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1. Introduction

In the last years, fixed point theorems have been applied to show the existence and
uniqueness of the solutions of differential equations, integral equations and many other
branches mathematics (see, e.g., [1–3]). Some common fixed point theorems for weakly
commuting, compatible, δ-compatible and weakly compatible mappings under different
contractive conditions in metric spaces have appeared in [4–15]. Throughout this paper,
(X, d) is a metric space.

Following [9, 16], we define,

2X =
{
A ⊂ X : A is nonempty

}
,

B(X) =
{
A ∈ 2X : A is bounded

}
.

(1.1)

For all A,B ∈ B(X), we define

δ(A,B) = sup
{
d(a, b) : a ∈ A, b ∈ B

}
,

D(A,B) = inf
{
d(a, b) : a ∈ A, b ∈ B

}
,

H(A,B) = inf
{
r > 0 : Ar ⊃ B, Br ⊃ A

}
,

(1.2)
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where Ar = {x ∈ X : d(x, a) < r, for some a ∈ A} and Br = {y ∈ X : d(y, b) < r, for some
b ∈ B}.

IfA = {a} for some a ∈ A, we denote δ(a, B),D(a, B) andH(a, B) for δ(A,B),D(A,B)
and H(A,B), respectively. Also, if B = {b}, then one can deduce that δ(A,B) = D(A,B) =
H(A,B) = d(a, b).

It follows immediately from the definition of δ(A,B) that, for every A,B,C ∈ B(X),

δ(A,B) = δ(B,A) ≥ 0, δ(A,B) ≤ δ(A,C) + δ(C,B), δ(A,B) = 0,

iff A = B = {a}, δ(A,A) = diamA.
(1.3)

We need the following definitions and lemmas.

Definition 1.1 (see [16]). A sequence (An) of nonempty subsets of X is said to be convergent to
A ⊆ X if:

(i) each point a in A is the limit of a convergent sequence (an), where an is in An for
n ∈ {0} ∪N (N:= the set of all positive integers),

(ii) for arbitrary ε > 0, there exists an integer m such that An ⊆ Aε for n > m, where Aε

denotes the set of all points x in X for which there exists a point a in A, depending
on x, such that d(x, a) < ε.

A is then said to be the limit of the sequence (An).

Definition 1.2 (see [9]). A set-valued function F : X → 2X is said to be continuous if for any
sequence (xn) in X with limn→∞ xn = x, it yields limn→∞ H(Fxn, Fx) = 0.

Lemma 1.3 (see [16]). If (An) and (Bn) are sequences in B(X) converging to A and B in B(X),
respectively, then the sequence (δ(An, Bn)) converges to δ(A,B).

Lemma 1.4 (see [16]). Let (An) be a sequence in B(X) and let y be a point in X such that
δ(An, y) → 0. Then the sequence (An) converges to the set {y} in B(X).

Lemma 1.5 (see [9]). For any A,B,C,D ∈ B(X), it yields that δ(A,B) ≤ H(A,C) + δ(C,D) +
H(D,B).

Lemma 1.6 (see [17]). Let Ψ : [0,∞) → [0,∞) be a right continuous function such that Ψ(t) < t
for every t > 0. Then, limn→∞Ψn(t) = 0 for every t > 0, where Ψn denotes the n-times repeated
composition of Ψ with itself.

Definition 1.7 (see [15]). The mappings I : X → X and F : X → B(X) are weakly commuting
on X if IFx ∈ B(X) and δ(FIx, IFx) ≤ max{δ(Ix, Fx),diam IFx} for all x ∈ X.

Definition 1.8 (see [13]). The mappings I : X → X and F : X → B(X) are said to be δ-
compatible if limn→∞ δ(FIxn, IFxn) = 0 whenever (xn) is a sequence in X such that IFxn ∈
B(X), Fxn → {t} and Ixn → t for some t ∈ X.

