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1. Introduction and Preliminaries

Katsaras [1] defined a fuzzy norm on a vector space to construct a fuzzy vector topological
structure on the space. Some mathematicians have defined fuzzy norms on a vector space
from various points of view [2–4]. In particular, Bag and Samanta [5], following Cheng and
Mordeson [6], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy
metric is of Kramosil and Michálek type [7]. They established a decomposition theorem of a
fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed
spaces [8].

We use the definition of fuzzy normed spaces given in [5, 9, 10] to investigate a fuzzy
version of the generalized Hyers-Ulam stability for the functional equation

f
(
x + 2y

)
+ f

(
x − 2y

)
= 2f

(
x + y

) − 2f
(−x − y

)
+ 2f

(
x − y

) − 2f
(
y − x

)

+ f
(
2y

)
+ f

(−2y) + 4f(−x) − 2f(x)
(1.1)

in the fuzzy normed vector space setting.



2 Fixed Point Theory and Applications

Definition 1.1 (see [5, 9–11]). Let X be a real vector space. A function N : X × R → [0, 1] is
called a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N1) N(x, t) = 0 for t ≤ 0;

(N2) x = 0 if and only ifN(x, t) = 1 for all t > 0;

(N3) N(cx, t) = N(x, t/|c|) if c /= 0;

(N4) N(x + y, s + t) ≥ min{N(x, s),N(y, t)};
(N5) N(x, ·) is a nondecreasing function of R and limt→∞N(x, t) = 1;

(N6) for x /= 0, N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space.
The properties of fuzzy normed vector spaces and examples of fuzzy norms are given

in [9, 12].

Definition 1.2 (see [5, 9–11]). Let (X,N) be a fuzzy normed vector space. A sequence {xn} in
X is said to be convergent or converge if there exists an x ∈ X such that limn→∞N(xn −x, t) = 1
for all t > 0. In this case, x is called the limit of the sequence {xn} and we denote it by N-
limn→∞xn = x.

A sequence {xn} in X is called Cauchy if for each ε > 0 and each t > 0 there exists an
n0 ∈ N such that for all n ≥ n0 and all p > 0, we have N(xn+p − xn, t) > 1 − ε.

It is wellknown that every convergent sequence in a fuzzy normed vector space is
Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed vector space is called a fuzzy Banach space.

We say that a mapping f : X → Y between fuzzy normed vector spaces X and Y
is continuous at a point x0 ∈ X if for each sequence {xn} converging to x0 in X, then the
sequence {f(xn)} converges to f(x0). If f : X → Y is continuous at each x ∈ X, then f : X →
Y is said to be continuous on X (see [8]).

In 1940, Ulam [13] gave a talk before the Mathematics Club of the University of
Wisconsin in which he discussed a number of unsolved problems. Among these was the
following question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·). Given ε > 0, does there
exist a δ > 0 such that if f : G → G′ satisfies ρ(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then a
homomorphism h : G → G′ exists with ρ(f(x), h(x)) < ε for all x ∈ G?

By now an affirmative answer has been given in several cases, and some interesting
variations of the problem have also been investigated. We will call such an f : G → G′ an
approximate homomorphism.

In 1941, Hyers [14] considered the case of approximately additive mappings f : E →
E′, where E and E′ are Banach spaces and f satisfies the Hyers inequality

∥∥f
(
x + y

) − f(x) − f
(
y
)∥∥ ≤ ε (1.2)

for all x, y ∈ E. It was shown that the limit

L(x) = lim
n→∞

2−nf(2nx) (1.3)
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exists for all x ∈ E and that L : E → E′ is the unique additive mapping satisfying

∥
∥f(x) − L(x)

∥
∥ ≤ ε (1.4)

for all x ∈ E.
No continuity conditions are required for this result, but if f(tx) is continuous in the

real variable t for each fixed x ∈ E, then L : E → E′ is R-linear, and if f is continuous at a
single point of E, then L : E → E′ is also continuous.

