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Robust stability results for nominally linear hybrid systems are obtained from total stability
theorems for purely continuous-time and discrete-time systems by using the powerful tool of fixed
point theory. The class of hybrid systems dealt consists, in general, of coupled continuous-time and
digital systems subject to state perturbations whose nominal (i.e., unperturbed) parts are linear
and, in general, time-varying. The obtained sufficient conditions on robust stability under a wide
class of harmless perturbations are dependent on the values of the parameters defining the over-
bounding functions of those perturbations. The weakness of the coupling dynamics in terms of
norm among the analog and digital substates of the whole dynamic system guarantees the total
stability provided that the corresponding uncoupled nominal subsystems are both exponentially
stable. Fixed point stability theory is used for the proofs of stability. A generalization of that result is
given for the case that sampling is not uniform. The boundedness of the state-trajectory solution at
sampling instants guarantees the global boundedness of the solutions for all time. The existence of
a fixed point for the sampled state-trajectory solution at sampling instants guarantees the existence
of a fixed point of an extended auxiliary discrete system and the existence of a global asymptotic
attractor of the solutions which is either a fixed point or a limit n globally stable asymptotic
oscillation.
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1. Introduction

Stability of both continuous-time and discrete-time singularly perturbed dynamic systems
has received much attention [1–5]. Also, stability analysis of discrete-time singularly
perturbed systems with calculations of parameter bounds has been reported in [2, 3]. An
assumption used in previous work to carry out the stability analysis of singularly perturbed
systems is relaxed in [1] where an upper-bound on the singular perturbation parameters
is included to derive such an analysis. On the other hand, the so-called hybrid models
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are a very important tool for analysis in the modern computers and control technologies
since they describe usual situations where continuous-time and either discrete-time and/or
digital systems are coupled [6, 7]. A usual example, very common in practice, is the
case when a digital controller operates over a continuous-time plant to stabilize it or to
improve its performance. The systems described in [6, 7] have a more general structure
since the controlled plant can also possess an hybrid nature since all the continuous-time
and digital state-variables can be mutually coupled and to possess internal delays [8–10].
An important class of hybrid systems of wide presence in technological applications like
telecommunication, teleoperation, or control of continuous systems by discrete controllers
to which the above structure belongs to is that consisting of coupled continuous-time and
digital or discrete-time subsystems.

On the other hand, fixed point theory and related techniques are also of increasing
interest for solving a wide class of mathematical problems where convergence of a trajectory
or sequence to some set is essential (see, e.g., [11–16]). Some of the specific topics covered
are, as follows.

(1) The properties of the so-called n time reasonably expansive mapping are
investigated in [11] in complete metric spaces (X, d) as those fulfilling the property
that d (x, Tnx) ≥ h d(x, Tx) for some real constant h > 1. The conditions for the
existence of fixed points in such mappings are investigated.

(2) Strong convergence of the well-known Halpern’s iteration and variants is
investigated in [12] and some of the references there in.

(3) Fixed point techniques have been recently used in [14] for the investigation of
global stability of a wide class of time-delay dynamic systems which are modeled
by functional equations.

(4) Generalized contractive mappings have been investigated in [15] and references
there in, weakly contractive and nonexpansive mappings are investigated in [16]
and references there in.

(5) The existence of fixed points of Liptchitzian semigroups has been investigated, for
instance, in [13].

In this paper, stability results are obtained for a wide class of hybrid dynamic systems
whose nominal (i.e., unperturbed) parts are linear and, in general, time-varying while the
state perturbations are allowed to be, in general, nonlinear, time-varying, and of a dynamic
nature. Those dynamic systems consist of two coupled parts, one being of a continuous-
time nature being modeled by an ordinary differential equation and the other one being of a
digital nature and is modeled by a difference equation. Both equations are mutually coupled
and, respectively, described alternatively by a set of first-order continuous-time differential
equations equal to the order of the continuous-time substate and a set of first-order difference
equations equal to the order of the digital substate. The results about robust stability (i.e.,
stability under tolerance to a certain amount of perturbations) are obtained by first obtaining
sufficient type stability conditions related to total stability for an extended discrete system
which describes the overall state trajectory at sampling instants via the discretization of
the continuous-time substate (i.e., the state variables which describe the continuous-time
component). Subsequently, a result about total stability of the continuous-time substate is
carried out to ensure the system’s stability during the intersample intervals. Some links with
the results given in [1] about singularly perturbed systems are also given for a special hybrid
system within the given class. Finally, some of the results are extended for the case when the
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sequence of sampling periods is allowed to be time-varying. The main technique employed
for deriving the stability results is based on the use of fixed point theory.

Notation 1. Z and R are the sets of integer and real numbers, Z+ := {z ∈ Z : z > 0}, Z0+ :=
{z ∈ Z : z ≥ 0}, R+ := {r ∈ R : r > 0}, R0+ := {r ∈ R : r ≥ 0}.

Also, λmax(M) and det(M) denote, respectively, the maximum eigenvalue and
determinant of the square matrix M = (M(ij)). The symbol

⊗
denotes the direct Kronecker

product of matrices. Particular norms for functions, sequences, or matrices are denoted by
the appropriate subscript. In the expressions being valid for any norms, those subscripts are
omitted.

2. Problem Statement

2.1. Hybrid Dynamic System Σ

Consider the following, in general, time-varying dynamic hybrid system.

System Σ.

ẋc(t) = Ac(t)xc(t) +Acd(t)xd[k] + δc(t), (2.1)

xd[k + 1] = Ad[k]xd[k] +Adc[k]xc[k] + δd[k], (2.2)

δc(t) = fcc(t, xc(t)) + fcd(t, xd[k]) + gcc(t, xc(t)) + gcd(t, xd[k]), (2.3)

δd[k] = fdc(k, xc[k]) + fdd(k, xd[k]) + gdc(k, xc[k]) + gdd(k, xd[k]), (2.4)

for all time t ∈ [kT, (k + 1)T) and discrete time integer index k ≥ 0 for sampling period
T where xc(t) and xd[k] are, respectively, the nc continuous-time (or analog) substate and
nd discrete-time (or digital) substate. The continuous-time and discrete-time variables are
denoted by (t) and [k], respectively. The discretized analog substate at sampling instants is
denoted as a digital signal, that is, xc(kT) = xc[k]. The matrix functions Ac(t), Acd(t),Ad[k],
and Adc[k] are of orders being compatible with the corresponding vectors in (1)-(2). Also,
δc(t) and δd[k] are disturbances being, in general, nonlinear and time-varying subject to the
following set of constraints on the real vector functions f(·) and g(·).

Constraints C.

