1.1).

(ii) For an u € X, one has
u=J"w) forc>0, (3.1)
where

JEM ) = (I + M)~ (w). (32)

Proof. It follows from the definition of the generalized resolvent operator corresponding
to M.

Note that Theorem 3.1 generalizes [2, Lemma 2] to the case of a maximal (77)-mono-
tone mapping. 0

Next, we present a generalization to the relaxed proximal point algorithm [3] based
on the maximal (77)-monotonicity.
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Algorithm 3.2 (see [4]). Let M : X — 2X be a set-valued maximal (77)-monotone mapping on
X with 0 € range(M), and let the sequence {x*} be generated by the iterative procedure

= (1 - ag)x® + apy* Yk >0, (3.3)
and y* satisfies
o2 <o o

where ]i\k/[’" =+ ckM)_l, 6r — Oand
Yy = (- a)xk + e () vk 20, (3.5)
Here
{6k}, {ax}, {ck} € [0, 00) (3.6)
are scalar sequences such that > ;7 6k < co.

Algorithm 3.3. Let M : X — 2% be a set-valued maximal (77)-monotone mapping on X with
0 € range(M), and let the sequence {x*} be generated by the iterative procedure

xkH = (1-ax- ﬁk)xk +ayt Yk >0, (3.7)
and y satisfies

o =72 ) < e 6

where ]CIZI’" = +cM)™, and
{ex}, {ar}, {Br}, {ex} € [0, 0) (3.9)

are scalar sequences such that >, ex < 0.

For &6k = 1/k? in Algorithm 3.2, we have the following.
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Algorithm 3.4. Let M : X — 2% be a set-valued maximal (77)-monotone mapping on X with
0 € range(M), and let the sequence {x*} be generated by the iterative procedure

= (1 - ag)x* + ay* Yk >0, (3.10)

and y satisfies

o () = - a1
where ]i\k/f’" = ([ +cM)™, and
Y = (1 - )k + a T <xk> Vk > 0. (3.12)
Here
{ar}, {ck} € [0, 00) (3.13)

are scalar sequences.

In the following result [4], we observe that Theorems 1.1 and 1.3 are unified and are
generalized to the case of the #-maximal monotonicity and super-relaxed proximal point
algorithm. Also, we notice that this result in certain respects demonstrates the importance
of the firm nonexpansiveness rather than of the nonexpansiveness.

Theorem 3.5 (see [4]). Let X be a real Hilbert space. Let M : X — 2% be maximal (1)-monotone,
and let x* be a zero of M. Let 17 : X x X — X be (t)-strongly monotone. Furthermore, assume (for
y>0)

<u - v,]é\f’”(u) - ]C]:I'"(v)> > Y<u - v,q(]f’"(u),]f’”(v))> Yu,v € X. (3.14)
Let the sequence {x*} be generated by the iterative procedure
xFl = (1 - ak)xk + akyk Yk >0, (3.15)
and y* satisfies

o+ = 1 () | < e (3.16)

where ]2:“1 = (I+ckM)_1, Do ek < oo, {ar}, {ex} ek} C€[0,00), ck /' ¢* < oo, infispax > 0, and
SuUpy.oak < 2yt/(2yt —1).

Suppose that the sequence {x*} is bounded in the sense that there exists at least one solution
to0 € M(x).
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Then one has (for t > 1)

]c]\k/l’q(xk) - x* ? < ka - x* g | 2, (3.17)

Ji (k)

(2yt-1)
where yt > 1 and
Jr=1-J" (3.18)

In addition, suppose that the sequence {x*} is generated by Algorithm 3.2 as well, and that
M~ is (a)-Lipschitz continuous at 0, that is, there exists a unique solution z* to 0 € M(z)
(equivalently, M~(0) = {z*}) and for constants a > 0 and b > 0, one has

lz - z*|| < allw|| whenever z € M~ (w), ||w]|| < b. (3.19)
Here

{6k}, {ax}, {cx} € [0, 00) (3.20)

are scalar sequences such that 6, — 0and 3,2 6k < oo.
Then the sequence {x*} converges linearly to a unique solution x* with rate

VI-a 21— ytd?) —ar(1- 2yt -1)d?)] <1 fort>1, (3.21)

where d = \/az/(c*2 + 2yt -1)a?), a* = limsup, _,_ax, and sequences {ax} and {ck} satisfy
ax>1,cx /" ¢* < oo, infyspay > 0, and SUPak < 2yt/(2yt - 1).

Proof. Suppose that x* is a zero of M. For all k > 0, we set
Jp=1-J5" (322)

Therefore, J;(x*) = 0. Then, in light of Theorem 3.1, any solution to (1.1) is a fixed point of

M *
Je. ", and hence a zero of J;.
Next, the proof of (3.17) follows from a regular manipulation, and the following
equality:

=0l = |[J2 ) - T () + T () - ];;(v)n2 Vi, v € X, (3.23)
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Before we start establishing linear convergence of the sequence {x*}, we express {x*} in light
of Algorithm 3.2 as

yk+1 =(1- ak)xk + ak]gf’" (xk>

= (1-aJp) ().