Hyers’ theorem was generalized by Aoki [15] for additive mappings and by Th. M.
Rassias [16] for linear mappings by considering an unbounded Cauchy difference. The paper
of Th. M. Rassias [16] has provided a lot of influence in the development of what we call
generalized Hyers-Ulam stability or as Hyers-Ulam-Rassias stability of functional equations. A
generalization of the Th. M. Rassias theorem was obtained by Găvruţa [17] by replacing the
unbounded Cauchy difference by a general control function in the spirit of Th. M. Rassias’
approach.

In 1982–1994, a generalization of the Hyers’s result was proved by J. M. Rassias. He
introduced the following weaker condition:

∥∥f
(
x + y

) − f(x) − f
(
y
)∥∥ ≤ θ‖x‖p∥∥y∥∥q (1.5)

for all x, y ∈ E, controlled by a product of different powers of norms, where θ ≥ 0 and real
numbers p, q, r := p + q /= 1, and retained the condition of continuity of f(tx) in t ∈ R for
each fixed x ∈ E. Besides he investigated that it is possible to replace ε in the above Hyers
inequality by a nonnegative real-valued function such that the pertinent series converges and
other conditions hold and still obtain stability results. In all the cases investigated in these
results, the approach to the existence question was to prove asymptotic type formulas of the
form

L(x) = lim
n→∞

2−nf(2nx) or L(x) = lim
n→∞

2nf
(
2−nx

)
. (1.6)

Theorem 1.3 (see [18–23]). Let X be a real normed linear space and Y a real Banach space. Assume
that f : X → Y is an approximately additive mapping for which there exist constants θ ≥ 0 and
p, q ∈ R such that r = p + q /= 1 and f satisfies the Cauchy-Rassias inequality

∥∥f
(
x + y

) − f(x) − f
(
y
)∥∥ ≤ θ‖x‖p∥∥y∥∥q (1.7)

for all x, y ∈ X. Then there exists a unique additive mapping L : X → Y satisfying

∥∥f(x) − L(x)
∥∥ ≤ θ

|2r − 2| ‖x‖
r (1.8)

for all x ∈ X. If, in addition, f : X → Y is a mapping such that f(tx) is continuous in t ∈ R for each
fixed x ∈ X, then L : X → Y is an R-linear mapping.
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The functional equation

f
(
x + y

)
+ f

(
x − y

)
= 2f(x) + 2f

(
y
)

(1.9)

is called a quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. A generalized Hyers-Ulam stability problem for the
quadratic functional equation was proved by Skof [24] for mappings f : X → Y , where X
is a normed space and Y is a Banach space. Cholewa [25] noticed that the theorem of Skof is
still true if the relevant domain X is replaced by an Abelian group. Czerwik [26] proved the
generalized Hyers-Ulam stability of the quadratic functional equation. The stability problems
of several functional equations have been extensively investigated by a number of authors
and there are many interesting results concerning this problem (see [27–69]).

In [70], Jun and Kim considered the following cubic functional equation:

f
(
2x + y

)
+ f

(
2x − y

)
= 2f

(
x + y

)
+ 2f

(
x − y

)
+ 12f(x). (1.10)

It is easy to show that the function f(x) = x3 satisfies the functional (1.10), which is called
a cubic functional equation and every solution of the cubic functional equation is said to be a
cubic mapping.

Let X be a set. A function d : X × X → [0,∞] is called a generalized metric on X if d
satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

We recall a fundamental result in fixed point theory.

Theorem 1.4 (see [71, 72]). Let (X, d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with Lipschitz constant L < 1. Then for each given element x ∈ X,
either

d
(
Jnx, Jn+1x

)
= ∞ (1.11)

for all nonnegative integers n or there exists a positive integer n0 such that

(1) d(Jnx, Jn+1x) < ∞, for all n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X | d(Jn0x, y) < ∞};
(4) d(y, y∗) ≤ (1/(1 − L))d(y, Jy) for all y ∈ Y .

In 1996, Isac and Th. M. Rassias [73] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with applications. By
using fixed point methods, the stability problems of several functional equations have been
extensively investigated by a number of authors (see [74–78]).
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This paper is organized as follows. In Section 2, we prove the generalized Hyers-Ulam
stability of the additive-quadratic-cubic functional (1.1) in fuzzy Banach spaces for an odd
case. In Section 3, we prove the generalized Hyers-Ulam stability of the additive-quadratic-
cubic functional (1.1) in fuzzy Banach spaces for an even case.