(C1) It holds that Ad[k],Adc[k], fdc(k, xc[k]), fdd(k, xd[k]), gdc(k, xc(t)), gdd(k, xd[k])
denote matrix and vector sequences of k of bounded entries. The entries of
Ac(t), Acd(t), fcc(t, xc (t)), fcd(t, xd[k]), gcc(t, xc(t)), and gcd (t, xd[k]) are locally
integrable functions of t for each fixed x in the closed ball centred at zero B(0, r) :=
{x ∈ R

n : ‖x‖ ≤ r} ⊂ R
n, Max(‖xc‖, ‖xd‖ ≤ r) and all integer k ≥ 0 and all t ≥ 0.

(C2) Also, The following hold:

fcc(t, 0) = fdc(t, 0) = 0 ∈ R
nc ; fdc(k, 0) = fdd(k, 0) = 0 ∈ R

nd ; (2.5)



4 Fixed Point Theory and Applications

(C3)

∥
∥fcc(t, xc1) − fcc(t, xc2)

∥
∥ ≤ β

f
cc‖xc1 − xc2‖;

∥
∥fcd(t, xc1) − fcd(t, xc2)

∥
∥ ≤ β

f

cd‖xc1 − xc2‖,
(2.6)

∥
∥fdc(k, xd1) − fdc(k, xd2)

∥
∥ ≤ β

f

dc‖xd1 − xd2‖;

∥
∥fdd(k, xd1) − fdd(k, xd2)

∥
∥ ≤ β

f

dd‖xd1 − xd2‖;
(2.7)

(C4)

∥
∥gcc(t, xc1)

∥
∥ ≤ β

g
ccr;

∥
∥gcd(t, xd1)

∥
∥ ≤ β

g

cdr,
(2.8)

∥
∥gdc(t, xci)

∥
∥ ≤ β

g

dc
r;

∥
∥gdd(t, xdi)

∥
∥ ≤ β

g

dd
r;

(2.9)

for all ‖xci‖ ≤ r, ‖xdi‖ ≤ r and all integer k ≥ 0 and all t ≥ 0, with h being any of the vector real
functions or sequences of (2.3) and (2.4) and βh(·) (h = f or h = g) being known nonnegative
real constants. It turns out from Picard-Lindeloff theorem that the hybrid dynamic system
(2.1)–(2.5) has a unique solution under the set of constraints C. The solution is almost
everywhere continuous and differentiable but it has bounded discontinuities in general at the
sampling instants tk = kT ; for all k ∈ Z0+. The problem dealt with in this brief is the investigation of
the robust stability ofΣ (i.e., that of (2.1) and (2.2) with dynamic state disturbances (2.3) and (2.4))
subject to the set of constraints C. For this purpose, the state-trajectory ofΣ at sampling instants is
calculated in the following subsection.

2.2. Extended Discrete System Σd

Direct calculation of the solution of Σ at sampling instants (i.e., t = kT ; for all k ∈ Z0+) yields
the following discrete extended system:

Σd : x[k + 1] = A[k]x[k] + δ[k], all integer k ≥ 0, (2.10)

with x[k] = (xT
c [k], x

T
d
[k])T subject to x[0] = (xT

c [0], x
T
d
[0])T , with xc[0] = xc(0), and

A[k] =

[
Φc[k] Γc[k]

Adc[k] Ad[k]

]

; Γc[k] =
∫T

0
Φc((k + 1)T, kT + τ)Acd(kT + τ)dτ, (2.11)

δ[k] =
(
δ′T
c [k], δ

T
d [k]

)T
=

(∫T

0
δT
c (kT + τ)ΦT

c ((k + 1)T, kT + τ)dτ, δT
d [k]

)T

, (2.12)
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Φc(t) and Γc(t) being defined at sampling instants as Φc[k] = Φc(kT) = Ψc((k + 1)T, kT) and
Γc[k] = Γc(kT) are the kth intersample state transition and control matrices of the continuous
subsystem, respectively, (i.e., Ψ̇c(t, 0) = Ac(t)Ψc(t, 0); Ψc(0, 0) = Inc for all t ∈ [kT, (k + 1)T)
and all integer k ≥ 0.

3. Main Rsults

The robust stability of Σsubject to the constraints C under the knowledge of the constants β(·)(·)
is now investigated. The results on robust stability are useful for both local and global stability
in the sense that stability is ensured for initial conditions of (2.1)–(2.4) being constrained to
the balls ‖xc(0)‖ ≤ r, ‖xd[0]‖ ≤ r where the radius r is arbitrary but compatible with the
validity of the constraints C on Σ.

3.1. Exponential Stability of the Nominal Extended System Σ∗
d

The nominal Σ is defined by zeroing δc(t) and δd[k] in (1)-(2). This results into the nominal
version Σ∗

d of Σd in (2.10)–(2.12) satisfying x∗[k+1] = A[k]x∗[k] with x∗[0] = (xT
c [0], x

T
d[0])

T .
The following assumption is given.

Assumption 3.1. The nominal uncoupled continuous-time and digital subsystems ẋ∗
c(t) =

Ac(t)x∗
c(t) and x∗

d[k + 1] = Ad[k]x∗
d[k] are both exponentially stable, that is, there exist norm-

dependent real constantsKc ≥ 1 andKd ≥ 1 such that ‖Ψc(t2, t1)‖ ≤ Kce
−ac(t2−t1) and ‖Ψd(k2, k1)‖ ≤

Kda
k2−k1
d

for some real constants ac > 0 and ad ∈ [0, 1) where Ψc(·, ·) and Ψd[·, ·] are the state-
transition matrices of the uncoupled continuous-time and digital subsystems inΣ (i.e.,Ψ̇c(t, 0) =
Ac(t)Ψc(t, 0); Ψc(0, 0) = Inc with Ψc(k2T, k1T) =

∏j=k2−1
j=k1

Φ[j] between two sampling instants

and Ψd(k2, k1) =
∏j=k2−1

j=k1
Ad[j] with Ψd[0, 0] = Ind for all t ≥ 0, any real t2 ≥ t1 ≥ 0 and any

integers k2 ≥ k1 ≥ 0).

The following stability result holds for the nominal extended system (i.e., δ ≡ 0 in
(2.10)).

Proposition 3.2. Define

ρkMax

⎛

⎝Max
1≤i≤nc

nc∑

j=1

∫T

0

∣
∣
∣
∣Ψ

(ij)
c ((k + 1)T, kT + τ)Acd(τ)dτ

∣
∣
∣
∣

⎞

⎠, Max
1≤i≤nd

⎛

⎝
nd∑

j=1

∣
∣
∣
∣A

(ij)
dc [k]

∣
∣
∣
∣

⎞

⎠. (3.1)

Thus, the nominal extended discrete system is exponentially stable if Assumption 3.1 holds and ρk <
1 − Max(e−acT , ad) for all integer k ≥ 0.