(3.24)

Now we begin verifying the boundedness of the sequence {x*} leading to x* -
M,
] Ck q(xk) - O
Next, we estimate using Proposition 2.10 (for ¢ > 1)

2 M 2

e I R e CORE
k * * 0k 2
ol RG]

e 2 () - ) e

= o S [P T R e |

(- BV e (2 ) e

(3.25)
Since under the assumptions ay (2yt/(2yt — 1) — ax) > 0, it follows that
s <ol <[] 520
where A = /1 -2(yt - D /2yt - 1) < 1.
Moreover,
Xk - yk+1 ” = ” (1 - ar)x* + akyk - [(l - )xk + ak]é\;[’q <xk)] ”
-2 () o2

< ageg.
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Now we find the estimate leading to the boundedness of the sequence {x*},

xk+1 _ x*” < yk+1 _ x*” + xk+1 _ yk+1
< [ -]
X =X || +akex
k (3.28)
< ”xo -x ” + szje]
j=0
2t &
< on -X || + Zek
2yt -1 pary

Thus, the sequence {x*} is bounded.
We further examine the estimate

2 2
xk+1 _ x*” — yk+1 —x*+ xk+1 _ yk+1

k+1 * 2 k+1 * o k+1 k+1 k+1 k+1 2
=y —x” +2<y -x",x" -y >+ X -y

k+1 * 2 k+1 * k+1 k+1 k+1 k+1 2
<y —x||+2y —x”x -y +||x —y

2 2}/
<l - - i
2
+ 2( xk+1 _ x*” + ||xk+l _ yk+1 > xk+1 _ yk+1 + xk+1 _ yk+l

<ot o oz
4yt & 2yt & 2 *E
+2<” “ 2}’th1 >2Yty_tlze < = )kz

where ax (2yt/(2yt = 1) —ay) > 0.
Since {ex} is summable, so is {e7}, and hence Y e7 < 00. As k — oo, we have that

S0 o0 = Jim () o o3
j=0

that is, x* —]f’"(xk) — 0.
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Now we turn our attention (using the previous argument) to linear convergence of the
sequence {x¥}. Since limy _ o, I (x*) = 0, it implies for k large that c;l Ii (xF) e M( ]C]\k/I (xkY).
Moreover, ||c;1]; (x*)|| < b for k > k" and b > 0. Therefore, in light of (3.19), by taking w =

' Ji(x*) and z = ]f’n(xk), we have

R e el ()| ez oan)

Applying (3.17), we arrive at

2
M,k 2 a
Ja ey - x| <

< |- x*||2 for t>1, (332)
c+ (2yt-1)a?

M
where J,, x*) = x*.

Since y**1 := (1 - ag)x* + ak](f\k/l’“(xk), we estimate using (3.32) and (ax > 1) that

2
yk+1 _ x*”

- ”(1 — )k a5 (oK) - x*”2
= a6y - x) + (1 - ) (- )|

]CIZI,rz(xk) - x*”2 F(1- ak)z”xk _ x*HZ + 20 (1 - ak)<f£\k4'"<xk> — X, - x*>

_ 2
=ay

Ja (k) - x"”2 +(1- ak)zuxk - x*”2 +2yai(1 - “k)<71<]3:1'n (xk>lx*>’xk _ x*>

<a

<a? ]CIZI’rl(xk) - x*”2 +(1- ak)Zka - x*”2 + 20 (1 — ag)yt ]ij’”(xk) - x*”2

k

2

= [szk(l —ap)yt+ ai] ]?;I’"(xk) - x"”2 +(1- zxk)z”xk - x*”

= a2yt - @pt - Dai | 15165 x|+ (1 - a2 |

< a2yt — 2yt —1)ay] > a’ ||xk - x*“z +(1- cxk)2||xk - x*”2
k

+ (2yt-1)a?

2
_ _ _ a— _ 2 k _ . * 2
= <zxk[2yt 2yt —1)a] 21 Qri-na + (1 - ax) >“x X ” ,
(3.33)

where ai[2yt — 2yt — 1)ax] > 0.
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Hence, we have

yk+1 _ x*” < Gk”xk _x*“’

where

a2

Ok = J“k 2yt - 2yt - Dau] [m

]+(1—ak)2<1,

for ap[2yt — 2yt — 1)ag] > 0 and ay > 1.
Since Algorithm 3.2 ensures

o =a7 () < ol =),

a <yk _ xk> = Kt _ k)

we have
k1 k+1|| — k_ tMmn(_ k < ars k_ k
X y = ||%k y ]Ck X S akOk y X 7
xk+1 _ x*” — yk+1 — X+ xk+1 _ yk+1
< yk+1 _ x*“ + xk+1 _ yk+l
< yk+1 —x*” + ak5k”yk _ xk”
— yk+1 _ x*“ + 6k xk+1 _ xkll
< yk+1 _x*“ +6k xk+1 _x*” +6k||xk _x*n
< Bk”xk —x*” + Ok || <t - x*” +6k||xk —x*n.
It follows that
Gk + 6k
Xk x*” < “xk _ x*”,
— 6k
where
. Ok + 0 .
lim sup = limsup 0k
1-6k

= \1-a [2(1 - yt2) - o (1- 2t - 1)2)] <1,

for setting d = \/az/(c*2 + (2yt - 1)a?).