Definition 1.9 (see [13]). The mappings I : X → X and F : X → B(X) are weakly compatible
if they commute at coincidence points, that is, for each point u ∈ X such that Fu = {Iu}, then
FIu = IFu (note that the equation Fu = {Iu} implies that Fu is a singleton).
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If F is a single-valued mapping, then Definition 1.7 (resp., Definitions 1.8 and 1.9)
reduces to the concept of weak commutativity (resp., compatibility and weak compatibility)
for single-valued mappings due to Sessa [18] (resp., Jungck [11, 12]).

It can be seen that

weakly commuting =⇒ δ-compatible and δ-compatible =⇒ weakly compatible, (1.4)

but the converse of these implications may not be true (see, [13, 15]).
Throughtout this paper, we assume that Φ is the set of all functions φ : [0,∞)5 →

[0,∞) satisfying the following conditions:

(i) φ is upper semi-continuous continuous at a point 0 from the right, and non-
decreasing in each coodinate variable,

(ii) For each t > 0, Ψ(t) = max{φ(t, t, t, t, t), φ(t, t, t, 2t, 0), φ(t, t, t, 0, 2t)} < t.

Theorem 1.10 (see [19]). Let F, G be mappings of a complete metric space (X, d) into B(X) and
I be a mapping of X into itself such that I, F and G are continuous, F(X) ⊆ J(X), G(X) ⊆ I(X),
IF = FI, IG = GI and for all x, y ∈ X,

δ(Fx,Gy) ≤ φ(d(Ix, Iy), δ(Ix, Fx), δ(Iy,Gy), D(Ix,Gy), D(Iy, Fx)), (1.5)

where φ satisfies (i) and φ(t, t, t, at, bt) < t for each t > 0, and a ≥ 0, b ≥ 0 with a + b ≤ 2. Then I, F
and G have a unique common fixed point u such that u = Iu ∈ Fu ∩Gu.

In the present paper, we are concerned with the following:

(1) replacing the commutativity of the mappings in Theorem 1.10 by the weak
compatibility of a pair of mappings to obtain a common fixed point theoremmetric
spaces without the continuity assumption of the mappings,

(2) giving an example to support our generalization of Theorem 1.10,

(3) establishing another common fixed point theorem for two families of set-valued
mappings and two single-valued mappings,

(4) proving a common fixed point theorem for weakly compatible mappings under a
strict contractive condition on compact metric spaces.

2. Main Results

In this section, we establish a common fixed point theorem in metric spaces generalizing
Theorems 1.10. Also, an example is introduced to support our generalization. We prove a
common fixed point theorem for two families of set-valued mappings and two single-valued
mappings. Finally, we establish a common fixed point theorem under a strict contractive
condition on compact metric spaces.
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First we state and prove the following.

Theorem 2.1. Let I, J be two sefmaps of a metric space (X, d) and let F,G : X → B(X) be two
set-valued mappings with

∪F(X) ⊆ J(X), ∪G(X) ⊆ I(X). (2.1)

Suppose that one of I(X) and J(X) is complete and the pairs {F, I} and {G, J} are weakly compatible.
If there exists a function φ ∈ Φ such that for all x, y ∈ X,

δ(Fx,Gy) ≤ φ(d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy), D(Ix,Gy), D(Jy, Fx)), (2.2)

then there is a point p ∈ X such that {p} = {Ip} = {Jp} = Fp = Gp.

Proof. Let x0 be an arbitrary point in X. By (2.1), we choose a point x1 in X such that
Jx1 ∈ Fx0 = Z0 and for this point x1 there exists a point x2 in X such that Ix2 ∈ Gx1 = Z1.
Continuing this manner we can define a sequence (xn) as follows:

Jx2n+1 ∈ Fx2n = Z2n, Ix2n+2 ∈ Gx2n+1 = Z2n+1, (2.3)

for n ∈ {0} ∪ N. For simplicity, we put Vn = δ(Zn,Zn+1) for n ∈ {0} ∪ N. By (2.2) and (2.3),
we have that