Proof. Decompose A[k] = A0[k] + Ã[k] in (2.11) with A0[k] = Block Diag(Φc[k], Ad[k]),
Φc[k] = Ψc((k + 1)T, kT) and Ad[k] = Ψd[(k + 1)T, k] being the one sampling period kth
transition matrices. Thus, x∗[k + 1] = A[k]x∗[k] is exponentially stable if there exist real
constants K ≥ 1 (being norm-dependent) and a ∈ [0, 1) such that its state transition matrix
Ψ[k2, k1] =

∏k2−1
j=k1

A[j] satisfies ‖Ψ[k2, k1]‖ ≤ Kak2−k1 , K = 1 for the 12-matrix norm given

by the maximum modulus within the whole set of eigenvalues. Also, ρk = ‖Ã[k]‖2, from
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the definition of ρk and Ã[k] = A[k] − A0[k], lies in the union
⋃nc

i=1 Ri of the discs Ri =
{z : |z| ≤

∑nc+nd

j=1 |Ã(ij)[k]|} from Gerschgorin’s circle theorem, [17]. Therefore, ‖A[k]‖2 ≤
Max(e−acT , ad) + ρk ≤ a < 1 for all integer k ≥ 0 if Assumption 3.1 and (3.1) hold. Thus, the
nominal extended system is exponentially stable and the result has been proved.

3.2. Stability of the Discrete Disturbed Extended System Σd

The following result gives sufficient conditions for stability of the extended discrete system
(2.10) within a closed ball of the extended state x[·].

Proposition 3.3. Assume that Proposition 3.2 holds under Assumption 3.1 (i.e., the nominal
extended system (2.10) is exponentially stable) under the stronger condition ‖A[k]‖2 ≤ a <

1 − Kd/K < 1 where the real constants K and a are related to the state transition matrix of Σd

(2.10) and defined in the proof of Proposition 3.2, and

Kd = Kca
−1
c βc +Kdβd (3.2)

βh = β
f

hc
+ β

f

hd
+ β

g

hc
+ β

g

hd
(3.3)

for h = c, d; and Kd < 1. Thus, the state vector is uniformly bounded according to

‖x[k]‖ ≤
(

ak +KKd
1 − ak

1 − a

)

r ≤ r (3.4)

for all integer k ≥ 0 provided that Max(‖xc[0]‖, ‖xd[0]‖) < r/2K ≤ r/2.

Proof. First , note from direct calculus from (2.6)–(2.9) that the disturbance signal δ[k]in
(2.10) satisfies

‖δ[k]‖ ≤
∥
∥δ′

c[k]
∥
∥ + ‖δd[k]‖ ≤ Kdr, (3.5)

provided that Max(‖xc[k]‖, ‖xd[k]‖) < r/2 for all integer k ≥ 0 since K > 1 and a < 1 −
Kd/K imply a + Kd < 1. Consider the set of sequences {y[k], k ≥ 0} equipped with the �∞
norm for sequences ‖y‖∞ = Max0≤k≤∞(‖y[k]‖). Thus, the operator Td defined by (Tdy)[k] =
A[k]y[k] + δ[k] is a contraction on the closed subset Rd of bounded nd-vector sequences
{y[k], k ≥ 0 : ‖y‖∞ ≤ r}. By the contraction mapping theorem [17, 18], there is a unique
solution y[k + 1] = (Tdy) [k] (fixed point) with sequences in Rd, and

‖x[k]‖ =

∥
∥
∥
∥
∥
Ψ(k, 0)x[0] +

k−1∑

i=0

Ψ(k, i + 1)δ[i]

∥
∥
∥
∥
∥
≤ Kak‖x[0]‖ +KKdr

(
k−1∑

i=0

ai

)

, (3.6)
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which leads directly to (3.4) since a < 1 −Kd/K < 1 implies

k−1∑

i=0

ai =
1 − ak

1 − a
; ak +KKd

1 − ak

1 − a
≤ 1 + ak − a ≤ 1. (3.7)

3.3. Stability of the Continuous-Time Substate and State Boundedness
inbetween Consecutive Sampling Instants

Now, the solution to (2.1) subject to (2.2) and (2.3) is analyzed by taking into account that
‖x[k]‖ ≤ r provided that Proposition 3.3 holds. A total stability argument is used as main
tool for the proof of stability of the continuous-time subsystem.

Proposition 3.4. Assume that Proposition 3.3 holds, Sup0≤t<∞(‖Acd(t)‖) ≤ acd, ‖xc(0)‖ ≤ r/2Kc

and KcKc/ac < 1, where

Kc = K
f
c +K

g
c ; K

f
c = β

f
cc + β

f

cd; K
g
c = acd + β

f
cc + β

g

cd. (3.8)

Thus, there is a unique solution xc(t) to (2.1) such that for all t ≥ 0:

‖xc(t)‖ ≤ Kce
−(ac−KcK

f
c )t‖x0‖ +

KcK
g
c

ac −KcK
f
c

r
(

1 − e−(ac−KcK
f
c )t
)
≤ r. (3.9)

Proof. One gets directly from (2.1),

xc(t) = Ψc(t, 0)xc(0) +
∫ t

0
Ψc(t, τ)δ0

c(τ)dτ, (3.10)

with xc(0) = xc[0] and δ0
c(t) = Acd(t)xd[k] + δc(t). Under the set of constraints C, ‖δ0

c(t)‖ ≤
Kcr for all t ≥ 0 subject to (3.8). Using similar arguments as in the proof of Proposition 3.3,
consider the Banach space Bc = C[0,∞) of continuous, bounded nc-vector sequences defined
on [0,∞), and equipped with the L∞-norm ‖y‖∞ = Sup0≤t≤∞(‖y(t)‖). The operator Tc is
defined:

(
Tcy

)
(t) = Ψc(t, 0)x0 +

∫ t

0
Ψc(t, τ)δ0

c(τ)dτ (3.11)

is a contraction of the closed subset Rc = {y ∈ Bc : ‖y‖∞ ≤ r}of Bc, because for ‖yi‖∞ ≤ r (i =
1, 2), one gets from (3.8)–(3.11) that

∥
∥Tcy(t)

∥
∥∞≤Kc

{

e−act‖xc(0)‖ +
Kc

ac

(
1 − e−act

)
r

}

≤ r,

=⇒
∥
∥Tcy1 − Tcy2

∥
∥
∞≤ Kca

−1
c

∥
∥y1 − y2

∥
∥
∞ ≤

∥
∥y1 − y2

∥
∥
∞,

(3.12)
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for ‖xc(0)‖ = ‖xc[0]‖ ≤ r/2Kc ≤ r/2K ≤ r since ‖xd[k]‖ ≤ r/2K ≤ r for all k ≥ 0 from
Proposition 3.3. By the contraction mapping theorem, [17, 18], there exists a unique solution
of (3.11) in Rc, the fixed point of Tc. Thus, one gets from (3.11) that

‖x(t)‖ ≤ Kc

{

e−act‖x0‖ +K
f
c

∫ t

0
e−ac(t−τ)‖xc(τ)‖dτ +K

g
c r

∫ t

0
e−ac(t−τ)dτ

}

(3.13)

which leads to (3.9) from Bellman-Gronwall lemma [18].