23

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)
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Theorem 3.6. Let X be a real Hilbert space, and let M : X — 2% be maximal (17)-monotone. Let
n: X x X — X be (t)-strongly monotone. For an arbitrarily chosen initial point x°, let the sequence
{x*} be bounded (in the sense that there exists at least one solution to 0 € M(x)) and generated by
Algorithm 3.3 as

= (1-ag - Pr)x* + axy® for k>0 (3.40)
with

[ = 78" ()| < ex. (3.41)

where ]ﬁ\f M= (I+ceM)™, and sequernces
{ex}, {axt, fex} €10, 00) (342)

satisfy E1 = X jex < oo, Ay =infay >0, Ay =sup ax <2, and c* = infcx > 0.

In addition, one assumes (for y > 0)
(u=o )"0 = 13" @) 2y (u-on (1w, [ @) ) Yuvex.  (343)

Then the sequence {x*} converges weakly to a solution of (1.1).

Proof. The proof is similar to that of the first part of Theorem 3.5 on applying the generalized
representation lemma. O

Theorem 3.7. Let X be a real Hilbert space. Let M : X — 2X be maximal (1)-monotone, and let x*
be a zero of M. Let n: X x X — X be (t)-strongly monotone. Let the sequence {x*} be generated by
the iterative procedure

= (1 - ag)x* + ay* Yk >0, (3.44)
and y* satisfies

ok =7 () || < e (3.45)

where JAM = (I+cxM)™Y, 32 ex < oo, {ax}, {ex} {ck} € [0,00), ck /' ¢* < oo, infysoay > 0, and
SUp ok < 2yt/(2yt —1).
Furthermore, assume (for y > 0)

<u - v,]r’"(u) - ]CAk/I’"(U)> > Y<u - v,q(]i/l’"(u),]cj\k/l’"(v))> Yu,v e X. (3.46)

Suppose that the sequence {x*} is bounded in the sense that there exists at least one solution to 0 €
M(x).
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Then (for t > 1)

@rt- D x| < ot -2 | - e (3.47)

where
Jr=1-JoM, (3.48)

In addition, assume that the sequence {x*} is generated by Algorithm 3.4 as well, and that M~!
is (a)-Lipschitz continuous at 0, that is, there exists a unique solution z* to 0 € M(z) (equivalently,
M~1(0) = {z*}) and for constants a > 0 and b > 0, one has

llz - z*|| < al|lw| whenever z € MY (w), ||w]|| < b. (3.49)
Here

{6k}, {ax}, {cx} € [0, 0) (3.50)

are scalar sequences such that 6 — 0and Y2, 6k < 0.
Then the sequence {x*} converges linearly to a unique solution x* with rate

VI-@ 21— ytd2) —ar(1- 2yt -1)d?)] <1 fort>1, (3.51)

where d = \/112/(0*2 + 2yt —1)a?), a* = limsup, _, ax, and sequences {ax} and {ck} satisfy
ar 21, ¢k /¢ < oo, infyspax > 0, and sup,gax < 2yt/(2yt - 1).

Proof. The proof is similar to that of Theorem 3.5. O

4. Some Specializations

Finally, we examine some significant specializations of Theorem 3.5 in this section. Let us
start with y = 1 and t > 1 and applying Proposition 2.11.

Theorem 4.1. Let X be a real Hilbert space. Let M : X — 2X be maximal (n)-monotone, and let x*
be a zero of M. Let 7 : X x X — X be (t)-strongly monotone. Furthermore, assume

<u - v,]i\k/l’q(u) - ]r'"(v)> > <u - v,q(]é\f’q(u),]x’q(v)>> Yu,v € X. (4.1)

Let the sequence {x*} be generated by the iterative procedure

2K = (1 - ag )k + akyk Vk >0, (4.2)
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and y* satisfies
ok =7 () | < ex. (4.3)

where ]gf’" = +ckM)_1, Soek <oo, {ar}, fex} ek} € [0,00), ck /" ¢* < oo, infyspax > 0, and
sup,. ax < 2t/ (2t -1).

Suppose that the sequence {x*} is bounded in the sense that there exists at least one solution
to0 € M(x).

Then one has (for t > 1)

@t - )| - x| < <~ g ];(xk)uz, (4.4)

where t > 1 and

Jr=1-JoM. (4.5)

In addition, suppose that the sequence {x*} is generated by Algorithm 3.2 as well, and that
M is (a)-Lipschitz continuous at 0, that is, there exists a unique solution z* to 0 € M(=z)
(equivalently, M~1(0) = {z*}) and for constants a > 0 and b > 0, one has

|z = z*|| < al|w|| whenever z € M‘l(w), ||| < b. (4.6)
Here

{6k}, {ax}, {cx) € [0, 00) (4.7)

are scalar sequences such that 6, — 0and >,}2, 6k < oo.
Then the sequence {x*} converges linearly to a unique solution x* with rate

VI-a 21— t?) —ar(1- 2t - Dd?)] <1 fort>1, (4.8)

where d = \/az/(c*2 + (2t —1)a?), a* = limsup, _, ax, and sequences {ax} and {ck} satisfy ar >
1, cx /' ¢* < oo, infrspay > 0, and SUP;k < 2t/ (2t -1).