Throughout this paper, assume that X is a vector space and that (Y,N) is a fuzzy
Banach space.

2. Generalized Hyers-Ulam Stability of the Functional Equation (1.1):
An Odd Case

One can easily show that an odd mapping f : X → Y satisfies (1.1) if and only if the odd
mapping mapping f : X → Y is an additive-cubic mapping, that is,

f
(
x + 2y

)
+ f

(
x − 2y

)
= 4f

(
x + y

)
+ 4f

(
x − y

) − 6f(x). (2.1)

It was shown in [79, Lemma 2.2] that g(x) := f(2x) − 2f(x) and h(x) := f(2x) − 8f(x) are
cubic and additive, respectively, and that f(x) = (1/6)g(x) − (1/6)h(x).

One can easily show that an even mapping f : X → Y satisfies (1.1) if and only if the
even mapping f : X → Y is a quadratic mapping, that is,

f
(
x + 2y

)
+ f

(
x − 2y

)
= 2f(x) + 2f

(
2y

)
. (2.2)

For a given mapping f : X → Y , we define

Df
(
x, y

)
:= f

(
x + 2y

)
+ f

(
x − 2y

) − 2f
(
x + y

)
+ 2f

(−x − y
) − 2f

(
x − y

)

+ 2f
(
y − x

) − f
(
2y

) − f
(−2y) − 4f(−x) + 2f(x)

(2.3)

for all x, y ∈ X.
Using the fixed point method, we prove the generalized Hyers-Ulam stability of the

functional equation Df(x, y) = 0 in fuzzy Banach spaces, an odd case.

Theorem 2.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ L

8
ϕ
(
2x, 2y

)
(2.4)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying

N
(
Df

(
x, y

)
, t
) ≥ t

t + ϕ
(
x, y

) (2.5)

for all x, y ∈ X and all t > 0. Then

C(x) := N- lim
n→∞

8n
(
f

(
x

2n−1

)
− 2f

( x

2n
))

(2.6)
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exists for each x ∈ X and defines a cubic mapping C : X → Y such that

N
(
f(2x) − 2f(x) − C(x), t

) ≥ (8 − 8L)t
(8 − 8L)t + 5L

(
ϕ(x, x) + ϕ(2x, x)

) (2.7)

for all x ∈ X and all t > 0.

Proof. Letting x = y in (2.5), we get

N
(
f
(
3y

) − 4f
(
2y

)
+ 5f

(
y
)
, t
) ≥ t

t + ϕ
(
y, y

) (2.8)

for all y ∈ X and all t > 0.
Replacing x by 2y in (2.5), we get

N
(
f
(
4y

) − 4f
(
3y

)
+ 6f

(
2y

) − 4f
(
y
)
, t
) ≥ t

t + ϕ
(
2y, y

) (2.9)

for all y ∈ X and all t > 0.
By (2.8) and (2.9),

N
(
f
(
4y

) − 10f
(
2y

)
+ 16f

(
y
)
, 4t + t

)

≥ min
{
N
(
4
(
f
(
3y

) − 4f
(
2y

)
+ 5f

(
y
))
, 4t

)
, N

(
f
(
4y

) − 4f
(
3y

)
+ 6f

(
2y

) − 4f
(
y
)
, t
)}

≥ t

t + ϕ
(
y, y

)
+ ϕ

(
2y, y

)

(2.10)

for all y ∈ X and all t > 0. Letting y := x/2 and g(x) := f(2x) − 2f(x) for all x ∈ X, we get

N
(
g(x) − 8g

(x
2

)
, 5t

)
≥ t

t + ϕ(x/2, x/2) + ϕ(x, x/2)
(2.11)

for all x ∈ X and all t > 0.
Consider the set

S :=
{
g : X −→ Y

}
(2.12)

and introduce the generalized metric on S:

d
(
g, h

)
= inf

{
μ ∈ R+ : N

(
g(x)−h(x), μt)≥ t

t + ϕ(x, x) + ϕ(2x, x)
, ∀x ∈ X, ∀t > 0

}
, (2.13)

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma
2.1 of [80].)