Remark 3.5 (Combined interpretation of Propositions 3.2–3.4). Assumption 3.1 and Proposi-
tions 3.2–3.4 yield the following robust stability conditions for the system Σ by using 12 vector
and matrix norms, that is, Kc = Kd = 1, provided that ‖xc[0]‖ ≤ r/2 and ‖xd[0]‖ ≤ r/2:

ρ∗ + ρ + βca
−1
c + βd < 1; Kca

−1
c < 1, (3.14)

ρ∗ = Max
0≤k≤∞

(
e−acT , ad

)
; ρ = Max

0≤k≤∞

(
ρk
)

(3.15)

with βc and βd being real constants defined in (3.3) related to the set of constraints C, ρk and
Kc defined in (2.12) and (3.8). In particular, (a) ρ∗ < 1 guarantees the exponential stability
of the uncoupled nominal continuous-time and digital subsystems (i.e., δc ≡ 0, δd ≡ 0),
(b) ρ∗ + ρ < 1 guarantees that the exponential stability is not destroyed in the nominal
extended system Σ∗

d by the existence of linear couplings between the continuous-time and
digital substates, (c) the first inequality in (3.14) guarantees that the state disturbances in
Σ are sufficiently small in terms of the real constants defining their overbounding functions
while satisfying C so that the extended discrete systemΣd maintains the stability of its nominal
descriptionΣ∗

d
. If, furthermore, the second constraint of (3.14) holds then the signal boundedness is

guaranteed inbetween sampling instants according to (3.9) and the overall hybrid systemΣ is robustly
stable.

3.4. Some Links with Singular Perturbation Theory

In some particular descriptions within the class Σ, the perturbation theory can be combined
with the above analysis. Assume, for instance, that the linear dynamics of Σ is subject to
variations defined by a small parameter ε, Adc and Add are time-invariant, and Ac(t) = εAc

for all t ≥ 0 and Acd(t) = ρ(ε)eεAct with ρ(ε) ≤ ρ < ∞ for all ε ∈ [0, ε∗). Thus, a direct series
expansion around εT of the state transition matrix of the continuous subsystem yields

Ψc((k + 1)T, kT) = eεAcT = Inc + εAcT + Δ(ε, T,Ac),

∫ (k+1)T

kT

Ψc((k + 1)T)Acd(τ)dτ = (In + εAcT + Δ(ε,Ac, T))
∫ (k+1)T

kT

e−εAcτAcd(τ)dτ

=
(
εAc + ρ(ε)[Inc + Δ(ε, T,Ac)]

)
T.

(3.16)
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Note that ‖Δ(ε, T,Ac)‖2 ≤ 1 + εAcT + εT |λmax(Ac)| = δ(ε) ≤ δ < ∞ for all ε ∈ [0, ε∗) and
ρ(ε)T[Inc + Δ(ε, T,Ac)] ≤ ρT(1 + δ) < ∞ for all ε ∈ [0, ε∗). Thus,

A(ε) = A∗(ε) + ΔA(ε); A∗(ε) =

⌊
Inc + εAcT εAcT

Adc Ad

⌋

;

ΔA(ε) =

[
Δ(ε, T,Ac) ρ(ε)T(Inc + Δ(ε, T,Ac))

0 0

] (3.17)

is time-invariant in (2.10). Thus, the discrete system Σd of (2.10) satisfies equivalently

z[k + 1] = Â∗(ε)z[k] +
(
δ[k] + ΔA(ε)z[k]

)
(3.18)

by defining (see [1])

Â∗(ε) = Î + Â21 + Â22 + ε
(
Â11 + Â12

)
for ε ∈ [0, ε∗) (3.19)

through the extended n = nc + nd-matrices

Â11 =

[
TAc 0

0 0

]

; Â12 =

[
0 TAc

0 0

]

; Î =

[
Înc 0

0 0

]

,

Â21 =

[
0 0

Adc 0

]

; Â22 =

[
0 0

0 Ad

]

.

(3.20)

Note that Schur’s stability of Â∗(ε) is equivalent to exponential stability of the unforced time-
invariant system Σd(ε) : z∗[k + 1] = Â∗(ε)z∗[k] since Â∗(ε) has its eigenvalues in |z| < 1 for
all ε ∈ [0, ε∗). Thus, the subsequent result follows directly from Proposition 3.3 by using a
previous result in [1].

Proposition 3.6. Define v(ε) := v(Â(ε)) = det(Â(ε)
⊗

Â(ε) − Î
⊗

Î) ,where “
⊗

” denotes the
direct Kronecker product of matrices which is a matrix of order 4n2. Thus, the following items hold.

(i) If v(ε) has no positive zeros, then either Â(ε) is Schur stable for all ε > 0 or it is not Schur
stable for any ε > 0.

(ii) If v(ε) has positive zeros, let ε be the smallest such zero. If Â(ε1) is Schur stable for any
ε1 ∈ [0, ε), then ε∗ = ε. Otherwise, Â(ε) is not Schur stable for all sufficiently small and
positive values of ε.

(iii) The extended discrete system Σd(ε) is stable for all ε ∈ [0, ε∗) satisfying
Max(‖xc[0], xd[0]‖) ≤ r/2K and ‖A∗(ε)‖2 +Kd + Max0≤ε≤ε∗(‖ΔA(ε)‖2) < 1 with Kd

defined in (3.2).
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4. Numerical Example

The following third-order system (so-called controlled plant), whose state-space description
lie within the class of hybrid system (2.1), is considered:

ÿ(t) + a1ẏ(t) + a2y(t) + a3y[k] + 4y[k − 1]

= b0u(t) + b1u̇(t) + b2u[k] + 3u[k − 1] + 0.3(z[k] + δ(t)),

z[k + 1] = 0.2z[k] + 1.1u[k] + 1.3y[k],

δ̇(t) = −7δ(t) + 8.5u(t),

(4.1)

for all t ∈ [kT, (k + 1)T) and any integer k ∈ Z0+. The signal u(t) is a stabilizing output-
feedback control signal generated from an hybrid controller as follows:

u(t) =
G1
(
D, q

)

L
(
D, q

) u(t) +
G2
(
D, q

)

L
(
D, q

) y(t),

G1
(
D, q

)
= D2q2 − q2D +D2q + 1.25q2 −Dq + 0.25q − 1.44187D2 + 0.206426D − 2.54251,

G2
(
D, q

)
= 1.12792

(
D2q2 − 0.269774q2D + 1.10629

)
,

L
(
D, q

)
= (D − 0.5)2 (q + 0.5

)2
,

(4.2)

where q, defined by qv(t) = v(t+T) for any real vector function v : R0+ → R
p, is the discrete

one-step advance operator and D := d/dt is the time-derivative operator. After substituting
the control law in the plant description, the resulting closed-loop system is of the general
form given while driven only by the disturbance δ(t). The signal δ(t) = δc(t) is a perturbation
which satisfies the general assumptions—constraints C of the theory of total stability. There
are six parameters to be estimated by the estimation schemes: a1 = −1, a2 = 2, a3 = 3, b0 =
1, b1 = b2 = 2 ,and b3 = 3. The constant sampling period is T = 0.4. Finally, the reference
model is a third-order highly damped one of discrete regulation. The plant output (i.e., the
solution of (4.1)) is shown in Figure 1.