V2n = δ
(
Z2n, Z2n+1

)
= δ

(
Fx2n, Gx2n+1

)

≤ φ
(
d
(
Ix2n, Jx2n+1

)
, δ
(
Ix2n, Fx2n

)
, δ
(
Jx2n+1, Gx2n+1

)
, D

(
Ix2n, Gx2n+1

)
, D

(
Jx2n+1, Fx2n

))

≤ φ
(
δ
(
Z2n−1, Z2n

)
, δ
(
Z2n−1, Z2n

)
, δ
(
Z2n, Z2n+1

)
, δ
(
Z2n−1, Z2n

)
+ δ

(
Z2n, Z2n+1

)
, 0
)

= φ
(
V2n−1, V2n−1, V2n, V2n−1 + V2n, 0).

(2.4)

If V2n > V2n−1, then

V2n ≤ φ(V2n, V2n, V2n, 2V2n, 0) ≤ Ψ(V2n) < V2n. (2.5)

This contradiction demands that

V2n ≤ φ
(
V2n−1, V2n−1, V2n−1, 2V2n−1, 0

) ≤ Ψ
(
V2n−1

)
. (2.6)

Similarly, one can deduce that

V2n+1 ≤ φ
(
V2n, V2n, V2n, 0, 2V2n

) ≤ Ψ
(
V2n

)
. (2.7)

So, for each n ∈ {0} ∪N, we obtain that

Vn+1 ≤ Ψ
(
Vn

) ≤ Ψ2(Vn−1
) ≤ · · · ≤ Ψn(V1

)
, (2.8)



Fixed Point Theory and Applications 5

where V1 = δ(Z1, Z2) = δ(Fx2, Gx1) ≤ φ(V0, V0, V0, 0, 2V0). By (2.8) and Lemma 1.6, we obtain
that limn→∞ Vn = limn→∞ δ(Zn,Zn+1) = 0. Since

δ
(
Zn,Zm

) ≤ δ
(
Zn,Zn+1

)
+ δ

(
Zn+1, Zn+2

)
+ · · · + δ

(
Zm−1, Zm

)
, (2.9)

then limn,m→∞ δ(Zn,Zm) = 0. Therefore, (Zn) is a Cauchy sequence.
Let zn be an arbitrary point in Zn for n ∈ {0} ∪ N. Then limn,m→∞ d(zn, zm) ≤

limn,m→∞ δ(Zn,Zm) = 0 and (zn) is a Cauchy sequence. We assume without loss of generality
that J(X) is complete. Let (xn) be the sequence defined by (2.3). But Jx2n+1 ∈ Fx2n = Z2n for
all n ∈ {0} ∪N. Hence, we find that

d
(
Jx2m−1, Jx2n+1

) ≤ δ
(
Z2m−2, Z2n

) ≤ V2m−2 + δ
(
Z2m−1, Z2n

) −→ 0, (2.10)

as m,n → ∞. So, (Jx2n+1) is a Cauchy sequence. Hence, Jx2n+1 → p = Jv ∈ J(X) for some
v ∈ X. But Ix2n ∈ Gx2n−1 = Z2n−1 by (2.3), so that d(Ix2n, Jx2n+1) ≤ δ(Z2n−1, Z2n) = V2n−1 → 0.
Consequently, Ix2n → p. Moreover, we have, for n ∈ {0}∪N, that δ(Fx2n, p) ≤ δ(Fx2n, Ix2n)+
d(Ix2n, p) ≤ V2n−1 + d(Ix2n, p). Therefore, δ(Fx2n, p) → 0. So, we have by Lemma 1.4 that
Fx2n → {p}. In like manner it follows that δ(Gx2n+1, p) → 0 and Gx2n+1 → {p}.