Fixed Point Theory and Applications 7

Now we consider the linear mapping J : S → S such that

Jg(x) := 8g
(x
2

)
(2.14)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt

) ≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.15)

for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt

)
= N

(
8g

(x
2

)
− 8h

(x
2

)
, Lεt

)

= N

(
g
(x
2

)
− h

(x
2

)
,
L

8
εt

)

≥ Lt/8
Lt/8 + ϕ(x/2, x/2) + ϕ(x, x/2)

≥ Lt/8
Lt/8 + (L/8)

(
ϕ(x, x) + ϕ(2x, x)

)

=
t

t + ϕ(x, x) + ϕ(2x, x)

(2.16)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld
(
g, h

)
(2.17)

for all g, h ∈ S.
It follows from (2.11) that

N

(
g(x) − 8g

(x
2

)
,
5L
8
t

)
≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.18)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ 5L/8.
By Theorem 1.4, there exists a mapping C : X → Y satisfying the following.
(1) C is a fixed point of J , that is,

C
(x
2

)
=

1
8
C(x) (2.19)

for all x ∈ X. Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping C is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
< ∞}

. (2.20)
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This implies that C is a unique mapping satisfying (2.19) such that there exists a μ ∈ (0,∞)
satisfying

N
(
g(x) − C(x), μt

) ≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.21)

for all x ∈ X and all t > 0.
(2) d(Jng, C) → 0 as n → ∞. This implies the equality

N- lim
n→∞

8ng
( x

2n
)
= C(x) (2.22)

for all x ∈ X.
(3) d(g,C) ≤ (1/(1 − L))d(g, Jg), which implies the inequality

d
(
g,C

) ≤ 5L
8 − 8L

. (2.23)

This implies that inequality (2.7) holds.
By (2.5),

N
(
8nDg

( x

2n
,
y

2n
)
, 8nt

)
≥ t

t + ϕ(x/2n, x/2n)
(2.24)

for all x, y ∈ X, all t > 0, and all n ∈ N. So

N
(
8nDg

( x

2n
,
y

2n
)
, t
)
≥ t/8n

t/8n + (Ln/8n)ϕ
(
x, y

) (2.25)

for all x, y ∈ X, all t > 0 and all n ∈ N. Since limn→∞(t/8n)/(t/8n + (Ln/8n)ϕ(x, y)) = 1 for all
x, y ∈ X and all t > 0,

N
(
DC

(
x, y

)
, t
)
= 1 (2.26)

for all x, y ∈ X and all t > 0. Thus the mapping C : X → Y is cubic, as desired.

Corollary 2.2. Let θ ≥ 0 and let p be a real number with p > 3. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying

N
(
Df

(
x, y

)
, t
) ≥ t

t + θ
(‖x‖p + ∥∥y

∥∥p) (2.27)

for all x, y ∈ X and all t > 0. Then

C(x) := N- lim
n→∞

8n
(
f

(
x

2n−1

)
− 2f

( x

2n
))

(2.28)
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exists for each x ∈ X and defines a cubic mapping C : X → Y such that

N
(
f(2x) − 2f(x) − C(x), t

) ≥ (2p − 8)t
(2p − 8)t + 5(3 + 2p)θ‖x‖p (2.29)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.1 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥
∥y

∥
∥p) (2.30)

for all x, y ∈ X. Then we can choose L = 23−p and we get the desired result.

Theorem 2.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ 8Lϕ
(x
2
,
y

2

)
(2.31)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.5). Then

C(x) := N- lim
n→∞

1
8n

(
f
(
2n+1x

)
− 2f(2nx)

)
(2.32)

exists for each x ∈ X and defines a cubic mapping C : X → Y such that

N
(
f(2x) − 2f(x) − C(x), t

) ≥ (8 − 8L)t
(8 − 8L)t + 5ϕ(x, x) + 5ϕ(2x, x)

(2.33)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
8
g(2x) (2.34)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt

) ≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.35)
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for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt

)
= N

(
1
8
g(2x) − 1

8
h(2x), Lεt

)

= N
(
g(2x) − h(2x), 8Lεt

)