Note that both the extended discrete system and the continuous one are Lyapunov
stable since the output is bounded for all time. Remark 3.5, which is a combined interpretation
of Propositions 3.2–3.4, holds with all the relevant functions in the control scheme which
are uniformly bounded for all time, that is, “at” and “in-between” sampling instants. If the
disturbance δ(t) is zeroed, then the closed-loop system is globally asymptotically stable.

5. Generalizations to Hybrid Systems with Time-Varying
Sampling Periods

The more general case when the sequence of sampling periods is, in general, not constant
and is discussed in the following by using fixed point theory. The main mathematical result
is concentrated in Theorem 5.1 which also contains many of the above results as particular
case. Some corollaries to Theorem 5.1 are also given. Equations (2.1)–(2.5) are now assumed
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Figure 1: Output versus time.

to run for all time t ∈ [tk, tk+1), k ∈ Z0+, where {tk}k ∈ Z
+
0

and {Tk}k ∈ Z
+
0

are the sequences
of sampling instants and sampling periods (i.e., interval lengths inbetween two consecutive
sampling instants), respectively, with tk =

∑k−1
j=0 Tj , t0 = 0, for all k ∈ Z+ discrete time integer

index k ∈ Z0+. The following result holds.

Theorem 5.1. Assume that constraints C hold, {tk}k ∈ Z0+
is a real monotone strictly increasing

sequence of sampling instants and {Tk}k ∈ Z0+
is the real sequence of sampling periods withR+  Tk :=

tk+1− tk ∈ [εT , T] ⊂ (0,∞) for some constants εT , T(≥ εT ) ∈ R+. Then, the following properties hold:

(i) Assume that Max(‖xc[0]‖, ‖xd[0]‖) ≤ r,Ac is a stability matrix satisfying ac > Kc(β
f
cc +

β
f

cd), β
g
cc = β

g

cd = 0, {A[k]}k ∈Z0+
is a real sequence of convergent (or Schur) matrices,

and the real sequence {ac‖Ψc(tk + τ, tk)‖/(ac − (βfcc + β
f

cd
)Kc)}k ∈ Z0+

has all its elements

not greater than unity. Then, the state trajectory solution (xT
c (t), x

T
d[k])

T : R0+ × R
nc ×

Z0+R
nd → R

n is in the closed ball B(0, r) := {x ∈ R
n : ‖x‖ ≤ r} ⊂ R

n centred at zero;
for all (t, k) ∈ R0+ × Z0+. Thus, it is totally stable within such a ball.

(ii) Assume that Max(‖xc[0]‖, ‖xd[0]‖) ≤ r. Then, the state trajectory solution
(xT

c (t), x
T
d[k])

T : R0+ × R
nc × Z0+ × R

nd → R
n is totally stable within the closed ball

B(0, r) := {x ∈ R
n : ‖x‖ ≤ r} ⊂ R

n centred at zero; for all (t, k) ∈ R0+ × Z0+ if

ρ

⎛

⎜
⎝1 +

(
β
f
cc + β

f

cd

)
ρcT

1 − ρ
+ β

f

dc
+ β

f

dd

⎞

⎟
⎠ +

1
1 − ρ

[(
β
g
cc + β

g

cd

)
ρc T + β

g

dc
+ β

g

dd

]
≤ 1, (5.1)

for all k ∈ Z+, where ρ is an upper-bound of the sequence {‖Ψ(tk, 0)‖}k ∈ Z0+
with

Ψ(tk, 0) :=
∏k−1

i =0[A[i]] provided that 1 > ρ ≥ maxk ∈ Z+‖Ψ(tk, 0)‖, 1 > ρc ≥
maxk ∈ Z+‖Ψc(tk, kk−1)‖ ≥ Kc/ac or, if ρ ≤ 1, provided that βfcc = β

f

cd
= β

f

dc
= β

f

dd
=

β
g
cc = β

g

cd
= β

g

dc
= β

g

dd
= 0 (i.e., in case of absence of perturbations).

(iii) If ρ + β
f

dc
+ β

f

dd
< 1 and β

f
cc = β

f

cd
= β

f

dc
= β

f

dd
= β

g
cc = β

g

cd
= β

g

dc
= β

g

dd
= 0, then



12 Fixed Point Theory and Applications

(a) the bounded sequence {x[k]}k∈Z+
0
has a unique fixed point x∗

0 in the convex closed

ball B(0, r) so that x[k] → x∗(0) = (x∗T
c (0), x∗T

d
)
T
as Z0+  k → ∞ for any

Max(‖xc[0]‖, ‖xd[0]‖) ≤ r,

(b) Assume that Tk → T ∈ (εT , T) as Z0+  k → ∞. Then, the whole state trajectory
solution (xT

c (t), x
T
d
[k])T : R0+ × R

nc × Z0+ × R
nd → R

n has a fixed point x∗(τ) =

(x∗T
c (τ), x∗T

d
)
T
∈ B(0, r) for each τ ∈ [0, T).

(iv) Assume that the constraints C4 are modified as follows:

C4′ : gcc(t, xci) ≤ β
g
ccxci; gcd(t, xdi) ≤ β

g

cd
xdi, gdc(t, xci) ≤ β

g

dc
xci;

gdd(t, xdi) ≤ β
g

ddxdi; i = 1, 2.
(5.2)

Then, a unique fixed point z∗ ∈ B(0, r) exists for the whole state trajectory solution (xT
c (t), x

T
d[k])

T :
R0+ × R

nc × Z0+ × R
nd → R

n provided that the following constraint holds:

ρ + β
f

dc + β
f

dd + ρcT
(
β
f
cc + β

f

cd + β
g
cc + β

g

cd

)
+ β

g

dc + β
g

dd < 1. (5.3)

For sufficiently small (βf
dc

+ β
f

dd
+ β

f

dc
+ β

g

cd
) and any given ρ < 1, there exists a sufficiently small

upper- bound of the sequence of sampling periods T such that the above constraint holds for a given
constant (βfcc + β

f

cd
+ β

g
cc + β

g

cd
).