Proof. We need to include the proof for the sake of the completeness. Suppose that x* is a zero
of M. For all k > 0, we set

Jr=1- ] (4.9)

Therefore, J;(x*) = 0. Then, in light of Theorem 3.1, any solution to (1.1) is a fixed point of

M,
Jer " and hence a zero of Ji-
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Next, the proof of (4.4) follows from a regular manipulation, and the following
equality:

I~ olf* = M)+ ) - @) vevex. (4.10)

Before we start establishing linear convergence of the sequence {x*}, we express {x*} in light
of Algorithm 3.2 as

M,
Yy = (1 - ) x* + ag ], rl(x")

= (I-aJy) (xk>.

(4.11)

Now we begin verifying the boundedness of the sequence {x*} leading to x* —
M,
] Ck rl(xk) - 0
Next, we estimate using Proposition 2.10 (for ¢ > 1)

2 2
Yk - x*” = ” (1 - ar)x* + zxk]CAk/I’n(xk) - x*”

2
= [ = i

= ”xk —x*”2 —thk<xk - x*, ],ﬁ(xk> —]Z(x*)> +zxi||],’§(xk)”2 (4.12)
) S = e I T VS R ST

( 2(t?.t 1)1“k>|| H _‘xk< 2 —ak)”],’E(xk)”.

Since under the assumptions ay (2t/ (2t — 1) — ay) > 0, it follows that

o] safet e <] )

where A = /1 -2(t-1)ay/(2t 1) < 1.
Moreover,

xk+1 _ k1

y

= ” 1- cxk)xk + zxkyk - [(1 - zxk)xk + ak]?k/l’" <xk>] ”

SO @

< apék.
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Now we find the estimate leading to the boundedness of the sequence {x*},

yk+1 _ x*” + k+1 k+1

XYy

xk+1 _ x*” <

< ||xk - x*” + aex

k 4.15
< ”xo - x*” + Za]-ej (4.15)
=0
2t &
< ||x0—x*|| +—— > ek
= 2t—1k§ ‘
Thus, the sequence {x*} is bounded.
We further examine the estimate
2 2
“xk+1 _ x*” _ “yk+1 N S yk+1
2 2
— yk+1 _ x*” + 2<yk+1 _ x*,xk+1 _ yk+1> + xk+1 _ yk+1
2 2
< “yk+1 _ x*” ) yk+1 _ x*” k1 yk+1|| 4|kt - yk+1”
2 2t
<l (-]
= M\2r-1 °F Ji<* (4.16)
< k+1 ” ” k+1 k+1 ) k1 yk+1 4 ||kt - yk+1||2

R eS| LSk

* 4 S 2 S >
+z<||xo_x))+2Yf_128>2tt12 () &4

where ay(2t/ (2t — 1) — ax) > 0.
Since {ex} is summable, so is {e?}, and hence Y, e7 < 00. As k — oo, we have that

S| <o = tim jz(+) <o, 1)
=0

that is, x* —]f’"(xk) — 0.
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Now we turn our attention (using the previous argument) to linear convergence of the
sequence {x¥}. Since limy _ o, I (x*) = 0, it implies for k large that c;l Ii (xF) e M( ]C]\k/I (xkY).
Moreover, ||c,;1 ];(xk)II < bfork > k' and b > 0. Therefore, in light of (4.6), by taking w =

' Ji(x*) and z = ]f’n(xk), we have

R e el ()| ez s

Applying (4.4), we arrive at

2
M, 2 a
T - x| <

<armonal el ez @19)

where ]CIZI’"(x*) = x*.

Since y**! := (1 — ax)xk + a J2" (x¥), we estimate using (4.1) and (ax > 1) that

k+1 _x*HZ

y

- ” (1 - )X + g Jo, " (oK) - x*”2

= ||ak<]?k/l’"<xk> —x*) +(1- ak)(xk —x")”2

= | 72 ) - || 1 P | 21 - ) (R () - - )
< txi fi\f’"(xk) - x*”2 +(1- ak)2||xk - x*”2 + 20, (1 - ak)<11<]£k4’" (xk>,x*>,xk - x*>
< txi ]Cl\k/f’n(xk) - x*”2 +(1- ak)2||xk - x*”2 + 205 (1 — ag)t ]g’”(xk) - x"”2

2

- [Zak(l — )t + ai] ]é\f’”(xk) - x*“z +(1- uk)Zka - x*“

= a2t — (2t — Dag] ]fk/[’rl(xk) - x*”2 +(1- cxk)zuxk - x"‘”2

a2

2 2
Zra el e ox]
FyoT

< ap[2t - (2t —1)ag]

2

a
c+(2t-1)a?

(e o )=

(4.20)

where ay [2f — (2t = 1)ax] > 0.
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Hence, we have

Ykt - x*” < Gk”xk - x*“, (4.21)
where
a® )
O = ala[2t— 2t - Dar] | —F— |+ (1—m)? <1, (4.22)
k Jdk[ (2t - D] [Ci T 1)a2] (1 - ax)

for ap[2t — 2t —1)ax] > 0and ay > 1.
Since Algorithm 3.2 ensures

GOl B Uty |

() e (4.23)
we have
S B U0 R
R
<y - s - g
< |ly*t -« ” + akék” yk - xk” (4.24)
= [|et = || + |t - |
S R S B By
< 0|k = ||+ |t = x| + e - |
It follows that
R e (4.5
where
lim sup 61"%65" = lim sup 6 oo

= \1- 201 - td?) - (1 - (2t - 1)d?)] <

for setting d = \/az/(c*2 + (2t —1)a?). O
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Second we examine Theorem 3.5 when y > 1 and t = 1, but in this case there is no need
to include the proof.