≥ 8Lt
8Lt + ϕ(2x, 2x) + ϕ(4x, 2x)

≥ 8Lt
8Lt + 8L

(
ϕ(x, x) + ϕ(2x, x)

)

=
t

t + ϕ(x, x) + ϕ(2x, x)

(2.36)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld
(
g, h

)
(2.37)

for all g, h ∈ S.
It follows from (2.11) that

N

(
g(x) − 1

8
g(2x),

5
8
t

)
≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.38)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ 5/8.
By Theorem 1.4, there exists a mapping C : X → Y satisfying the following.
(1) C is a fixed point of J , that is,

C(2x) = 8C(x) (2.39)

for all x ∈ X. Since g : X → Y is odd, C : X → Y is an odd mapping. The mapping C is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
< ∞}

. (2.40)

This implies that C is a unique mapping satisfying (2.39) such that there exists a μ ∈ (0,∞)
satisfying

N
(
g(x) − C(x), μt

) ≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.41)

for all x ∈ X and all t > 0.
(2) d(Jng, C) → 0 as n → ∞. This implies the equality

N- lim
n→∞

1
8n

g(2nx) = C(x) (2.42)

for all x ∈ X.
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(3) d(g,C) ≤ (1/(1 − L))d(g, Jg), which implies the inequality

d
(
g,C

) ≤ 5
8 − 8L

. (2.43)

This implies that the inequality (2.33) holds.
The rest of the proof is similar to that of the proof of Theorem 2.1.

Corollary 2.4. Let θ ≥ 0 and let p be a real number with 0 < p < 3. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.27). Then

C(x) := N- lim
n→∞

1
8n

(
f
(
2n+1x

)
− 2f(2nx)

)
(2.44)

exists for each x ∈ X and defines a cubic mapping C : X → Y such that

N
(
f(2x) − 2f(x) − C(x), t

) ≥ (8 − 2p)t
(8 − 2p)t + 5(3 + 2p)θ‖x‖p (2.45)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.3 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥∥y
∥∥p) (2.46)

for all x, y ∈ X. Then we can choose L = 2p−3 and we get the desired result.

Theorem 2.5. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ L

2
ϕ
(
2x, 2y

)
(2.47)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.5). Then

A(x) := N- lim
n→∞

2n
(
f

(
x

2n−1

)
− 8f

( x

2n
))

(2.48)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N
(
f(2x) − 8f(x) −A(x), t

) ≥ (2 − 2L)t
(2 − 2L)t + 5L

(
ϕ(x, x) + ϕ(2x, x)

) (2.49)

for all x ∈ X and all t > 0.
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Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Letting y := x/2 and h(x) := f(2x) − 8f(x) for all x ∈ X in (2.10), we get

N
(
h(x) − 2h

(x
2

)
, 5t

)
≥ t

t + ϕ(x/2, x/2) + ϕ(x, x/2)
(2.50)

for all x ∈ X and all t > 0.
Now we consider the linear mapping J : S → S such that

Jh(x) := 2h
(x
2

)
(2.51)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt

) ≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.52)

for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt

)
= −N

(
2g

(x
2

)
− 2h

(x
2

)
, Lεt

)

= N

(
g
(x
2

)
− h

(x
2

)
,
L

2
εt

)

≥ Lt/2
Lt/2 + ϕ(x/2, x/2) + ϕ(x, x/2)

≥ Lt/2
Lt/2 + (L/2)

(
ϕ(x, x) + ϕ(2x, x)

)

=
t

t + ϕ(x, x) + ϕ(2x, x)

(2.53)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld
(
g, h

)
(2.54)

for all g, h ∈ S.
It follows from (2.50) that

N

(
h(x) − 2h

(x
2

)
,
5L
2
t

)
≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.55)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5L/2.
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By Theorem 1.4, there exists a mapping A : X → Y satisfying the following
(1) A is a fixed point of J , that is,

A
(x
2

)
=

1
2
A(x) (2.56)

for all x ∈ X. Since h : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
< ∞}

. (2.57)

This implies that A is a unique mapping satisfying (2.56) such that there exists a μ ∈ (0,∞)
satisfying

N
(
h(x) −A(x), μt

) ≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.58)

for all x ∈ X and all t > 0.
(2) d(Jnh,A) → 0 as n → ∞. This implies the equality

N- lim
n→∞

2nh
( x

2n
)
= A(x) (2.59)

for all x ∈ X;
(3) d(h,A) ≤ (1/(1 − L))d(h, Jh), which implies the inequality

d(h,A) ≤ 5L
2 − 2L

. (2.60)

This implies that inequality (2.49) holds.
The rest of the proof is similar to that of the proof of Theorem 2.1.