Proof. (i) One gets directly from (3.10) via (2.10) that

x(tk + τ) :=
(
xT
c (tk + τ), xT

d[k]
)T

= Ψc(tk + τ, tk)xc(tk) +
∫ τ

0
Ψc(tk + τ, tk + s)δ0

c(tk + s)ds

= Ψc(tk + τ, tk)
(

E1x[k] +
∫ τ

0
Ψc(tk + τ, tk + s)δ0

c(tk + s)ds
)

= Ψc(tk + τ, tk)x[k] +
∫ τ

0
Ψc(tk + τ, tk + s)δc(tk + s)ds,

(5.4)

where

Ψc(tk + τ, tk) := Ψc(tk + τ, tk)
(

E1 +
((∫ τ

0
Ψc(tk + τ, tk + s)Acd(tk + s)ds

)

E2

))

, (5.5)

and E1 := Diag(Inc , 0nd), E2 := Diag(0nc , Ind) = In − E1; for all τ ∈ [0, Tk), for all k ∈ Z0+.
Since the threshold εT for the minimum sampling period between any two consecutive
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samples exist, the state trajectory solution of (2.1)–(2.4) is unique for each given bounded
initial condition. Then, for any two state-trajectory solutions x, y : R+

0 → R
n of (5.4):

∥
∥x(tk + τ) − y(tk + τ)

∥
∥ ≤

∥
∥
∥Ψc(tk + τ, tk)

∥
∥
∥
∥
∥x[k] − y[k]

∥
∥

+
∫ τ

0
‖Ψc(tk + τ, tk + s)‖

∥
∥δcx(tk + s) − δcy(tk + s)

∥
∥ds

≤
∥
∥
∥Ψc(tk + τ, tk)

∥
∥
∥
∥
∥x[k] − y[k]

∥
∥

+
(
β
f
cc + β

f

cd

)∫ τ

0
‖Ψc(tk + τ, tk + s)‖

∥
∥xcx(tk + s) − xcy(tk + s)

∥
∥ds

+ 2
(
β
g
cc + β

g

cd

)
r

(∫ τ

0
‖Ψc(tk + τ, tk + s)‖ds

)

≤
∥
∥
∥Ψc(tk + τ, tk)

∥
∥
∥
∥
∥x[k] − y[k]

∥
∥ +

Kc

ac

(
1 − e−acτ

)(
β
f
cc + β

f

cd

)

× Max
tk ≤s≤ tk+1

∥
∥xcx(s) − xcy(s)

∥
∥

+ 2
Kc

ac

(
1 − e−acτ

)(
β
g
cc + β

g

cd

)
r; ∀τ ∈ [0, Tk).

(5.6)

If ac > Kc(β
f
cc + β

f

cd
), then one deduces from (5.6) that

∥
∥x(tk + τ) − y(tk + τ)

∥
∥

≤
(

1 − Kc

ac

(
β
f
cc + β

f

cd

))−1(∥
∥
∥Ψc(tk + τ, tk)

∥
∥
∥
∥
∥x[k] − y[k]

∥
∥ + 2

Kc

ac

(
β
g
cc + β

g

cd

)
r

)

∀k ∈ Z0+, ∀τ ∈ [0, Tk)

(5.7)

≤ ac

ac −
(
β
f
cc + β

f

cd

)
Kc

(∥
∥
∥Ψc(tk + τ, tk)

∥
∥
∥
∥
∥x[k] − y[k]

∥
∥ + 2

Kc

ac

(
β
g
cc + β

g

cd

)
r

)

∀k ∈ Z0+, ∀τ ∈ [0, Tk)

(5.8)

≤ ac

ac −
(
β
f
cc + β

f

cd

)
Kc

(∥
∥
∥Ψc(tk + τ, tk)

∥
∥
∥
∥
∥x[k] − y[k]

∥
∥ + 2

Kc

ac

(
β
g
cc + β

g

cd

)
r

)

∀k ∈ Z0+, ∀τ ∈ [0, Tk).

(5.9)

On the other hand the combination of (3.6) and (2.12) when extended to the case
of time varying-sampling leads to the following constraints at sampling instants since
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Φc[k] = Ψc((k + 1)T, kT):

∥
∥x[k] − y[k]

∥
∥ =

∥
∥
∥
∥
∥
Ψ(tk, 0)

(
x[0] − y[0]

)
+

k−1∑

i=0

Ψ[tk, ti+1]
(
δx[i] − δy[i]

)
∥
∥
∥
∥
∥

=

∥
∥
∥
∥
∥
Ψ(tk, 0)

(
x[0] − y[0]

)
+

k−1∑

i=0

Ψ(tk, ti+1)

×
(∫Ti

0

(
δT
cx(ti + τ) − δT

cy(ti + τ)
)
ΨT

c (ti+1 − τ)dτ,
(
δT
dx[i] − δT

dy[i]
)
)T
∥
∥
∥
∥
∥
∥

≤ ‖Ψ(tk, 0)‖
∥
∥x[0] − y[0]

∥
∥ +

∥
∥
∥
∥
∥

k−1∑

i=0

Ψ(tk, ti+1)

∥
∥
∥
∥
∥

×
(∥
∥
∥
∥
∥

∫Ti

0
Ψc(ti+1, ti + τ)

(
δcx(ti + τ) − δcy(ti + τ)

)
dτ

∥
∥
∥
∥
∥
+
∥
∥δdx[i] − δdy[i]

∥
∥

)

≤ ‖Ψ(tk, 0)‖
∥
∥x[0] − y[0]

∥
∥ +

(
β
f
cc + β

f

cd

)
∥
∥
∥
∥
∥

k−1∑

i=0

Ψ (tk, ti+1)

∥
∥
∥
∥
∥

×
∥
∥
∥
∥
∥

∫Ti

0
Ψc(ti+1, ti + τ)

(
xc(ti + τ) − yc(ti + τ)

)
dτ

∥
∥
∥
∥
∥

+
(
β
f

dc
+ β

f

dd

)
∥
∥
∥
∥
∥

k−1∑

i=0

Ψ(tk, ti+1)

∥
∥
∥
∥
∥

∥
∥xd[i] − yd[i]

∥
∥

+ 2r

∥
∥
∥
∥
∥

k−1∑

i=0

Ψ(tk, ti+1)

∥
∥
∥
∥
∥

[
(
β
g
cc + β

g

cd

)
∥
∥
∥
∥
∥

∫Ti

0
Ψc(ti+1, ti + τ)dτ

∥
∥
∥
∥
∥
+ β

g

dc + β
g

dd

]

(5.10)

with Ψ(tk, 0) :=
∏kç1

i =0[A[i]]. Proceed by complete induction by assuming that ‖x(t)‖ ≤ r; for
all t ∈ [0, tk−1) for any given initial conditions and any k ∈ Z+.Then, ‖x(tk)‖ ≤ r from (5.10) if

‖Ψ(tk, 0)‖ +
(
β
f
cc + β

f

cd

)
∥
∥
∥
∥
∥

k−1∑

i=0

Ψ(tk, ti+1)