Since, for n ∈ {0} ∪N,

δ
(
Fx2n, Gv

) ≤ φ
(
d
(
Ix2n, Jv

)
, δ
(
Ix2n, Fx2n

)
, δ
(
Jv,Gv

)
, D

(
Ix2n, Gv

)
, D

(
Jv, Fx2n

))

≤ φ
(
d
(
Ix2n, Jv

)
, δ
(
Ix2n, Fx2n

)
, δ
(
Jv,Gv

)
, δ
(
Ix2n, Gv

)
, δ
(
Jv, Fx2n

))
,

(2.11)

and δ(Ix2n, Gv) → δ(p,Gv) as n → ∞, we get from Lemma 1.3 that

δ(p,Gv) ≤ φ
(
0, 0, δ(p,Gv), δ(p,Gv), 0

) ≤ Ψ
(
δ(p,Gv)

)
< δ(p,Gv). (2.12)

This is absurd. So, {p} = Gv = {Jv}. But ∪G(X) ⊆ I(X), so ∃u ∈ X such that {Iu} = Gv =
{Jv}. If Fu/=Gv, δ(Fu,Gv)/= 0, then we have

δ(Fu, p) = δ(Fu,Gv)

≤ φ
(
d(Iu, Jv), δ(Iu, Fu), δ(Jv,Gv), D(Iu,Gv), D(Jv, Fu)

)

≤ φ
(
d(Iu, Jv), δ(Iu, Fu), δ(Jv,Gv), δ(Iu,Gv), δ(Jv, Fu)

)

= φ
(
0, δ(Fu, p), 0, 0, δ(Fu, p)

)

≤ Ψ
(
δ(Fu, p)

)
< δ(Fu, p).

(2.13)

We must conclude that{p} = Fu = Gv = {Iu} = {Jv}.
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Since Fu = {Iu} and the pair {F, I} is weakly compatible, so Fp = FIu = IFu = {Ip}.
Using the inequality (2.2), we have

δ(Fp, p) ≤ δ(Fp,Gv)

≤ φ
(
d(Ip, Jv), δ(Ip, Fp), δ(Jv,Gv), D(Ip,Gv), D

(
Jv, Fp)

)

≤ φ
(
δ(Fp, p), 0, 0, δ(Fp, p), δ(Fp, p)

)

≤ Ψ
(
δ(Fp, p)

)

< δ(Fp, p).

(2.14)

This contradiction demands that {p} = Fp = {Ip}. Similarly, if the pair {G, J} is weakly
compatible, one can deduce that {p} = Gp = {Jp}. Therefore, we get that {p} = Fp = Gp =
{Ip} = {Jp}.

The proof, assuming the completeness of I(X), is similar to the above.
To see that p is unique, suppose that {q} = Fq = Gq = {Iq} = {Jq}. If p /= q, then

d(p, q) = δ(Fp,Gq) ≤ φ
(
d(p, q), 0, 0, d(p, q), d(p, q)

) ≤ Ψ
(
d(p, q)

)
< d(p, q), (2.15)

which is inadmissible. So, p = q.
Now, we give an example to show the greater generality of Theorem 2.1 over

Theorem 1.10.

Example 2.2. Let X = [0, 1] endowed with the Euclidean metric d. Assume that
φ(t1, t2, t3, t4, t5) = t1/3 for every t1, t2, t3, t4, t5 ∈ [0,∞). Define F,G : X → B(X) and
I, J : X → Xas follows:

Fx =
{
1
2

}
if x ∈ X, Gx =

{
1
2

}
if x ∈

[
0,

1
2

]
, Gx =

(
3
8
,
1
2

]
if x ∈

(
1
2
, 1
]
,

Ix =
1
2

if x ∈
[
0,

1
2

]
, Ix =

x + 1
4

if x ∈
(
1
2
, 1
]
, Jx = 1 − x if x ∈

[
0,

1
2

]
,

Jx = 0 if x ∈
(
1
2
, 1
]
.