Corollary 2.6. Let θ ≥ 0 and let p be a real number with p > 1. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.27). Then

A(x) := N- lim
n→∞

2n
(
f

(
x

2n−1

)
− 8f

( x

2n
))

(2.61)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N
(
f(2x) − 8f(x) −A(x), t

) ≥ (2p − 2)t
(2p − 2)t + 5(3 + 2p)θ‖x‖p (2.62)

for all x ∈ X and all t > 0.
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Proof. The proof follows from Theorem 2.5 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥
∥y

∥
∥p) (2.63)

for all x, y ∈ X. Then we can choose L = 21−p and we get the desired result.

Theorem 2.7. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ 2Lϕ
(x
2
,
y

2

)
(2.64)

for all x, y ∈ X. Let f : X → Y be an odd mapping satisfying (2.5). Then

A(x) := N- lim
n→∞

1
2n

(
f
(
2n+1x

)
− 8f(2nx)

)
(2.65)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N
(
f(2x) − 8f(x) −A(x), t

) ≥ (2 − 2L)t
(2 − 2L)t + 5ϕ(x, x) + 5ϕ(2x, x)

(2.66)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 2.1.
Consider the linear mapping J : S → S such that

Jh(x) :=
1
2
h(2x) (2.67)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt

) ≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.68)

for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt

)
= N

(
1
2
g(2x) − 1

2
h(2x), Lεt

)

= N
(
g(2x) − h(2x), 2Lεt

)

≥ 2Lt
2Lt + ϕ(2x, 2x) + ϕ(4x, 2x)

≥ 2Lt
2Lt + 2L

(
ϕ(x, x) + ϕ(2x, x)

)

=
t

t + ϕ(x, x) + ϕ(2x, x)

(2.69)



Fixed Point Theory and Applications 15

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld
(
g, h

)
(2.70)

for all g, h ∈ S.
It follows from (2.50) that

N

(
h(x) − 1

2
h(2x),

5
2
t

)
≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.71)

for all x ∈ X and all t > 0. So d(h, Jh) ≤ 5/2.
By Theorem 1.4, there exists a mapping A : X → Y satisfying the following.
(1) A is a fixed point of J , that is,

A(2x) = 2A(x) (2.72)

for all x ∈ X. Since h : X → Y is odd, A : X → Y is an odd mapping. The mapping A is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
< ∞}

. (2.73)

This implies that A is a unique mapping satisfying (2.72) such that there exists a μ ∈ (0,∞)
satisfying

N
(
h(x) −A(x), μt

) ≥ t

t + ϕ(x, x) + ϕ(2x, x)
(2.74)

for all x ∈ X and all t > 0.
(2) d(Jnh,A) → 0 as n → ∞. This implies the equality

N- lim
n→∞

1
2n

h(2nx) = A(x) (2.75)

for all x ∈ X.
(3) d(h,A) ≤ (1/(1 − L))d(h, Jh), which implies the inequality

d(h,A) ≤ 5
2 − 2L

. (2.76)

This implies that inequality (2.66) holds.
The rest of the proof is similar to that of the proof of Theorem 2.1.
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Corollary 2.8. Let θ ≥ 0 and let p be a real number with 0 < p < 1. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an odd mapping satisfying (2.27). Then

A(x) := N- lim
n→∞

1
2n

(
f
(
2n+1x

)
− 8f(2nx)

)
(2.77)

exists for each x ∈ X and defines an additive mapping A : X → Y such that

N
(
f(2x) − 8f(x) −A(x), t

) ≥ (2 − 2p)t
(2 − 2p)t + 5(3 + 2p)θ‖x‖p (2.78)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 2.7 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥∥y
∥∥p) (2.79)

for all x, y ∈ X. Then we can choose L = 2p−1 and we get the desired result.