∥
∥
∥
∥
∥

∥
∥
∥
∥
∥

∫Ti

0
Ψc(ti+1, ti + τ)dτ

∥
∥
∥
∥
∥
+
(
β
f

dc
+ β

f

dd

)
∥
∥
∥
∥
∥

k−1∑

i=0

Ψ(tk, ti+1)

∥
∥
∥
∥
∥

+

∥
∥
∥
∥
∥

k−1∑

i=0

Ψ(tk, ti+1)

∥
∥
∥
∥
∥

[
(
β
g
cc + β

g

cd

)
∥
∥
∥
∥
∥

∫Ti

0
Ψc(ti+1, ti + τ)dτ

∥
∥
∥
∥
∥
+ β

g

dc
+ β

g

dd

]

≤ 1

(5.11)

since Max(Maxj(≤ k−1)∈ Z+‖xd[k]‖,Maxt(≤ tk−1) ∈ R+‖xc(t)−‖) ≤ r by taking y(t) as the identically
zero solution on R0+ and also Max(Maxj(≤ k−1)∈ Z+‖xd[k] − yd[k]‖,Maxt(≤ tk−1) ∈ R+‖xc(t) −
yc(t)‖) ≤ 2r for any two solutions in B(0, r), for all t ≤ tk−1. Then, (5.8) and Property (i)
holds.
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(ii) It holds if

ρ

⎛

⎜
⎝1 +

(
β
f
cc + β

f

cd

)
ρcT

1 − ρ
+ β

f

dc
+ β

f

dd

⎞

⎟
⎠ +

1
1 − ρ

[(
β
g
cc + β

g

cd

)
ρcT + β

g

dc
+ β

g

dd

]
≤ 1, (5.12)

for all k ∈ Z+ provided that 1 > ρ ≥ maxk ∈ Z+‖Ψ(tk, 0)‖, 1 > ρc ≥ maxk ∈ Z+‖Ψc(tk, tk−1)‖ ≥
Kc/ac, then (5.8) holds, or if ρ ≤ 1 provided that βfcc = β

f

cd
= β

f

dc
= β

f

dd
= β

g
cc = β

g

cd
= β

g

dc
=

β
g

dd
= 0, (i.e., in case of absence of perturbations). Furthermore, there exists a real constant

M ∈ R+, dependent on r, such that ‖x(t)‖ ≤ r + M < ∞; for all t ∈ R0+. This conclusion
follows since the real sequence {‖x[k]‖}k ∈ Z0+

is uniformly bounded for any initial conditions
fulfilling ‖x[0]‖ ≤ r and the mild continuously time differentiable state trajectory solution
xc(t) cannot be unbounded on any open finite-time interval (tk, tk+1); for all k ∈ Z0+ since
‖xc(tk)‖ ≤ ‖x[k]‖ ≤ r.

(iii) The inequality (5.10) adopts the following particular form at t = tk+1 by taking
initial conditions at t = tk:

∥
∥x[k + 1] − y[k + 1]

∥
∥

≤ ‖Ψ(tk+1, tk)‖
∥
∥x[k] − y[k]

∥
∥ +

(
β
f
cc + β

f

cd

)

×
∥
∥
∥
∥
∥

∫Tk

0
Ψc(tk+1, tk + τ)

(
xc(tk + τ) − yc(tk + τ)

)
dτ

∥
∥
∥
∥
∥

+
(
β
f

dc
+ β

f

dd

)∥
∥xd[k] − yd[k]

∥
∥

+ 2r

[
(
β
g
cc + β

g

cd

)
∥
∥
∥
∥
∥

∫Tk

0
Ψc(tk+1, tk + τ)dτ

∥
∥
∥
∥
∥
+ β

g

dc
+ β

g

dd

]

∀k ∈ Z0+

(5.13)

≤
(
ρ + β

f

dc + β
f

dd

)∥
∥x[k] − y[k]

∥
∥

+ r
(
ρcT

[
β
f
cc + β

f

cd + 2
(
β
g
cc + β

g

cd

)]
+ 2
(
β
g

dc + β
g

dd

))
∀k ∈ Z0+

(5.14)

since, by construction, ‖xd[k] − yd[k]‖ ≤ ‖x[k] − y[k]‖. Now, if

β
f
cc = β

f

cd
= β

f

dc
= β

f

dd
= β

g
cc = β

g

cd
= β

g

dc
= β

g

dd
= 0 (5.15)

(i.e., all the perturbations are identically zero) and ρ+βfdc+β
f

dd < 1, then from Schauder’s first
fixed point theorem on (5.14), the bounded sequence {x[k]}k∈ Z

+
0

has a unique fixed point in

the convex closed B(0, r). One gets from (5.6) that

∥
∥x(t) − y(t)

∥
∥
[tk ,tk+τ]

≤
(∥
∥
∥Ψc(tk + τ, tk)

∥
∥
∥ +

Kc

ac

(
1 − e−acτ

)(
β
f
cc + β

f

cd

))∥
∥x[k] − y[k]

∥
∥

+ 2
Kc

ac

(
1 − e−ac τ)

(
β
g
cc + β

g

cd

)
r ∀τ ∈ [0, Tk)

(5.16)
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for all τ ∈ [0, Tk), for all k ∈ Z0+. Thus, there is a unique fixed point x∗(0) in B(0, r), then the
state trajectory solution (xT

c (t), x
T
d[k])

T : R0+ × R
nc × Z0+ × R

nd → R
n has a fixed point x∗(τ)

in B(0, r) for each τ ∈ [0, T). This point coincides with that of the real sequence {x[k]}k ∈ Z
+
0

for τ = 0 from (5.14). Property (iii) has been proven.
(iv) Assume that the constraints C4 are modified as follows:

gcc(t, xci) ≤ β
g
ccxci; gcd(t, xdi) ≤ β

g

cdxdi, gdc(t, xci) ≤ β
g

dcxci;

gdd(t, xdi) ≤ β
g

dd
xdi; i = 1, 2.