(2.16)

We have that ∪F(X) = {1/2} = {J(1/2)} ⊆ J(X) and ∪G(X) = (3/8, 1/2] = I(X).
Moreover, δ(Fx,Gy) = 0 if y ∈ [0, 1/2]. If y ∈ (1/2, 1], then δ(Fx,Gy) ≤ 1/8 and d(Ix, Jy) ≥
3/8. So, we obtain that

δ(Fx,Gy) ≤ 1
3
d(Ix, Jy) =

1
3
φ
(
d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy), D(Ix,Gy), D(Jy, Fx)

)
,

(2.17)

for all x, y ∈ X. It is clear that X is a complete metric space. Since J(X) = [1/2, 1] ∪
{0} is a closed subset of X, so J(X) is complete. We note that {F, I} is a δ-compatible
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pair and therefore a weakly compatible pair. Also, G(1/2) = {J(1/2)} and GJ(1/2) =
JG(1/2) = {1/2}, that is, G and J are weakly compatible. On the other hand, if xn =
1/2 − 2−n, so that δ(GJxn, JGxn) → 1/8/= 0 even though Gxn, {Jxn} → {1/2}, that is,
{G, J} is not a δ-compatible pair. We know that 1/2 is the unique common fixed point
of I, J, F and G. Hence the hypotheses of Theorem 2.1 are satisfied. Theorem 1.10 is not
applicable because GJx /= JGx for all x ∈ X, and the maps I, J and G are not continuous at
x = 1/2.

In Theorem 2.1, if the mappings F and G are replaced by Fα and Gα, α ∈ Λ where Λ is
an index set, we obtain the following.

Theorem 2.3. Let (X, d) be a metric space, and let I, J be selfmaps ofX, and for α ∈ Λ, Fα,Gα : X →
B(X) be set-valued mappings with ∪[∪α∈ΛFα(X)] ⊆ J(X) and ∪[∪α∈ΛGα(X)] ⊆ I(X). Suppose that
one of I(X) and J(X) is complete and for α ∈ Λ the pairs {Fα, I} and {Gα, J} are weakly compatible.
If there exists a function φ ∈ Φ such that, for all x, y ∈ X,

δ
(
Fαx,Gαy

) ≤ φ
(
d(Ix, Jy), δ

(
Ix, Fαx

)
, δ
(
Jy,Gαy

)
, D

(
Ix,Gαy

)
, D

(
Jy, Fαx

))
, (2.18)

then there is a point p ∈ X such that {p} = {Ip} = {Jp} = Fαp = Gαp for each α ∈ Λ.

Proof. Using Theorem 2.1, we obtain for any α ∈ Λ, there is a unique point zα ∈ X such that
Izα = Jzα = zα and Fαzα = Gαzα = {zα}. For all α, β ∈ Λ,

d
(
zα, zβ

) ≤ δ
(
Fαzα,Gβzβ

)

≤ φ
(
d
(
Izα, Jzβ

)
, δ
(
Izα, Fαzα

)
, δ
(
Jzβ, Gβzβ

)
, D

(
Izα, Gβzβ

)
, D

(
Jzβ, Fαzα

))

≤ φ
(
d
(
zα, zβ

)
, 0, 0, d

(
zα, zβ

)
, d

(
zβ, zα

))

≤ Ψ
(
d
(
zα, zβ

))
< d

(
zα, zβ

)
.

(2.19)

This yields that zα = zβ.
Inspired by the work of Chang [9], we state the following theorem on compact metric

spaces.

Theorem 2.4. Let (X, d) be a compact metric space, I, J selfmaps ofX, F,G : X → B(X) set-valued
functions with ∪F(X) ⊆ J(X) and ∪G(X) ⊆ I(X). Suppose that the pairs {F, I}, {G, J} are weakly
compatible and the functions F, I are continuous. If there exists a function φ ∈ Φ, and for all x, y ∈ X,
the following inequality:

δ(Fx,Gy) < φ
(
d(Ix, Jy), δ(Ix, Fx), δ(Jy,Gy), D(Ix,Gy), D(Jy, Fx)

)
, (2.20)

holds whenever the right-hand side of (2.20) is positive, then there is a unique point u in X such that
Fu = Gu = {u} = {Iu} = {Ju}.
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