Theorem 4.2. Let X be a real Hilbert space. Let M : X — 2X be maximal (1)-monotone, and let x*
be a zero of M. Let 17 : X x X — X be strongly monotone. Furthermore, assume (for y > 1)

<u - v,]CAk/I’"(u) - ]CIZI’"(U)> > y<u - v,rl(]gf’"(u),]f’"(v)>> Yu,v e X. (4.27)

Let the sequence {x*} be generated by the iterative procedure

= (1 - ag)x® + ay* Yk >0, (4.28)
and y* satisfies

o 127() e 4

where ]2:[’" =(I+caM)™, Sioek <oo, {ar}, {ex ek} € [0,00), ck /¢ < oo, infrspax > 0, and
supsoatk <2y/(2y - 1).

Suppose that the sequence {x*} is bounded in the sense that there exists at least one solution
to 0 € M(x).

Then one has

@y - D)|7e" k) -« JHED) 2, (4.30)

2 2
<[] -

wherey > 1 and
Jr=1-JoM. (4.31)

In addition, suppose that the sequence {x*} is generated by Algorithm 3.2 as well, and that M~ is
(a)-Lipschitz continuous at 0, that is, there exists a unique solution z* to 0 € M(z) (equivalently,
M~1(0) = {z*}) and for constants a > 0 and b > 0, one has

lz - z*|| < allw|| whenever z € M~ (w), ||w]|| < b. (4.32)

Here

{6k}, {ax}, {cx} € [0, 0) (4.33)

are scalar sequences such that 6 — 0and X ,}2, 6k < oo.
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Then the sequence {x*} converges linearly to a unique solution x* with rate

V1-a2(1-yd?) —ar(1- 2y - 1)d?)] <1, (4.34)

where d = \/512/(c*2 +(2y - 1)a?), a* = limsup, _, ax, and sequences {ay} and {ck} satisfy ax >
1, cx /' ¢* < oo, infrspay > 0, and SUP;5k < 2y/(2y - 1).

Finally, we consider the case when y = t = 1 in Theorem 3.5, especially using
Proposition 2.13. In this situation, the inclusion of the complete proof seems to be appropriate.

Theorem 4.3. Let X be a real Hilbert space. Let M : X — 2X be maximal (1)-monotone, and let x*
be a zero of M. Let 17 : X x X — X be strongly monotone. Furthermore, assume

<u - U,]gf’q(u) - ]é\k/f'"(v)> > <u - v,n(]x’n(u),]x’q(v)>> Yu,v € X. (4.35)

Let the sequence {x*} be generated by the iterative procedure

= (1 - ag)x* + ay* Yk >0, (4.36)
and y* satisfies

o = 73 () || < ex. (4.37)

where ]3{4’" = +ckM)‘1, Dok <oo, {ar}, fex} ek} € [0,00), ck /" ¢* < oo, infrspax > 0, and
SUp,k < 2.

Suppose that the sequence {x*} is bounded in the sense that there exists at least one solution
to0 € M(x).
Then one has

2

M, 2
o (k) - x° -|

|| (4.38)

<[

where

Jr=1-J3" (4.39)

In addition, suppose that the sequence {x*} is generated by Algorithm 3.2 as well, and that
M~ is (a)-Lipschitz continuous at 0, that is, there exists a unique solution z* to 0 € M(z)
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(equivalently, M~(0) = {z*}) and for constants a > 0 and b > 0, one has
|z - z*|| < al|w|| whenever z € M (w), ||w| < b. (4.40)
Here

{6k}, {ax}, {ex} € [0, 00) (4.41)

are scalar sequences such that 6 — 0and 32, 6k < oo.
Then the sequence {x*} converges linearly to a unique solution x* with rate

Vi-a2(-d?) -ar(1-d?)] <1, (4.42)

where d = \/a?/(c** + a?), a* = limsup, __ ax, and sequences {ay} and {ci} satisfy ax > 1,
ck /' ¢ < oo, infysoax > 0, and sup, . ax < 2.

Proof. We need to include the proof for the sake of the completeness. Suppose that x* is a zero
of M. Forall k >0, we set

Ji=1-JM" (4.43)

Therefore, J;(x*) = 0. Then, in light of Theorem 3.1, any solution to (1.1) is a fixed point of
M *
Je, ", and hence a zero of J;.
Next, the proof of (4.38) follows from a regular manipulation, and the following
equality:

=) = |72 @) - 7" @) + T () - ];;(v)n2 Vi, v € X. (4.44)

Before we start establishing linear convergence of the sequence {x*}, we express {x*} in light
of Algorithm 3.2 as

YR = (1= ) + a J <xk>

= (I-axj}) <xk>.