(5.17)

Then, (5.14) and (5.16) are, respectively, modified as follows:

∥
∥x[k + 1] − y[k + 1]

∥
∥

≤
(
ρ + β

f

dc
+ β

f

dd
+ ρcT

[
β
f
cc + β

f

cd
+
(
β
g
cc + β

g

cd

)]
+ β

g

dc
+ β

g

dd

)∥
∥x[k] − y[k]

∥
∥,

(5.18)

∥
∥x(t) − y(t)

∥
∥
[tk ,tk+τ]

≤
(∥
∥
∥Ψc(tk + τ, tk)

∥
∥
∥ +

Kc

ac

(
1 − e−acτ

)(
β
f
cc + β

f

cd
+ β

g
cc + β

g

cd

))∥
∥x[k] − y[k]

∥
∥,

(5.19)

for all τ ∈ [0, Tk), for all k ∈ Z0+ so that state trajectory solution x : R0+ → R
n possesses a

unique fixed point z∗(0) ∈ B(0, r) for any harmless perturbations guaranteeing that

ρ + β
f

dc
+ β

f

dd
+ ρcT

(
β
f
cc + β

f

cd
+ β

g
cc + β

g

cd

)
+ β

g

dc
+ β

g

dd
< 1, (5.20)

provided that ρ < 1. Also, assume that ρ < 1 and the sequence of sampling periods
{Tk}k ∈ Z0+

converges asymptotically to a limit T in (εT , T) for some sufficiently small upper-

bound T < 1/ρc(β
f
cc + β

f

cd
+ β

g
cc + β

g

cd
), for all perturbations (5.17) constrained subject to any

given additive constant (βfcc + β
f

cd + β
g
cc + β

g

cd). Then, a unique fixed point z∗(τ) ∈ B(0, r) exists
for each τ ∈ [0, T) for any harmless perturbations subject to

ρ + β
f

dc + β
f

dd + β
g

dc + β
g

dd < 1 − ρc T
(
β
f
cc + β

f

cd + β
g
cc + β

g

cd

)
(5.21)

and Property (iv) has been proven.

Note that Theorem 5.1 is also applicable, in particular, for constant sampling periods.

Remark 5.2. Note that the fixed points of Theorem 5.1(iii)-(iv) are reached asymptotically for
the state-trajectory solution for each τ ∈ [0, T) provided that the sequences of sampling
instants and periods converge to finite limits. This does not mean that there is a unique
equilibrium point for such a trajectory. The physical conclusion of Theorem 5.1(iii)-(iv) is
that the unique asymptotically sable attractor might be either a globally asymptotically stable
equilibrium point or a stable limit oscillation of period at most T .
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From Remark 5.2 and Theorem 5.1(iii)-(iv), one concludes the existence of globally
stable equilibrium points or that of globally stable limit oscillations as follows in the next two
particular results in view of (5.16) and (5.19).

Corollary 5.3. If x∗(0) = 0 in Theorem 5.1(iii), then x∗(τ) = x∗ ≡ 0; for all τ ∈ [0, T). Then,
x(t) → 0 as t → ∞ and zero is a globally asymptotically stable equilibrium point. If z∗(0) = 0
in Theorem 5.1(iv) then, x (t) → z∗ ≡ 0, as t → ∞ and zero is a globally asymptotically stable
equilibrium point under the modified constraints C4′.

Corollary 5.4. Assume that x∗(τ1)/=x∗(τ2) for τ1, τ2(/= τ1) ∈ [0, T) in Theorem 5.1(iii). Then, any
state-trajectory solution converges to a unique limit oscillation of period T ∗ ≤ T as Z0+  k → ∞.
If x∗(τ1)/=x∗(τ2) for τ1, τ2(/= τ1) ∈ [0, T) in Theorem 5.1(iv). Then, any state-trajectory solution
converges to a unique limit oscillation x(kT + τ) → z∗(τ) as Z0+  k → ∞ of period not larger that
T ; for all τ ∈ [0, T), under the modified constraints C4′.

The condition of convergence of the sequence of sampling periods to a constant limit
is not necessary to derive Theorem 5.1(iii)-(iv) and Corollaries 5.3-5.4. The following ad-hoc
generalization follows:

Corollary 5.5. Construct the continuous time argument t := tk+τ =
∑k−1

j=0 Tj+τ ; for all t ∈ [tk, tk+1);

for all τ ∈ [0, Tk); for all k ∈ Z0+. Assume that limk→∞(
∑k

j=0 Tj + τ1(k))/= limk→∞(
∑k

j=0 Tj +
τ2(k)) for τ1(k), τ2(k)(/= τ1(k)) ∈ [tk, tk+1) in Theorem 5.1(iii). Then, any state-trajectory solution
converges to a unique limit oscillation of period T ∗ ≤ T as Z0+  k → ∞.

Remark 5.6. An inequality for the maximum allowable L∞-norm of the error among any two
state-trajectory solutions is now derived. Note from the constraints C.2–C.4, and (2.6)–(2.9)
that

∥
∥xd[k + 1] − yd[k + 1]

∥
∥ =

∥
∥Ad[k]

(
xd[k] − yd[k]

)
+Adc[k]

(
xc[k] − yc[k]

)
+ δdx[k] − δdy[k]

∥
∥

≤
(
md[k] + β

f

dc + β
f

dd

) ∥
∥
(
x[k] − y[k]

)∥
∥ + 2

(
β
g

dc + β
g

dd

)
r,

(5.22)

where ∞ > md ≥ md[k] := ‖(Adc[k], Ad[k])‖. Then, from (5.16) and (5.17), it is possible to
take into account the discontinuities at sampling instants by evaluating the argument τ on
the closed interval [0, Tk] as follows:

∥
∥x(t) − y(t)

∥
∥
[tk ,tk+τ]

≤ Max
0 ≤ s ≤ τ

(∥
∥
∥Ψc(tk+s, tk)

∥
∥
∥+

Kc

ac

(
1 − e−acτ

)(
β
f
cc + β

f

cd

)
+ md[k] + β

f

dc
+ β

f

dd

)

×
∥
∥x(t) − y(t)

∥
∥
[tk ,tk+τ]

+ 2
(
Kc

ac

(
1 − e−acτ

)(
β
g
cc + β

g

cd

)
+ β

g

dc + β
g

dd

)

r

∀τ ∈ [0, Tk].
(5.23)
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However, (5.23) leads to

∥
∥x(t) − y(t)

∥
∥ ≤

∥
∥x − y

∥
∥
[0,t]

≤
(

ρc +
Kc

ac
Max
k ∈ Z0+

Max
τ ∈ [0,Tk]

∣
∣1 − e−acτ

∣
∣
(
β
f
cc + β

f

cd

))∥
∥x(t) − y(t)

∥
∥
∞

+
2Kc

ac

(
β
g
cc + β

g

cd

)
r

(

Max
k ∈ Z0+

Max
τ ∈ [0,Tk]

∣
∣1 − e−acτ

∣
∣
)

≤ α
∥
∥x − y

∥
∥
∞ + β; ∀t ∈ R0+,

(5.24)

where

α := ρc +
Kc

ac
Max
τ ∈[0,T]

∣
∣1 − e−acτ

∣
∣
(
β
f
cc + β

f

cd

)
,

β :=
2Kc

ac

(
β
g
cc + β

g

cd

)
r

(

Max
τ ∈ [0,T]

∣
∣1 − e−acτ

∣
∣

)

, ρc := Max
k ∈ Z0+

Max
0≤τ≤Tk

∥
∥
∥Ψc(tk + τ, tk)

∥
∥
∥.

(5.25)

Then, ‖x − y‖∞ ≤ Max(2r, (1 − α−1)β) if α < 1.
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