3. Generalized Hyers-Ulam Stability of the Functional Equation (1.1):
An Even Case

Using the fixed point method, we prove the generalized Hyers-Ulam stability of the func-
tional equation Df(x, y) = 0 in fuzzy Banach spaces, an even case.

Theorem 3.1. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ L

4
ϕ
(
2x, 2y

)
(3.1)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.5). Then

Q(x) := N- lim
n→∞

4nf
( x

2n
)

(3.2)

exists for each x ∈ X and defines a quadratic mapping Q : X → Y such that

N
(
f(x) −Q(x), t

) ≥ (16 − 16L)t
(16 − 16L)t + L2ϕ(2x, x)

(3.3)

for all x ∈ X and all t > 0.
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Proof. Replacing x by 2y in (2.5), we get

N
(
f
(
4y

) − 4f
(
2y

)
, t
) ≥ t

t + ϕ
(
2y, y

) (3.4)

for all y ∈ X and all t > 0.
It follows from (3.4) that

N

(

f(x) − 4f
(x
2

)
,
L2

16
t

)

≥ t

t + ϕ(2x, x)
(3.5)

for all x ∈ X and all t > 0.
Consider the set

S :=
{
g : X −→ Y

}
(3.6)

and introduce the generalized metric on S:

d
(
g, h

)
= inf

{
μ ∈ R+ : N

(
g(x) − h(x), μt

) ≥ t

t + ϕ(2x, x)
, ∀x ∈ X, ∀t > 0

}
, (3.7)

where, as usual, infφ = +∞. It is easy to show that (S, d) is complete. (See the proof of Lemma
2.1 of [80].)

Now we consider the linear mapping J : S → S such that

Jg(x) := 4g
(x
2

)
(3.8)

for all x ∈ X.
Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt

) ≥ t

t + ϕ(2x, x)
(3.9)

for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt

)
= N

(
4g

(x
2

)
− 4h

(x
2

)
, Lεt

)

= N

(
g
(x
2

)
− h

(x
2

)
,
L

4
εt

)

≥ Lt/4
Lt/4 + ϕ(x, x/2)

≥ Lt/4
Lt/4 + (L/4)ϕ(2x, x)

=
t

t + ϕ(2x, x)

(3.10)
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for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld
(
g, h

)
(3.11)

for all g, h ∈ S.
It follows from (3.5) that d(f, Jf) ≤ L2/16.
By Theorem 1.4, there exists a mapping Q : X → Y satisfying the following:
(1) Q is a fixed point of J , that is,

Q
(x
2

)
=

1
4
Q(x) (3.12)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is an even mapping. The mapping Q is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
< ∞}

. (3.13)

This implies that Q is a unique mapping satisfying (3.12) such that there exists a μ ∈ (0,∞)
satisfying

N
(
f(x) −Q(x), μt

) ≥ t

t + ϕ(2x, x)
(3.14)

for all x ∈ X and all t > 0.
(2) d(Jnf,Q) → 0 as n → ∞. This implies the equality

N- lim
n→∞

4nf
( x

2n
)
= Q(x) (3.15)

for all x ∈ X.
(3) d(f,Q) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d
(
f,Q

) ≤ L2

16 − 16L
. (3.16)

This implies that inequality (3.3) holds.
The rest of the proof is similar to that of the proof of Theorem 2.1.
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Corollary 3.2. Let θ ≥ 0 and let p be a real number with p > 2. Let X be a normed vector space with
norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.27). Then

Q(x) := N- lim
n→∞

4nf
( x

2n
)

(3.17)

exists for each x ∈ X and defines a quadratic mapping Q : X → Y such that

N
(
f(x) −Q(x), t

) ≥ 2p(2p − 4)t
2p(2p − 4)t + (1 + 2p)θ‖x‖p (3.18)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.1 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥∥y
∥∥p) (3.19)

for all x, y ∈ X. Then we can choose L = 22−p and we get the desired result.