(4.45)

Now we begin examining the boundedness of the sequence {x*} leading to x* —
Mk
] Ck (x ) - O
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Next, we estimate using Proposition 2.13 that

2 2
yk+1 - x*“ = ||(1 —a)xk + zxk](f”l(xk) - x*”

= ”xk —-x" - o(k],’;(xk)”2
- ”xk - x*||2 - Zak<xk —x, T <xk> - ];;(x*)> + ai“];;(xk) n2 (4.46)
ot - -2 - s

S R

Since under the assumptions ax (2 — ay) > 0, it follows that

o<l w
Moreover,
xkrt — gk ” = ” (1 - ag)x + apy* - [(l — ) x* + a JoM! <xk>] ”
oo~ 2 %
< ajeg.

Now we find the estimate leading to the boundedness of the sequence {x¥},

k+1 _ xk+1 _

xk+1 _ x*” <

x*” +

k+1 ||

Y y

< ”xk - x*” + axex

< ”xo - x” N zk:ajej (4.49)
j=0

[ee)
< ”xo - x*” + ZZek.
k=0

Thus, the sequence {x*} is bounded.
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We further examine the estimate

2 2
||xk+1 —x* — ||yk+1 —x*+ xk+1 _ yk+1
k+1 * 2 k+1 * o k+1 k+1 k+1 k+1 2
:”y -x +2<y -x",x" -y >+||x -y
k+1 * 2 k+1 * k+1 k+1 k+1 k+1 2
§||y -x +2“y -x |x -y +||x -y
< k * 2 2 * ¢k 2
< = x| = (2 =) || T (x5)
2
n 2<“xk+1 —xl + ||xk+1 _ yk+1 )”xk+1 _ yk+1 + ||xk+1 _ yk+1

k 2
e e

],t(xk)”2 + 2<||x0 —-x*|| + 4iek>2§:ek + 4iei,
k=0 k=0

k=0
(4.50)

where ay (2 — ax) > 0.

Since {ex} is summable, so is {e?

2}, and hence 32 ef < o0. As k — oo, we have that

|| <00 = Jim ;(x) =0, (451)

k
2,
j=0

that is, x* — ]g\er "l(x*) — 0. Now we find the estimate leading to the boundedness of the
sequence {x*},

k (4.52)
< ”xo -X || + Zaje]-
j=0
[e'e]
< ”xo x| + Zek.
k=0

Thus, the sequence {x*} is bounded.
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We further examine the estimate

2

2
xk+1 _ x*” —

yk+1 —x*+ xk+1 _ yk+1

xk+1 _

2 2
_ ||yk+1 _ x*” . 2<yk+1 —x*, yk+1> n k+1||

y

2
xk+1 _ k1

< y

2
yk+1 —x* || +2

yk+1 _ x*”

Xk yk+1 ” n

< | x| - a2 an ||

+2( )

2 2 0 © [*)
<[t - el o2 - <15 oS 15
k=0 k=0 k=(0453)

k+1 xk+1 _ k41

y

+ xk+1 ~y

k+1||2

Xk x*” + ||xk+1 —y

where ay (2 — ax) > 0.
Since {ex} is summable, so is {e7 }, and hence Y2 ef < 00. As k — oo, we have that

Zk(;”]; (xf)”2 <o = lim J; () =0, (4.54)
<

that is, x* —]C]}:I’"(xk) — 0.

Now we turn our attention (using the previous argument) to linear convergence of the
sequence {x*}. Since limi_, o, J; (x*) = 0, it implies for k large that ¢ J¥(x*) € M( TV (xky).
Moreover, ||c;" J;(x*)|| < b for k > k' and b > 0. Therefore, in light of (4.40), by taking w =

Cilf;t(xk) and z = ]?f’”(xk), we have

I () - x| < al| e e ()| ez K (4.55)

Applying (4.38), we arrive at

R e S LY 659
k

where ]CIZI’"(x*) =x*.
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Since y**! := (1 — a)xk + ag J2" (x¥), we estimate using (4.35) and (ax > 1) that

Yo - x*HZ
= [|1 - @0 + gk -« ||2
= ”cxk (]f’"(xk> - x*) +(1- ak)(xk - x*)”2
= a; ]i\k/f’"(xk) - x"‘”2 +(1- ak)Zka - x*”2 +2a; (1 - ak)<]£f’"<xk> —x*, xk - x*>
< ai ]j}f'”(xk) - x*”2 +(1- ak)2||xk - x"‘”2 + 20, (1 - ak)<11<]61\k4’" (xk>,x*>,xk - x*>
< ai ]?,:I’rl(xk) - x*”2 +(1- ak)2||xk - x*”2 + 20, (1 — ag) ]C]:I’"(xk) - x*”2
= [Zak(l —ag) + ai] ]éf[’q(xk) - x*”2 +(1- ak)2||xk - x*“2
= ag(2 — ag) ]C]\k/l’”<xk> - x"”2 +(1- cxk)2”xk - x*nz
<ar(2- ak)ciajaZ ”xk _ x*“z +(1- txk)2||xk _ x*Hz
- (2- ak)ci‘faz (- ak)Zuxk _ x*”z.
(4.57)
Hence, we have
yk+1 - x*” < E)k”xk - x*n, (4.58)
where
Ok = J“k(z_“k)[ 2a2 2] +(1-a) <1,
A+a (4.59)
for ax[2 — ax] > 0and ay > 1.
Since Algorithm 3.2 ensures
o ()] <t - »

e <yk _ xk> = K xk
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we have
e R ) ER
||xk+1 — x| = ||yk+1 — x4+ xk+1 _ yk+1
< ||yk+1 Y ”xk+1 _ yk+1
o I aen
_ ||yk+1 _ " 6k||xk*1 _ xk”
< ||yk+1 —x*|[ + 6k||xk+1 -x +6k“xk -x*
< Bk”xk —x*” + 6k||xk+1 -x +6k||xk -x*
It follows that
[t =] < Bt - (462)
where
lim sup le_+56 = limsup Ok (463)

- \/1 21 -d?) —ar(1-d2)] <1

for setting d = \/a2/(c*? + a?). O

Note that if we set 77(x, y) = x — y in Theorem 4.3, we get a result connecting [2] to the
case of a linear convergence setting, but the algorithm remains overrelaxed (or superrelaxed).
In this context, we state the following results before we start examining Theorem 4.7, the
main result on linear convergence in the maximal monotone setting. Note that based on
Proposition 4.6, notions of cocoercivity and firm nonexpansiveness coincide, though it is well
known that they may differ in usage much depending on the context.

Theorem 4.4. Let X be a real Hilbert space, and let M : X — 2% be maximal monotone. Then the
following statements are mutually equivalent.

(i) An element u € X is a solution to (1.1).
(ii) For an u € X, one has

u=JM@w) forc>0, (4.64)
where

TM(u) = (I + M) (u). (4.65)
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Proof. 1t follows from the definition of the generalized resolvent operator corresponding
to M. O

Next, we present the super-relaxed Proximal point algorithm based on the maximal
monotonicity.

Algorithm 4.5. Let M : X — 2X be a set-valued maximal monotone mapping on X with
0 € range(M), and let the sequence {x*} be generated by the iterative procedure

= (1 - ag)x® + ay* Yk >0, (4.66)

and y* satisfies

o () <] wer
where JM = (I +cxM)™", 6x — 0and
Yy = (- a2 (xF) vk 20 (4.68)
Here
{0k}, {ak}, {ex} € [0, 00) (4.69)

are scalar sequences such that 37 6k < co.
Proposition 4.6. Let X be a real Hilbert space, and let M : X — 2X be maximal monotone. Then,

for Ji = 1—J), one has

(u=o, J2w) - J1@) > || J: () - ;@) (4.70)

where

JM(u) = (I+pM) ™" (1) YueX. (4.71)

Theorem 4.7. Let X be a real Hilbert space. Let M : X — 2% be maximal monotone, and let x* be a
zero of M. Let the sequence {x*} be generated by the iterative procedure

2= (1 - )k + akyk Yk >0, (4.72)
and y* satisfies

= 721 (=) || < exs (4.73)
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where ]Cj}f = +caM), Sioek < oo, {ar}, {ext{ck} € [0,00), ck /' ¢* < oo, infspax > 0, and
SUPs @k < 2.

Suppose that the sequence {x*} is bounded in the sense that there exists at least one solution
to0 € M(x).

Then one has

2
HED] P (4.74)

2 2
<[] -

Q(/I(xk) —x*

where
Jr=1-JM. (4.75)

Ck

In addition, suppose that the sequence {x*} is generated by Algorithm 4.5, and that M~ is (a)-
Lipschitz continuous at 0, that is, there exists a unique solution z* to 0 € M(z) (equivalently,
M~1(0) = {z*}) and for constants a > 0 and b > 0, one has

llz - z*|| < allw|| whenever z € M~ (w), ||w]|| <b. (4.76)
Here

{6k}, {ax}, {cx} € [0, 00) (4.77)

are scalar sequences such that 6, — 0and 3,2 6k < oo.
Then the sequence {x*} converges linearly to a unique solution x* with rate

Vi-a20-&2) -a(1-d)] <1, (4.78)

where d = \/a?/(c** + a?), a* = limsup, _, _ ax, and sequences {ay} and {ci} satisfy ar > 1,
ck /' ¢ < oo, infyoax > 0, and sup,jax < 2.

Proof. We need to include the proof for the sake of the completeness. Suppose that x* is a zero
of M. For all k > 0, we set

Ji=1-]M (4.79)

Therefore, J;(x*) = 0. Then, in light of Theorem 4.4, any solution to (1.1) is a fixed point of
JM, and hence a zero of J}.

Next, the proof of (4.74) follows from applying the regular manipulation, and the
following equality:

=l = |73 60 - ¥ @)+ Jiw) - @) vuoex. (450)

Before we start establishing linear convergence of the sequence {x*}, we express {x} in light
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of Algorithm 4.5 as
yk” = (1-ap)x* + cxk]?k/[ (xk>

(4.81)
= (I-axjf) <xk>.

Now we begin examining the boundedness of the sequence {x*} leading to x* —
JM(x*) — 0.
Next, we estimate using Proposition 4.6 that

2 2
yk+1 - x*” = ”(1 —a)xk + ak]C]ZI(xk) - x*”

= | - >~ gz

=l - -2 (- () - ) e @)
<[ x| -2 e |+ )|

= |- x| - we-ao e

Since under the assumptions ax (2 — ai) > 0, it follows that

= - < -] (459
Moreover,
ket =yt = (1 - a)rk + iyt - [(1- ) + a3 ()]
[y ()| o
< agek.