Theorem 3.3. Let ϕ : X2 → [0,∞) be a function such that there exists an L < 1 with

ϕ
(
x, y

) ≤ 4Lϕ
(x
2
,
y

2

)
(3.20)

for all x, y ∈ X. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.5). Then

Q(x) := N- lim
n→∞

1
4n

f(2nx) (3.21)

exists for each x ∈ X and defines a quadratic mapping Q : X → Y such that

N
(
f(x) −Q(x), t

) ≥ (16 − 16L)t
(16 − 16L)t + Lϕ(2x, x)

(3.22)

for all x ∈ X and all t > 0.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem 3.1.
Consider the linear mapping J : S → S such that

Jg(x) :=
1
4
g(2x) (3.23)

for all x ∈ X.
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Let g, h ∈ S be given such that d(g, h) = ε. Then

N
(
g(x) − h(x), εt

) ≥ t

t + ϕ(2x, x)
(3.24)

for all x ∈ X and all t > 0. Hence

N
(
Jg(x) − Jh(x), Lεt

)
= N

(
1
4
g(2x) − 1

4
h(2x), Lεt

)

= N
(
g(2x) − h(2x), 4Lεt

)

≥ 4Lt
4Lt + ϕ(4x, 2x)

≥ 4Lt
4Lt + 4Lϕ(2x, x)

=
t

t + ϕ(2x, x)

(3.25)

for all x ∈ X and all t > 0. So d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d
(
Jg, Jh

) ≤ Ld
(
g, h

)
(3.26)

for all g, h ∈ S.
It follows from (3.4) that

N

(
f(x) − 1

4
f(2x),

L

16
t

)
≥ t

t + ϕ(2x, x)
(3.27)

for all x ∈ X and all t > 0. So d(g, Jg) ≤ L/16.
By Theorem 1.4, there exists a mapping Q : X → Y satisfying the following.
(1) Q is a fixed point of J , that is,

Q(2x) = 4Q(x) (3.28)

for all x ∈ X. Since f : X → Y is even, Q : X → Y is an even mapping. The mapping Q is a
unique fixed point of J in the set

M =
{
g ∈ S : d

(
f, g

)
< ∞}

. (3.29)

This implies that Q is a unique mapping satisfying (3.28) such that there exists a μ ∈ (0,∞)
satisfying

N
(
f(x) −Q(x), μt

) ≥ t

t + ϕ(2x, x)
(3.30)

for all x ∈ X and all t > 0.
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(2) d(Jng,Q) → 0 as n → ∞. This implies the equality

N- lim
n→∞

1
4n

f(2nx) = Q(x) (3.31)

for all x ∈ X.
(3) d(f,Q) ≤ (1/(1 − L))d(f, Jf), which implies the inequality

d
(
f,Q

) ≤ L

16 − 16L
. (3.32)

This implies that inequality (3.22) holds.
The rest of the proof is similar to that of the proof of Theorem 2.1.

Corollary 3.4. Let θ ≥ 0 and let p be a real number with 0 < p < 2. Let X be a normed vector space
with norm ‖ · ‖. Let f : X → Y be an even mapping satisfying f(0) = 0 and (2.27). Then

Q(x) := N- lim
n→∞

1
4n

f(2nx) (3.33)

exists for each x ∈ X and defines a quadratic mapping Q : X → Y such that

N
(
f(x) −Q(x), t

) ≥ 16(4 − 2p)t
16(4 − 2p)t + 2p(1 + 2p)θ‖x‖p (3.34)

for all x ∈ X and all t > 0.

Proof. The proof follows from Theorem 3.3 by taking

ϕ
(
x, y

)
:= θ

(‖x‖p + ∥∥y
∥∥p) (3.35)

for all x, y ∈ X. Then we can choose L = 2p−2 and we get the desired result.
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[30] S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic
Press, Palm Harbor, Fla, USA, 2001.

[31] S. H. Lee, S. M. Im, and I. S. Hwang, “Quartic functional equations,” Journal of Mathematical Analysis
and Applications, vol. 307, no. 2, pp. 387–394, 2005.

[32] C. Park, “Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras,” Bulletin des
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[74] L. Cădariu and V. Radu, “On the stability of the Cauchy functional equation: a fixed point approach,”
Grazer Mathematische Berichte, vol. 346, pp. 43–52, 2004.
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