Now we find the estimate leading to the boundedness of the sequence {xk},

xk+1 _ yk+1

xk+1 _ x*” <

yk+1 _ x*” +

< ”xk - x*” + arex

< on -x ” + ile-e] (485)
j=0
<[l x| 23
k=0

Therefore, the sequence {x*} is bounded.



42 Fixed Point Theory and Applications

We further examine the estimate

2 2
||xk+1 —x* — ||yk+1 —x*+ xk+1 _ yk+1
k+1 * 2 k+1 * k+1 k+1 k+1 k+1 2
=y - +2(y T XX~y +||x —y
k+1 * 2 k+1 * k+1 k+1 k+1 k+1 2
<y =T +2||lyT = x| ||~y +||x —y
< k * 2 2 * 0k 2
ST x| — a2 - ak) | T (x5)
2
+ 2(||xk+l — x| + ||xk+1 _ yk+1 >ka+1 _ yk+1 + ||xk+1 _ yk+1

< ” ko x*“z — o (2 - ay) ||],’:(xk)||2 + 2<||x0 —x*|| + 4iek>2iek + 4iei,
k=0 k=0 k=0

(4.86)

where ay (2 — ax) > 0.
Since {ex} is summable, so is {ei }, and hence >}2, ei < 0. As k — oo, we have that

> S| <00 = lim ji(+) =0, (4.87)

that is, x* — ]S:I "(x¥) — 0. Now we find the estimate leading to the boundedness of the
sequence {x},

nxk+1 —x* k+1

< ”yk+1 _ x*

+ ||xk+1 ~y

< ”xk - x*” + arex

kamﬂ+2%q (4.88)
=

[ele]
< ”xo - x*” + ZZek.

k=0

Thus, the sequence {x*} is bounded.
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We further examine the estimate

2 2
xk+1_x*|| — yk+1_x*+xk+1_yk+1
kel |? kel x kel kel kel _ ket
=y —x” +2<y -x,x —y >+ xT -y ”
kel x? kel |||l kel ket kel ket
<y —x”+2y —x”x -y +|[x* —y ”
k * 2 %/ k 2
<" = x| = (2 = ) || T (x5)
2
+2< xk+1_x*||+ xk+1_yk+1 ) xk+1_yk+1 + xk+1_yk+1

2 2 o0 0 ]
[t w2 -] <15 oS 15
k=0 k=0 k=0
(4.89)

where a (2 — ay) > 0.
Since {ex} is summable, so is {ei }, and hence >}, ei < . As k — oo, we have that

S| <oe = tim jz(+) <o, 490)
=0

that is, x% — J2"(xk) — 0.

Now we turn our attention (using the previous argument) to linear convergence of the
sequence {x*}. Since limg_ o J;(x¥) = 0, it implies for k large that ¢;' J; (x*) € M(JM(x*)).
Moreover, ||c;1 I (x*)|| < b for k > k" and b > 0. Therefore, in light of (4.76), by taking w =

Cilfi(xk) and z = ]c]:(/f'n(xk), we have

]é\f(xk) - x*” < a”c;l],t (xk> H Vk > k' (4.91)

Applying (4.74), we arrive at

]é\k/f(xk) - x"‘”2 < CZi—ZQZ”xk - x*”2 fort>1, (4.92)
k

where JM(x*) = x*.
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Since y**! := (1 — ag)x* + a JM(x*), we estimate (for ay > 1) that

2 2
yk+1 - x*” = ”(1 —a)xk + ak]fk/[(xk) - x*”

= ”ak<]é\k’l<xk> - x*> + (1 — ) (xF —x*)”2

]g\k/f(xk) - x*”2 +(1- zxk)z”xk - x"n2 + 20 (1 - ak)<]£f<xk> - x*,xk - x*>

_ 2
=ay

M, . 2 N 2 M, N 2
<ad IR = x|+ (1 - a? ||k - x| 2 (1 - o | 1) - x|

= [szk(l —ag) + ai] ]?,:I’rl(xk) - x*”2 +(1- ak)2||xk - x*”2

= a2 - ap) | JM (xF) - X*”z +(1- ak)2||xk B x*”2

2
<o (2 - ) -

2 2
e R R
ci +a?

_ [<2>_ e >] [ - =
(4.93)
Hence, we have
] o] s
where
O = o| (2 - )[“—2]+(1— 2 <1
k = 4| %k Ak Z+ ok , (4.95)
for ax[(2 —ax)] > 0and ay > 1.
Since Algorithm 4.5 ensures
<t "

ak<yk _ xk> = K xk
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we have
e N MO ER
||xk+1 —x*ll = ||yk+1 — X+ xk+1 _ yk+1
< ||yk+1 _ 2l + ka+1 _ yk+1
< ”yk*1 - x| + ak6k||yk - xk” (4.97)
_ ||yk+1 2l s 6k||xk+1 _ xk”
< ||yk+1 Xt +6k||xk+1 oyt +6k||xk X
< Gk”xk —-x*|| + 6k||xk+1 - x* +6k||xk - x*|.
It follows that
”karl —x*|| < ?%;: ”xk -x*, (4.98)
where
lim sup 91k—+<‘;5: = limsup 0k 4.99)

—\l-a@-a)1-d) <1,

for setting d = \/m . O
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